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The specific sign of Reynolds stress in the boundary layer on a flat plate at zero incidence is newly
interpreted  in  present  paper  based  on  the  theory  of  vortex-induced  vortex.  It  avoids  some
problems  appeared  in  a  traditional  explanation,  on  the  basis  of  relationship  between  mean  and
fluctuating flows due to the transport of momentum. Through the analysis of local flow field in the
immediate  neighborhood  of  wall,  the  characteristics  of  Reynolds  stress  are  identified  through
introducing  turbulence-induced  small-scale  streamwise  eddies  above  the  flat  plate.  The  positive
Reynolds stress is theoretically verified. And such new interpretation illustrates that the generation
of Reynolds stress, as well as fluctuating velocity, is intrinsically independent of the mean flow. But
its  specific sign would be determined by the mean flow due to the inertial  forces.  Other features,
such  as  the  intensity  relationship  among  three  components  of  fluctuating  velocity,  are  also
presented.
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The  specific  sign  of  Reynolds  shear  stress  in  a  turbulent
boundary  layer  on  a  flat  plate  at  zero  incidence  is  a  basic  and
classic  feature  before  deducing  the  relation  between  the  mean
motion and the apparent stresses caused by the turbulent fluctu-
ations.  Generally,  the  Reynolds  (shear)  stress  in  a  two-dimen-
sional  (2-D) boundary layer is  defined as ,  where  is  the
fluid  density  and  and  are  fluctuating  velocity  components
along streamwise (x)  and vertical  (y)  directions,  respectively,  as
shown in Fig. 1. It has been given by a physical explanation to il-
lustrate their occurrence in many literatures and textbooks [1-4]
over several decades until now, as a traditional explanation, and
also  little  investigated  for  the  boundary-layer  flow  in  a  recent
half  century  [5-7].  However,  some  questions  are  found  out  in
such traditional  explanation.  It  is  very  important  because  it  re-
veals the intrinsic physical mechanism, such as the generation of
Reynolds stress  and  its  feature.  Up  to  now,  there  are  few  pub-
lished  papers  put  the  focus  on  solving  them  in  recent  several
decades, as we know. Recently, the theory of vortex-induced vor-

tex (VIVor), by introducing a vortex or vortex pair on or near the
walls,  is  proposed  to  explain  spacial  characteristics  of  signs  of
resultant vorticity appeared in uniform and incompressible flow
past  a  still  bluff  body  [8].  According  to  the  induced  velocity
fields,  a  new  interpretation  can  be  used  more  reasonably  for
such specific sign of Reynolds stress.

¹u ¹v ¹w
u v w

u v
¿xy = ¿yx = ¡½u v

¹u = ¹u(y) ¹v = ¹w = 0 d¹u=dy > 0
u v

In order to clearly and correctly present the problem of spe-
cific  sign  of  Reynolds  stress,  let  us  firstly  review  the  traditional
explanation [2].  In  a  turbulent  stream, velocity  components  are
u, v, and w along with three own coordinates x, y, and z, respect-
ively. And a turbulent flow in mathematical terms is usually sep-
arated into a mean motion, denoted by the time-average of velo-
city , ,  and , and  into  a  fluctuation  or  eddying  motion,  de-
noted by its velocity of fluctuation , ,  and .  Then the time-
averages  of  the mixed products  of  velocity  fluctuations,  such as
e.g.  do,  in  fact  differ  from  zero.  The  stress  component

, referred to as the Reynolds stress, can be in-
terpreted  as  the  transport  of x-momentum  through  a  surface
normal to the y-axis. Considering, for example, a mean flow giv-
en  by ,  with ,  as  shown  in Fig.  1,
we can see that the mean product  is different from zero: the
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particles which  travel  upwards  in  view  of  the  turbulent  fluctu-
ation  ( )  arrive  at  a  layer y from  a  region  where  a  smaller
mean velocity  prevails.  Since they do,  on the whole,  preserve
their  original  velocity ,  they give rise to a  negative component

 in a layer y. Conversely, the particles which arrive from above
the  layer  ( )  give  rise  to  a  positive  in  it.  On  the  average,
therefore,  a  positive  is  “mostly”  associated  with  a  negative 
and  a  negative  is  “mostly”  associated  with  a  positive .  We
may  thus  expect  that  the  time-average  is  not  only  different
from zero but  also negative.  The shearing stress  is
positive in this case, as shown in Fig. 2, and has the same sign as
the relevant laminar shearing stress . This fact is also ex-
pressed  by  stating  that  there  exists  a  correlation  between  the
streamwise and vertical fluctuations of velocity at a given point.

From  above  analysis,  there  are  some  problems  appeared  as
follows:

Question 1: Specific sign of Reynolds stress.
¿xy = ¡½u v

u = ¹u+ u v = ¹v+ v

@u =@x + @v =@y = 0

A  statement,  the  Reynolds  stress  is  positive  in
the case of Fig. 1, is taken into account for further discussion in a
different way under the basic assumption that the flow is incom-
pressible. In  a  2-D  turbulent  flow  (only  with  velocity  compon-
ents  and ), the fluctuating components also
satisfy  the  incompressible  equation  of  continuity,  i.e.

. As shown in Fig. 1, given that only a fluctu-

v > 0 @v =@y > 0 @u =@x < 0
u < 0 u v < 0

w < 0 @w =@z < 0

j@w
@z

j > j@v
@y
j v > 0 @v =@y > 0 @u =@x

u
@u =@x + @v =@y + @w =@z = 0

w u v

ation  exists  in  a  fluid  element  between  top  and  middle  square
boxes,  when  then ,  we  have  and

. In such element,  there is .  However,  it  is  already
known that the turbulence is inherently a three-dimensional (3-
D) unsteady fluid motion, as shown in Fig. 3. In a 3-D turbulent
flow, through similar analysis, there is a problem: if given that a
spanwise  perturbation  and ,  and

 when  and ,  would be pos-

itive  and  so  does,  due  to  the  continuity  equation
.  This  analysis  indicates  that  the

spanwise  fluctuation  could  break  the  negative  sign  of .
There must be another means to solve this problem.

Question 2: Relationship between fluctuating and mean velo-
cities.

u
¹u

u » ¹u(y)¡ ¹u(y § ±y) / ¨(d¹u=dy)±y ±y
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u
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As indicated  by  above  traditional  explanation,  the  stream-
wise  fluctuating  velocity  is mainly  determined  by  the  differ-
ence  of  the  time-averaged  streamwise  velocity  between  two
successive layers along the vertical direction, not appeared as an
independent  part  of  decomposed  turbulent  motion.  In  other
words,  when  the  perturbed  fluid  element  passes  through,  we
have ,  where  is the  ver-
tical distance between such two layers and  denotes the flu-
id  particle  traveling  upwards  or  downwards,  respectively.  Two
direct  deductions  are  naturally  obtained.  One is  disappeared
theoretically in the uniform incoming flow  or local flow
region  of  under the  assumption  of  isotropic  turbu-
lence, obviously inconsistent with the non-zero intensity of tur-
bulence at the center of wind tunnel [2], as shown in Fig. 4. An-
other is its value would be gradually increased up to the maxim-
um  when  the  vertical  distance y approaches the  wall,  still  dis-
agreed  with  the  experimental  measurements  whatever  for  the
turbulent  boundary  layer  on  a  flat  plate  or  a  wind  tunnel,  as
shown  in Figs.  3 and 4.  Furthermore,  it  is  certainly  confirmed
that  such explanation can not  be applied for  the appearance of
vertical fluctuating velocity  owning to  if  is as-
sumed to be appeared firstly along the stream.

Question  3:  Intensity  relationship  among  three  components
of fluctuating velocity.

p
u 2 >

p
w 2 >

p
v 2

Moreover, typically as shown in Fig. 3 or 4, also presented in
recent work of Zhao et al. [10], it seems that there is an intensity
relationship  among  these  fluctuating  velocity  components,  i.e.

,  in  the  immediate  neighborhood  of  the
wall, which can not be verified in the traditional explanation.

Here the main aim is about to find out a new solution to an-
swer above three questions through the analysis of velocity fields
based on the theory of VIVor.

¿xy

¿xy = 0 u = v = 0

At  first,  in  the  turbulent  flow,  the  Reynolds  shearing  stress
 exists not only in the turbulent boundary layer where the in-

ertial  forces  are  important,  but  also  in  the  laminar  sub-layer
where  the  viscous  forces  dominate  without  any  change  of  its
specific  sign,  just  as  shown  in Fig.  2.  Only  on  the  solid  walls,

 for  the  non-slip  boundary  conditions  of .
Thereby,  we  can  analyze  such  problem  by  the  Stokes  equation
with  negligible  inertial  forces  in  the  laminar  sub-layer  at  high
Reynolds numbers.

= (u ; v ;w )Secondly, the induced velocity field, ,  resulted
from  the  turbulence,  is  analyzed  within  a  local  spacial  region
and a  quasi-steady time period without  any change of  fluctuat-
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Fig. 1.     Transport of momentum due to turbulent velocity fluctu-
ation.
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Fig. 2.   Total stress  scaled by , which is the shear stress at walls,

non-dimensional Reynolds stress  and viscous stress 

across the boundary layer with the thickness  in the flat plate at zero
incidence without the pressure gradient ( )  (see Fig.
22.14 in Ref. [1]).
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ing velocity sign. Only one spanwise wavelength of fluctuation is
considered. The induced velocity components  and  in such
local  region  are  assumed  to  be  almost  uniformly  distributed
along the streamwise x direction in present region. Such special
distribution is associated with the eddy motion with small-scale
streamwise  vortex  pair, .  The  streamwise  vortex  or  vortex
pair is not only almost uniformly distributed in the laminar sub-
layer but also in an approximate half period with same vorticity
sign,  such  as  a  certain  time  period  or  in Fig.  5.  From  this
point,  the  induced  velocity  components,  and , can  be  re-
garded as the result of Biot–Savart induction of such small-scale
streamwise vortex or vortex pair caused by the turbulence with-

in a certain time interval.  The sketch of such small-scale turbu-
lent  flow  is  typically  shown  by  the  local  flow  above  the  upper
surface of a flat  plate at zero incidence in Fig.  6(a) or below the
lower surface in Fig. 6(b).

T1

T2

On  the  other  hand,  the  Reynolds  stress  or  turbulence-in-
duced streamwise vortex or vortex pair in the time interval  or

 can  be  analyzed  based  on  the  definition  of  time-averaged
value

¹f ( ; t) =
1
T

Z t+T

t
f ( ; ¾)d¾; (1) 

T
T1 T2

where  is  a  sufficiently  long  interval  of  time  including  each
small quasi-steady half period , , and so on, just as shown in
Fig.  5.  Then  the  sign  problem  of  Reynolds  shear  stress  can  be
transferred as follows
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T

here  if  we  just  assume  for  the  convenience  of
discussion.  Therefore,  if  we  can  provide  a  proof  that  the
Reynolds  stress  at  each  time  segment  is  positive,  then  we  can
draw a conclusion that the Reynolds stress in all  time period or
any time period is positive. From this idea, the focus is naturally
put on the local  quasi-steady time period,  as  stated before.  The
most significant point in such idea is the independence of local
spacial position , time period  and local spacial region used in
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Fig. 3.   Variation of the fluctuating turbulent velocity components in
the boundary layer on a flat plate at zero incidence, as measured by
Klebanoff  [9],  at  a  Reynolds  number  ,

where symbols , , and  denotes non-dimensional measured val-

ues of , , and , respectively, dashed lines denote the

variation from Klebanoff's viewpoint, and dash-dot line denotes the

modified variation of  based on the present study.
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Finally, the original point of local and inertial coordinate sys-
tem  is taken as the start of above eddy motion. And the
x-axis (streamwise) is always aligned with the local external flow,
i.e. the downstream direction of streamwise velocity , the y-ax-
is (vertical) is the normal direction to the flat plate and the z-axis
(spanwise) is the transverse parallel to wall. The small-scale ed-
dies  induced  by  the  turbulent  disturbance  in  the  velocity  field
are  assumed to  be only  evolved downstream in region of 
and  suppressed  in  region  of  under  the  effect  of  external
flow  within  the  region  of ,  just  as  shown  in Fig.  1.  The
physical mechanism is mainly attributed to the non-linear inter-
action  between  the  external  velocity  field  and induced  vorti-
city  field ,  i.e.  in general  vorticity  equa-
tion. Even if the small-scale eddies evolve upstream temporally,
such non-linear  interaction would lead to  these eddies  convec-
ted downstream  at  last.  The  main  reason  is  the  turbulent  per-
turbation just  being  temporal  and  unsteady,  dislike  the  persist-
ent and steady geometric disturbance [8].

(¹u; ¹v)(x ; y)
(u ; v ;w )

Because of  ignoring  non-linear  inertial  forces,  as  a  con-
sequence,  the  principle  of  superposition  of  different  velocity
fields  can  be  applied  in  solving  the  Stokes  equation.  Thus  the
local flow field in the laminar sub-layer can be divided into two
parts.  One  is  the  2-D  external  flow  with  mean  velocity,

,  without  any  3-D  turbulent  disturbance.  Another  is
the resultant 3-D flow field with induced velocity .

½ º

Therefore, based on above assumptions and simplifications,
the theory of VIVor [8] could be used to analyze the induced flow
field in present case.  For the incompressible flow with constant
density  and kinematic viscosity  of the fluid past the flat plate
at zero incidence without consideration of  any kind of  noncon-
servative body forces and ignoring the energy transportation, the
non-dimensional  continuity  and  Stokes  equations  for  induced
velocity field in the laminar sub-layer are written out as follows

r ¢ = 0; (3) 

rp =
1

R e
r2 ; (4) 

r p
R e U1

L º
R e = U1L=º U1 L

u = v = w = 0

where the symbol  is  the gradient operator,  is  the pressure,
 is  the  Reynolds  number  based  on  the  external  velocity ,

the characteristic length of flat plate  and kinematic viscosity ,
.  Velocities  are  scaled  by  and  lengthes  by .

And  it  must  be  supplemented  with  the  proper  boundary
conditions,  namely  those  expressing  the  absence  of  slip  in  the
fluid at the still walls, i.e. .

(x > 0; y > 0)
x = 0

¸

As shown in Fig.  6(a),  the basic  induced flow is  investigated
in the local region . An introduced streamwise vor-
tex  pair  with  opposite  signs  is  started  from ,  distributed
uniformly  along  the  +x-axis  and  periodically  along  the z-axis
with  the  non-dimensional  spanwise  wavelength , and  gradu-
ally disappeared far away from the flat plate.  The induced velo-
city fields have following forms

u0(x ; y; z) = A u(x ; y) cos (¯z) ; (5a) 

v0(y; z) = ¡A v(y) cos (¯z) ; (5b) 

w0(y; z) = ¡A w(y) sin (¯z) ; (5c) 

¯ = 2 =¸ A u(x ; y) A v(y) A w(y)
u v w

A v(y) ¸ 0 A w(y) ¸ 0

where  is the wave number, , , and 
are  dimensionless  amplitudes  of , ,  and ,  respectively,
particularly  and .

A u = x (A v+ ¯A w)

A v = dA v=dy ¸ 0
A vjy=0 = A wjy=0 = A vjy=0 = 0

Substituting  above  Eq. (5) into  the  continuity  equation,
Eq. (3),  we  have  the  following  relationship: 
with  ( ).  And  non-slip  boundary  conditions  at
walls request .

! x

A!x >

Therefore,  exact solutions are obtained as a result  of  vortex-
induced vortex,  as reported in previous work [8].  In the present
case,  the  intensity  of  induced  streamwise  vorticity  distrib-
uted  on  the  wall  is  ( 0). Then  we  have  the  following  solu-
tions

A u = C2x
¡

e¯y ¡ e¡¯y
¢
; (6a) 

A v =

µ
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2
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2
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; (6c) 

C1 C2where  and  are  positive  constants  with  the  following
conditions

C1 = A!x; C2 ¸ 2A!x; h =
C1

2C2¯
; (7) 

y 2 [0;h]
¸

A!x

where h is  the  effective  height  of  above  solutions  in  the
immediate neighborhood of wall, i.e. . It at least shows
that  when  the  spanwise  scale  of  small  eddies  is  reduced,  the
effective  height h is  also  reduced  linearly  and  irrelevant  to  the
strength of streamwise vorticity on the wall .

(1) Answer to Question 1: Specific sign of Reynolds stress
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Fig. 6.   Schematics of turbulence-induced streamwise vortex pairs
with small-scale streamwise vorticity ( ) and induced
velocity field ( ) almost periodically varied along the spanwise
direction on a upper and b lower surfaces of a flat plate at zero incid-
ence.
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Consequently,  according  to  the  exact  solutions,  Eq. (6),  we
have the following proof as the new interpretation different from
the traditional explanation in the specific sign of Reynolds stress.
From Eqs. (5) and (6), the third sign law for streamwise and ver-
tical  components  of  induced velocity,  and ,  respectively,  by
introducing the third sign variable, , as reported in Ref.
[8], is obtained as follows

sgn(u0v0) = sgn($3) = ¡1; x > 0; y > 0; (8) 

z = (1=4)¸ z = (3=4)¸
$3 = 0

x > 0 y < 0
sgn($3) = 1

except some special positions, e.g.  and , at
which ,  and  where  sgn  is  the  sign  function.  In  addition,
below the flat plate in region of  and , as shown in Fig.
6(b), the third sign variable is always positive,  [8].

(x > 0; y > 0)
¿xy

0

u0v0 = 0
w

¸ R e

As a result, in present special local region , we
can  draw  the  conclusion  that  the  Reynolds  stress  is  always
positive  theoretically  based  on  the  analysis  of  Eq. (8) in the  ex-
ternal  shear  flow  like Fig.  1,  except  some  special  positions  with

. The positive Reynolds stress is independent of the spa-
cial  distribution  of  induced  spanwise  velocity ,  the  spanwise
wavelength  and Reynolds number , indicating that such re-
lationship  is  an  intrinsic  physical  mechanisms  in  the  turbulent
boundary layer on the flat plate.

(2)  Answer  to  Question  2:  Relationship  between  fluctuating
and mean velocities

u
¡½u v

v
¹u(y)

¹u
@¹u=@y > 0 @¹u=@y < 0

¹
( ¢ r)¹

( ¢ r)¹
¹

u

Based  on  the  above  analysis  and  third  sign  law,  we  can
clearly  identify  the  relationship  between  fluctuating  and  mean
velocities.  First  of  all,  the  streamwise  fluctuating  velocity ,  as
well  as  the  Reynolds  stress ,  is  intrinsically  generated  by
3-D turbulence or turbulence-induced small-scale eddies, rather
than  the  interaction  between  the  turbulent  fluctuation  ( )  and
mean velocity ( ) in the traditional explanation. And their ap-
pearance  is  irrelevant  to  the  gradient  of  local  mean  flow ,
whatever  for  its  profile  with  or .  It  is
already known that the effect of inertial forces is mainly the con-
vection  and  stretching  of  vorticity  [11]. Therefore,  as  stated  be-
fore, the effect of  is the determination of perturbed small-scale
eddies  through  the  term ,  as  well  as  through  the
term ,  convected  and  evolved  along  the  downstream
direction of local mean flow . Then the sign of Reynolds stress,
as well as the sign of , is just followed by the downstream direc-
tion of mean flow, or a result of interaction between those small-
scale eddies and external mean flow under the inertial effect.

u v

Moreover, a hypothesis could be proposed here for brief dis-
cussion. The  Reynolds  stress  with  a  positive  sign  in  the  bound-
ary layer on a flat plate at zero incidence could be mainly attrib-
uted  to  small-scale  eddies  with  a  positive  shearing  stress  firstly
appeared in the laminar sub-layer due to the turbulence. These
small-scale eddies  are  evolved  into  horseshoe  and  hairpin  vor-
tices,  convected downstream and away from the wall  under the
inertial  forces.  Finally  it  leads  to  the  whole  turbulent  boundary
layer full  of  vortices with such positive shearing stress.  It  would
be  studied  in  future  work.  At  least,  it  is  already  confirmed  that
the  above  third  sign  law  for  is also  valid  when  the  stream-
wise vortices leave the wall in previous work [8].

(3) Answer to Question 3: Intensity relationship among three
components of fluctuating velocity

C2 = 2A!x

(x > 0; y 2 [0;h])

As  shown  in Fig.  7(a) as  an  example  with ,  there
are different  features  in  variations  of  three  amplitudes  of  in-
duced velocity components in the local region .

A u A w

A v

¸ A u A v

A w

It can be seen that  and  are almost linearly increased with
the  increasing  vertical  position y,  but  is  non-linearly  varied.
As  the  wavelength  decreases,  and  are increased  obvi-
ously at the same vertical position y, but  is almost invariant.

A w A v

Now let us check the intensity relationship among them. Fig-
ure 7(a) at least presents that  is certainly greater than . Or
we can solve the problem through the analysis  of  Eq. (6) as fol-
lows

lim
y!0

A u

A w
= lim

y!0

@A u=@y
dA w=dy

=
2C2¯x

C1
=

x
h
; (9a) 

lim
y!0

A v

A w
= lim

y!0

dA v=dy
dA w=dy

= 0; (9b) 

lim
y!0

A v

A u
= lim

y!0

dA v=dy
@A u=@y

= 0; if x 6= 0: (9c) 

A u A w x ¸ x cr

x cr = h A v A w

A u (x > 0; y 2 [0;h])
¸

¸ = £ 10¡3 h · 1:25£ 10¡4

It shows that  would be greater than  once  with the
critical  streamwise  position ,  and  is  far  less  than 
and  in  present  local  region .  Moreover,
when the wavelength  reaches the small-scale  eddies  induced
by  the  turbulence,  for  example , 
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Fig. 7.   Scaled amplitudes of a three components of fluctuation velo-
city,  ,  ,  and  ,  and  b  turbulent  shearing
stress,  ,  varied  along  the  vertical  position  y  with

,  where  solid,  dash-dot  and  dashed  lines  in  a  denote
, , and , respectively, while symbols , ,

and  denote the wavelength  of  ,  ,  and
, respectively.
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C2 ¸ 2A!x x cr · 1:25£ 10¡4 A u

A w

A u > A w > A v

( ),  and .  This  indicates  that 
would  be  easily  greater  than  in  most  of  local  flow  region.
Therefore,  it  can  be  concluded  that  there  is  the  intensity
relationship  among  three  components  of  induced  velocity,  i.e.

, well agreed with the Fig. 3 or 4.
(4) Other features

A uA u > A uA w > A wA w > A uA v > A wA v > A vA v

Here, it is also interestingly found out that there is the follow-
ing  relationship  under  the  previous  conditions:

.

A uA v

e§¯y

y = 0 1§ ¯y

Meanwhile,  the  variation  of  amplitude  of  Reynolds  stress,
, as shown in Fig. 7(b), is also well agreed with the previous

experimental  measurements  in Fig.  2.  Moreover,  if  we  take  a
first-order  approximation  of  by  a  power  series  expansion
about  as ,  Eq. 6(a, b) provide the following behavi-
ors

A u ¼ 2C2¯xy; y ! 0; (10a) 

A v ¼
µ

C2 ¡
C1

2

¶
¯y2; y ! 0;

(10b) 

A uA v ¼ (2C 2
2 ¡ C1C2)¯

2xy3; y ! 0: (10c) 

u » y
v » y2 u v = O(y3) y ! 0
They are also exactly agreed with the previous results:  and

, and then  as  [11].

v
@v =@y

@u =@x @w =@z
@v =@y

Besides, by comparison with Figs. 4 and 7(a), the variation of
amplitude of  near the wall is different. From the point of con-
tinuity  equation,  Eq. (3),  on  the  wall  should  be  equal  to
zero because  and  are all zero on the smooth wall,
just as shown in Fig. 7(a), rather than the non-zero  at wall
in Fig. 4.

In  the  present  paper,  the  specific  sign  of  Reynolds  stress  in
the boundary layer  on a  flat  plate  at  zero incidence is  firstly  in-
terpreted by the relation between the mean and fluctuating flows
due to the transport of momentum. However, the theory of vor-
tex-induced vortex  proposed  recently  is  also  successfully  to  ex-
plain such character of Reynolds stress. The flow analysis is car-
ried out  by  introducing  small-scale  streamwise  vortices,  as  tur-
bulent  eddy motion,  in  the immediate  neighborhood of  the flat
plate.

At  first,  it  is  theoretically  confirmed that  the Reynolds stress
in present case is  always positive,  as indicated by the third sign
law for streamwise and vertical components of fluctuating velo-
city. Such sign relationship is an intrinsic physical mechanism in
the  turbulent  boundary  layer,  irrelevant  to  the  distribution  of
spanwise fluctuating velocity,  the spanwise wavelength of small
eddies and Reynolds number.

Then such new interpretation illustrates  that  the generation
of Reynolds stress, as well as the streamwise fluctuating velocity,

is  intrinsically  independent  of  the  mean  flow.  But  its  specific
sign, or its evolution, would be determined by the mean flow due
to the inertial forces.

A u > A w > A v

Finally,  the  intensity  relationship  among  three  components
of fluctuating velocity in the local flow region observed in experi-
mental  measurements, ,  is  theoretically  verified
too.

Verily to say, it  is  hard to establish the universal representa-
tion  of  Reynolds  stress  because  such  stress  is  really  and  closely
related to  the local  flow region and small-scale  eddies  with  dif-
ferent spanwise wavelengths induced by the turbulence.
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