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The  intrinsic  physical  relationship  of  vorticity  between  modes  A  and  B  in  the  three-dimensional
wake  transition  is  investigated.  Direct  numerical  simulations  for  the  flow  past  a  square-section
cylinder  are  carried  out  at  Reynolds  numbers  of  180  and  250,  associated  with  modes  A  and  B,
respectively.  Based  on  the  analysis  of  spacial  distributions  of  vorticity  in  the  near  wake,
characteristics of the vertical vorticity in modes A and B are identified. Moreover, the relationship
of  three  vorticity  components  with  specific  signs  is  summarized  into  two  sign  laws,  as  intrinsic
physical relationships between two instability modes. By the theory of vortex-induced vortex, such
two sign laws confirm that there are two and only two kinds of vortex-shedding patterns in the near
wake, just corresponding to modes A and B. In brief, along the free stream direction, mode A can
be  described  by  the  parallel  shedding  vertical  vortices  with  the  same  sign,  while  mode  B  is
described by the parallel shedding streamwise vortices with the same sign. Finally, it is found out
that the -type vortex is a basic kind of vortex structure in both modes A and B.
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Three-dimensional  (3-D)  wake  transition  in  the  wake  of  a
bluff  body,  as  a  classical  subject  in  fluid  mechanics,  has  been
studied extensively in the literature based on different methodo-
logies,  such  as  physical  model  experiments,  direct  numerical
simulation (DNS), and linear or nonlinear stability analysis [1-7].
Typically  for  flow  past  a  circular-section  cylinder,  the  first  3-D
instability mode, referred as mode A, is appeared with a non-di-
mensional  spanwise  wavelength  of  approximately  3.96  at  a
Reynolds number of 190. When the Reynolds number increases
up to 230, the second 3-D instability mode, referred as mode B,
is observed with . However, there still have some basic
unknowns  about  intrinsic  relationship  of  vorticity  in  these  two
modes.  It  is  very  important  in  understanding  the  evolution  of
specific vorticity in the wake vortex dynamics,  particularly from
the point of vorticity sign.

In these two modes, there have distinctly different features of
vorticity  distributions,  i.e.  the  natural  symmetries  of  modes  A

!x

!y

and B [2], in the evolving wake dynamics, especially for the form-
ation of streamwise vortices ( ),  as shown in Fig.  1(a), (b) and
illustrated  in Fig.  1(c), (d) ,  respectively.  Mode  A  comprises
streamwise vortices of one sign in a staggered arrangement from
one braid region to the next one. While mode B has an in-line ar-
rangement of  streamwise  vortices  of  the  same  sign.  Such  fea-
tures  are  also  appeared  in  the  wake  transition  of  a  square-sec-
tion cylinder [7].  However, there still  has an unknown problem,
i.e.,  what characteristics of vertical vorticity distributions are, as
the  first  question  (Q1).  Up  to  now,  the  vertical  vorticity  ( )  is
less reported in recent works [5-7]. Moreover, once the distribu-
tions of vertical vorticity are known, features of these three com-
ponents of vorticity in such two modes and relationships of vor-
ticity  between  them  are  investigated,  as  the  second  and  third
questions (Q2, Q3).

On the other hand, such two distinct instability modes A and
B with different spanwise wavelengths in the near wake of a cir-
cular cylinder are not only experimentally measured [2], but also
theoretically predicted [1]  as shown in Fig.  2,  further confirmed
in 3-D DNS of wake transition [5, 7]. Besides, a further mode C 3-
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¸z = 1:8D instability with  has been proposed by Zhang et al. [8],
for the Reynolds number of 170–270, based on the approximate
stability analysis. However, such mode is confirmed to be stable
in the full Floquet stability analysis [1]. In the numerical simula-
tions  and  experiments  of  Zhang  et  al.  [8],  it  appears  that  this
mode C is the result of forcing on the nominally two-dimension-
al (2-D) flow, in this case using an interference wire placed close
to and parallel to the cylinder axis. Presumably, if one interferes
with the 2-D flow field in other ways, one can induce still further
3-D instability wavelengths and modes. Similarly, such mode C,
an  asynchronous  instability  different  from  two  synchronous
instabilities (i.e.,  modes A and B), is also qualitatively predicted
by applying the Lifschitz–Hameiri theory along special Lagrangi-
an trajectories [4]. It appears, at this point, that the natural wake
comprises  only  the  two  distinct  instabilities  yielding  modes  A
and B [2].

In a study of the wake instabilities of a square-section cylin-
der,  three  wake  instability  modes,  i.e.,  mode  A,  mode  B,  and  a
quasi-period  (QP)  mode,  have  been  discovered  [9].  Although

¸z

mode  QP  is  discovered  through  the  Floquet  stability  analysis
with the spanwise wavelength  approximately 2.6–2.8 and the
critical Reynolds number in a range of about 200–220, it is not re-
ported by DNS or experimental studies, consistent with the case
of a circular-section cylinder [7].

Therefore, it can be concluded that modes A and B are natur-
ally  existed  in  the  3-D  wake  transition  of  a  circular-  or  square-
section cylinder.  The fourth question (Q4) is that why only two,
not one or three, modes are appeared in the natural wake trans-
ition without any interference or perturbation.

In present paper, the main aim is to answer above four ques-
tions.  By  means  of  numerical  simulations  of  flow  past  a  square
cylinder and  the  theory  of  vortex-induced  vortex  (VIVor),  pro-
posed in previous work [10], the intrinsic physical relationship of
vorticity between modes A and B is investigated.

(x ; y; z)

(x ; z) ½

º

An  incompressible  flow  past  the  square-section  cylinder  is
taken  into  account,  as  shown  in Fig.  3(a).  Among  them,  the
Cartesian  coordinate  system  is  established,  where  the
x-axis (streamwise) is aligned with the incoming free stream, the
z-axis (spanwise) is parallel to the cylinder span, while the y-axis
(vertical)  is  normal  to  the  plane.  The  density  and kin-
ematic viscosity  of the fluid are constant.

The continuity  and  Navier–Stokes  equations  in  dimension-
less forms are written out by

r ¢ = 0; (1) 

@

@t
+ ( ¢ r) = ¡rp+

1
R e

r2 ; (2) 

(u; v;w) t
r p R e

U1D=º U1
D

U1 D

where  is  the  velocity  vector ,  is  non-dimensional
time,  is  the  gradient  operator,  is  the  static  pressure,  is
the  Reynolds  number  defined  as ,  where  is  the
velocity of free stream and  is the side length of square section.
Velocities are characterized by  and lengthes by .

u = U1 v = w = 0

@ =@t +Uc(@ =@x) = 0 Uc = 1

y

@u=@y = v = @w=@y = 0

= 0

Correspondingly  the  appropriate  boundary  conditions  are
employed as follows. As for velocity, the uniform stream with ve-
locity  and  is adopted at the inlet of computa-
tional  domain.  The  simple  convective  outflow,

 with  the  convective  velocity ,  is

applied at the outlet. On both lateral sides of computational do-
main  in  the -axis,  free  slip  boundary  conditions  with  velocity

 are  employed.  And  non-slip  boundary

conditions with velocity  are used on the cylinder surfaces.
While for  pressure,  the  compatible  pressure  boundary  condi-
tions, the normal component of momentum equation, are impli-
citly computed at all boundaries of computational domain. And
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Fig. 1.   Schematics of symmetry of a mode A and b mode B [2], illus-
trated by iso-surfaces of streamwise vorticity  in c  mode A and
d  mode  B  through  direct  numerical  simulations  for  flow  past  a
square cylinder, where dark grey and light yellow denote positive
and negative values [7]. Note that the flow is from the left to the right.

 

7

6

5

4

3

2

1

0
100 150 200 250 300 400350

Stable

Mode A

Mode B

Maximum
growth rate

Unstable

Re

λ z

 

¸zFig. 2.   Comparison of non-dimensional instability wavelength 
along with the Reynolds number Re for modes A and B between ex-
periments and Floquet analysis of the wake of a circular cylinder [1].
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Fig. 3.   a Sketch of flow past a square-section cylinder, and b non-
dimensional computational domain and mesh distribution.
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p1 y = 0the  reference  pressure  is  zero  at  the  center  of  inlet  to
avoid the numerical drift.

(x ; y)
In spacial  discretization,  the  finite  difference  method  is  ad-

opted with the central difference scheme in the  plane and
the  spectral  method  with  Fourier  function  is  applied  along  the
span  based  on  the  assumption  that  the  flow  is  periodic  across
the  span.  As  for  the  time  scheme  for  unsteady  and  convective
terms,  and so on,  the second-order splitting method is  adopted
[11].

(x ; y)
£ x £ y

¸
¸ = ¸z

The dimensionless computational domain in the  plane
is  27  18  ( ),  as  shown  in Fig.  3(b).  And  the  non-dimen-
sional  spanwise computational  length  in Fig.  3(a) is  assumed
to be one period of 3-D instability modes, i.e. , just to cap-
ture main features in specific distributions of vorticity in the near
wake. The finest grids with non-dimensional spacing about 10-3

are clustered near  the  cylinder  and the coarsest  grids  with  spa-
cing about 10-1 are distributed away from the cylinder, as shown
in Fig. 3(b).

R e = 100

St f D=U1 f

Verification  of  computational  codes  is  mainly  carried  out  at
.  And  dependence  study  for  mesh  and  computational

domain is referenced in the previous work [12]. For example, the
Strouhal  number ,  defined  as  where   is  the  vortex-
shedding  frequency,  is  obtained  to  be  0.149,  agreed  well  with
0.146 in experiments [3].

R e = 180 ¸z = 6
R e = 250 ¸z = 1:2
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1
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N » ¸zR e
1
2=(2 )

N = 32 R e = 180 N = 16 R e = 250

CD CL

Computations  are  performed  firstly  for  the  first  instability
mode  A  at  with  , and  then  for  the  second  in-
stability  mode  B  at  with   [3 ]. Total  computa-
tional Fourier modes for both modes A and B are 32 and 16, re-
spectively [1].  The -th wavenumber  is  defined as  in
spectral  space.  In  Eq. (2) ,  the  spanwise  viscous  item,

,  can be expressed by a sum of Fourier modes,

, where  is the -th spanwise Four-

ier  mode of . Therefore,  viscous  dissipation becomes
important  at  wavenumbers .  And  at  wavenumbers

 the  momentum  equations  are  dominated  by  viscous
forces  [1].  These  high-wavenumber  modes  contribute  little  to
the  dynamics  of  the  flow  at  large  scales  because  their  energy  is
rapidly  dissipated  by  viscosity.  For  an  adequate  description  of
the  dynamics  in  a  system  with  a  given  spanwise  dimension 
we only need a finite set of  Fourier modes to cover the range
of scales from  (the mean flow) to , or

. Hereby,  we  just  investigate  the  3-D  flow  dy-
namics with spanwise periodicity at the smallest periodic resolu-
tion of  at  or  at  in present pa-
per,  considering  to  eliminate  the  aliasing  error  in  computing
non-linear  convective  terms.  The  moments  for  modes  A  and  B
are chosen after the wake flow is steady and periodic with peri-
odical  variations  of  drag  and  lift  coefficients,  and  ,  along
the time. According to the features of three components of vorti-
city  distributed  in  the  near  wake,  the  intrinsic  relationship
between  modes  A  and  B  is  presented  and  discussed,  from  the
point of vorticity and its sign.

¦

¦

As  for  mode  A  as  shown  in Fig.  4(a), the  wake  can  be  de-
scribed by the -type vortices alternatively shed from the upper
and lower  shear  layers.  The  moment  associated  to  the  appear-
ance of  3-D vortex-shedding pattern is  corresponding to reduc-
tion of fluid forces, as shown in Fig. 4(b). In such -type vortex,
the  head  line,  "—",  denotes  the  spanwise  vortex  alternatively

shed from the upper or lower shear layer. While two legs, "||", de-
note  that  streamwise  and/or  vertical  vortex  pairs  with  opposite
signs  are  also  alternatively  shed  with  such  spanwise  vortex  and
thus stretched  or  elongated  into  the  upstream  vortex  braid  re-
gion by the upstream spanwise vortex of  opposite sign,  consist-
ent with the description in Ref. [2].

¦

z = (1=4)¸z

z = (1=4)¸z (+j!xj;+j!yj;¡j!zj) (¡j!xj;+j!yj;+j!zj)
z = (3=4)¸z (¡j!xj;¡j!yj;¡j!zj) (+j!xj;¡j!yj;+j!zj)

Now let us examine the sign of streamwise and vertical com-
ponents of vorticity in such -type vortex. As a typical example,
the  flow  in  section  of  is  concerned.  As  shown  in
Fig.  5(a),  the  streamwise  vorticity  with  positive  and  negative
signs is firstly concentrated in the shear layers. Then the stream-
wise  vortices  are  formed  and  alternatively  shed  from  the  upper
and  lower  shear  layers,  respectively.  However,  as  shown  in
Fig.  5(b), the  vertical  vorticity  mainly  with  positive  sign  is  ini-
tially  accumulated  in  and  then  alternatively  shed  from  both
shear  layers.  Therefore,  such  characteristics  in  the  near  wake
can  be  simply  denoted  by  the  following  vorticity  signs:

,  and  ;
,  and . It in-

dicates that the streamwise vortices are shed in a staggered man-
ner  with  opposite  signs  between  two  neighboring  vortex  braid
regions  along  not  only  the  streamwise  direction  but  also  the
spanwise  direction,  while  the  vertical  vortices  are  shed  in  a
staggered arrangement with opposite signs only across the span
but parallel  to  each other  with the same sign along the stream-

 

y

z

x

1.5
1.5

1.3

1.0

0.5

0

−0.5
200 300 400 500

t

C
D
, C

D
p

C
L

CDp

CD

CL

a

b

 

!x = §0:8 !z = §1

t = 340 R e = 180 ¸z = 6
CD CD p

CL !z z = 0

Fig.  4.     a  Iso-surfaces  of   (yellow/green)  and 
(red/blue) describing mode A in the near wake of the square-sec-
tion cylinder at  and  with , and b time his-
tories of drag coefficient , its pressure contribution  and lift
coefficient , where the background is the contour of  at .
Note the square cylinder is shown by the wire frame.

322 L.M. Lin et al. / Theoretical & Applied Mechanics Letters 8 (2018) 320-325



wise direction.
¦

(+j!xj;+j!yj) (¡j!xj;¡j!yj)
¦ ¡j!zj (¡j!xj;+j!yj) (+j!xj;¡j!yj)

¦ +j!zj

Or from the point of  a  single -type vortex shed in the near
wake,  we  have:  and   in  the  upper

-type vortex with , while  and 
in the lower -type vortex with .

z = 0 z = (1=2)¸z

z = 0 z = (1=2)¸z

j!zj z = 0 z = (1=2)¸z

z = 0

z = (1=2)¸z

Moreover, as a result of such specific distributions of stream-
wise  and  vertical  vorticities,  the  original  2-D  spanwise  vortices
are disturbed wavily across the span, as well  as the shear layers
and wake width. According to the VIVor theory [10], the induced
spanwise  vorticity  would  be  positive  and  negative  in  the  upper
shear  layer  at  and  ,  respectively,  but  negative
and  positive  in  the  lower  shear  layer  at  and  ,
respectively.  This  results  in  the  value  of  total  spanwise  vorticity

 decreased  at  but  increased  at  for  both
shear  layers.  Such  variation  of  spanwise  vorticity  is  associated
with  the  vorticity  diffusion  at ,  as  shown  in Fig.  6(a),  and
the  vorticity  concentration  near  the  wake  center  plane  at

, as shown in Fig. 6(b).

¦
Interestingly, the wake for mode B instability can also be de-

scribed mainly by the -type vortices alternatively shed but with
smaller spanwise wavelength and scattered spanwise vortices of
opposite sign, as shown in Fig. 7(a). In the whole computational
time,  vortex  shedding  in  mode  B  is  exactly  periodical  just  with
constant  amplitudes of  fluid forces,  as  shown in Fig.  7(b), obvi-
ously different from those in mode A.

z = (1=4)¸z

z = (1=4)¸z

(¡j!xj;¡j!yj;¡j!zj) (¡j!xj;+j!yj;+j!zj) z = (3=4)¸z

Through  careful  examination  of  streamwise  and  vertical
components  of  vorticity  in  the  near  wake  and  comparison  with
those in mode A, we find out some similarity between them. As
an example at , the streamwise vorticity with a negat-
ive sign  is  concentrated  in  both  shear  layers  and  then  alternat-
ively  shed,  as  shown  in Fig.  8(a).  But  as  shown  in Fig.  8(b),  the
vertical vorticity  with  negative  and  positive  signs  is  firstly  accu-
mulated  in  the  upper  and  lower  shear  layers,  respectively,  and
then alternatively  shed with the negative and positive  spanwise
vortices, respectively.  Resultantly,  this  feature  can  be  summar-
ized  by  the  following  relationship: ,

 and  ; ,

(+j!xj;+j!yj;¡j!zj) (+j!xj;¡j!yj;+j!zj) and  .  Different  from

those in mode A, it  shows that the streamwise vortices are shed
in a staggered manner with opposite signs only along the span-
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wise direction but in the in-line arrangement or parallel to each
other with the same sign between two neighboring vortex braid
regions, while  the  vertical  vortices  are  shed  in  a  staggered  ar-
rangement with opposite signs between two neighboring vortex
braid  regions  along  not  only  the  streamwise  direction  but  also
the spanwise direction.

(+j!xj;+j!yj) (¡j!xj;¡j!yj) ¦

¡j!zj (+j!xj;¡j!yj) (¡j!xj;+j!yj)
¦ +j!zj ¦¡

¦

¸z (+j!xj;+j!yj;¡j!zj)
z = (1=4)¸z (¡j!xj;¡j!yj;¡j!zj) z = (3=4)¸z

¦+ ¦

(¡j!xj;+j!yj;+j!zj) z = (1=4)¸z

(+j!xj;¡j!yj;+j!zj) z = (3=4)¸z

¦¡ ¦+
¦¡ ¦+

y = 0
¦¡ ¦+

¦ ¦¡ ¦+

Furthermore,  we  have  the  following  relationship  too:
 and  in the upper -type vortex with

,  while  and   in  the  lower
-type vortex with . In addition, we define the  vortex as

the upper -type vortex (at dimensionless spanwise wavelength
)  with  sign  combinations  of  at

 and   at  ,  just  as
shown  in Fig.  4,  and  the  vortex  as  the  lower -type  vortex
with  sign  combinations  of  at  
and  at . Mode A thus can be de-
scribed  by  the  and   vortices  alternatively  shed  in  phase
across  the  span,  while  mode  B  is  described  by  the  and  
vortices alternatively shed out of phase across the span. Further-
more,  it  can be  seen that  a  kind of  symmetry  about  the  time in
half vortex-shedding period and the wake center plane ( ) is
actually existed between the  and  vortices [1]. This further
confirms that the -type vortex, the  or  vortex, is a funda-
mental  vortex  structure  in  both  modes  A  and  B  in  the  wake
transition of a bluff body.

z = (1=2)¸z z = ¸z

Now  let  us  see  the  effect  of  those  special  distributions  of
streamwise and  vertical  components  of  vorticity  on  the  span-
wise vorticies, obviously different from mode A, as shown in Fig.
9. Based on the analysis of VIVor theory, the negative and posit-
ive streamwise vortices in the upper shear layer across the span
induce  the  induced  spanwise  vorticity  with  a  positive  sign  at

 and  a  negative  sign  at ,  respectively.  On  the
other hand, the streamwise vortices with same opposite signs in
the lower shear layer have an exactly equivalent effect on the in-
duced spanwise vorticity across the span. The coupled effects of
these streamwise vortices in both the upper and lower shear lay-

z = (1=2)¸z

z = ¸z

ers result  in  the  negative  spanwise  vorticity  weakened  and  dif-
fused  outwards  and  the  positive  spanwise  vorticity  intensified
and concentrated near the wake center plane at ,  as
shown  in Fig.  9(a),  and  exactly  opposite  to  those  at  in
Fig. 9(b).

!x !y !x ¢ !y

¦

¦

!x ¢ !y ¢ !z

¦ !x

!y !z

From  above  analysis,  the  intrinsic  relationship  of  vorticity
between  modes  A  and  B  is  presented  and  discussed.  Typically,
two sign laws in such vorticity relationship are summarized. The
sign for  combination of  and ,  i.e. ,  is  positive  in  the
upper shear layer or the upper -type vortex but negative in the
lower shear layer or the lower -type vortex, as the first sign law,
which  is  independent  of  wavy  spanwise  vortices.  However,  the
sign  for  combination  of  all  three  components  of  vorticity,  i.e.

, is always negative for both the upper and lower shear
layers or -type vortices, as the second sign law, regardless of 
and  stretched into upstream vortex braids with  of opposite
sign.  Howbeit,  these  summarized  sign  laws  in  modes  A  and  B
have  not  removed  the  possibility  of  other  3-D  instability  mode
yet.

x > 0

Recently,  the  theory  of  vortex-induced  vortex  [10]  is  pro-
posed, from  the  point  of  investigating  the  specific  sign  of  vorti-
city distributed in the wake of a bluff body. Two sign laws in the
shear  layers  and  near  wake  ( ), as  intrinsic  physical  rela-
tionships between  different  components  of  vorticity,  are  ob-
tained as follows:

sgn(!x ¢ !y) =

½
¡1; y < 0;
1; y > 0;

(3) 

sgn (!x ¢ !y ¢ !z) = ¡1; (4) 

!x ¢ !y = 0 !x ¢ !y ¢ !z = 0 y < 0

y > 0

where  sgn  is  the  sign  function,  except  certain  positions  where
 and . Here region of  denotes the

lower  shear  layer  or  spanwise  vortex  with  a  positive  sign,  while
region of  denotes the upper shear layer or spanwise vortex
with a negative sign. Present two sign laws are exactly consistent
with  above  two  summarized  sign  laws  in  the  near  wake,
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Fig. 8.   Contours of a  and b  at  in the case of Fig. 7,
where red and blue colors, as well as solid and dashed lines in con-
tours of , denote positive and negative values, respectively.
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!z z = (1=2)¸z z = ¸zFig. 9.   Contours of  at a  and b  in the case of
Fig. 7, where red and blue colors, as well as solid and dashed lines,
denote positive and negative values, respectively.
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¦associated with the formation of -type vortices.

x > 0

Therefore, according to the VIVor theory and two sign laws, it
is theoretically confirmed that two and only two kinds of specific
sign  combinations  of  three  vorticity  components  are  existed  in
region  of , just  associated  with  modes  A  and  B,  respect-
ively, in natural 3-D wake transition of a bluff body. Or from the
point of specific voriticy in the near wake, the staggered arrange-
ment of  streamwise  or  vertical  component  of  vorticity  with  op-
posite signs along the streamwise or spanwise direction is taken
as a basic feature between two neighboring vortex braids associ-
ated with alternatively shedding spanwise vortices with opposite
signs. Thus the key role is the vertical vortices in mode A or the
streamwise  vortices  in  mode  B,  parallel  to  each  other  with  the
same sign  along  the  streamwise  direction  between  two  neigh-
boring vortex braids.

In present  paper,  in  order  to  find  out  the  intrinsic  relation-
ship of  vorticity  in  two wake instability  modes,  modes A and B,
the flow  past  the  square-section  cylinder  is  numerically  simu-
lated  at  Reynolds  numbers  of  180  and  250.  Through  analysis  of
spacial  distributions  of  vorticity  and  its  sign  in  the  near  wake,
four questions are answered as follows:
(Q1) The vertical vorticity has its own features different in modes
A and B. In mode A, it is parallel to each other with the same sign
along the streamwise direction between two neighboring vortex
braid  regions.  However  in  mode  B,  it  is  in  a  staggered  manner
with  opposite  signs  along  the  streamwise  and  spanwise
directions between such braid regions.

(+j!xj;+j!yj;¡j!zj) (¡j!xj;+j!yj;+j!zj) z = (1=4)¸z

(¡j!xj;¡j!yj;¡j!zj) (+j!xj;¡j!yj;+j!zj)
z = (3=4)¸z (¡j!xj;¡j!yj;¡j!zj)
(¡j!xj;+j!yj;+j!zj) z = (1=4)¸z (+j!xj;+j!yj;¡j!zj)

(+j!xj;¡j!yj;+j!zj) z = (3=4)¸z

(Q2)  There  are  special  distributions  of  three  components  of
vorticity  with  specific  signs  in  modes  A  and  B.  In  mode  A,  it  is

 and   at  ,
and  and   at

. But in mode B, it becomes  and
 at  ,  and 

and  at .

x > 0
!x ¢ !y

¦¡
¦+

!x ¢ !y ¢ !z

¦

(Q3) Two sign laws are summarized based on the answer of  Q2
and further verified by the VIVor theory in region of .  The
first sign law presents the sign combination of  positive in
the upper shear layer or the  vortex but negative in the lower
shear  layer  or  the  vortex.  The second sign law indicates  the
sign  combination  of  always  negative  in  both  the
upper and lower shear layers or -type vortices.

x > 0

(Q4)  In  natural  wake  transition  of  a  bluff  body,  it  is  confirmed
that there are two and only two 3-D vortex-shedding patterns by
two  sign  laws  predicted  by  the  VIVor  theory  in  region  of ,
just  associated  with  modes  A  and  B  with  their  specific  vorticity
distributions.

Consequently,  modes A and B have the following simplified
features:
(1)  Mode  A  can  be  described  by  the  shedding  vertical  vortices
parallel  to  each  other  with  the  same  sign  along  the  streamwise

direction between two neighboring vortex braids. While mode B
is illustrated by the shedding streamwise vortices parallel to each
other  with  the  same  sign  along  the  streamwise  direction
between two braids.

¦¡ ¦+

¦¡ ¦+
¦

(2)  Mode  A  can  also  be  described  by  the  and   vortices
alternatively  shed  in  phase  across  the  span.  While  mode  B  is
demonstrated by the  and  vortices  alternatively  shed out
of phase across the span. Therefore the -type vortex is  a basic
vortex structure in the 3-D wake transition of a bluff body.
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