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Abstract
A three-dimensional hybrid lattice Boltzmann method was used to simulate the progress of a single bubble’s growth and
departure from a horizontal superheated wall. The evolutionary process of the bubble shapes and also the temperature
fields during pool nucleate boiling were obtained and the influence of the gravitational acceleration on the bubble departure
diameter (BDD), the bubble release frequency (BRF) and the heat flux on the superheated wall was analyzed. The simulation
results obtained by the present three-dimensional numerical studies demonstrate that the BDD is proportional to g−0.301,
the BRF is proportional to g−0.58, and the averaged wall heat flux is proportional to g0.201, where g is the gravitational
acceleration. These results are in good agreement with the common-used experimental correlations, indicating the rationality
of the present numerical model and results.

Keywords Three-dimensional lattice Boltzmann method · Pool nucleate boiling · Bubble departure diameter ·
Bubble release frequency

Introduction

Vapor bubble’s growth on and departure from a heated wall
are the basic physical processes observed in pool nucleate
boiling of liquids. During the pool nucleate boiling, the
bubble’s behaviors are closely related to the mass and heat
transfer between the vapor bubble and the surrounding
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fluids. Therefore, the study on the interaction mechanism
between bubble dynamics and boiling heat transfer has
great significance for many engineering applications with
boiling involved. Early investigations on pool nucleate
boiling were mainly conducted by experiments (Cole 1960;
Dhir 1991; Dhir et al. 2012; Nikolayev et al. 2015; Wu
et al. 2016) among the others). Although these experimental
investigations are accurate and reliable, they however have
the disadvantages, such as high cost, long time period,
and limited data obtained. More importantly, it’s hard
to investigate the effect of gravitational acceleration on
bubbles’ dynamics and the related heat transfer process
by such experiments. Recently, the rapid development of
computer science and technology and numerical simulation
technologies provide a new reliable method for the
investigation on bubbles’ dynamics and related pool
nucleate boiling phenomena (Son et al. 2001; Mukherjee
and Kandlikar 2007; Li et al. 2015; Zhang et al. 2015).
Lattice Boltzmann method (LBM) is one of the most
effective numerical method that can be used in such studies.

LBM is a mesoscopic method which can intuitively
and easily simulate the interaction between fluid and the
surrounding environment. Compared with the traditional
numerical method, LBM has more advantages in the
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description of complex flow phenomena such as multi-
component, multiphase system and interface dynamics.
Recently, several LB models were developed for multiphase
and multi-component flows, such as Rothman and Keller’s
(1980) color method, Shan and Chen’s (1993) potential
method and Swift et al.’s (1995) free energy method. These
models have not been used in practical problems because
they are not applicable to actual multiphase system with
large density ratio. Unlike these methods, the improved free
energy method proposed by Zheng et al. (2006) can be
used to simulate the multiphase flows with large density
ratio. This method used a relatively accurate Cahn-Hilliard
(C-H) equation to define and track the gas-liquid interface
without the artificial disposal. With the advantages of
simplicity and stability, this model can accurately track
the gas-liquid interface and sufficiently keep the Galilean
invariance.

Up till now, many scholars have simulated bubble
dynamics in pool during nucleate boiling based on the
potential method or its improved method. Hazi and Markus
(2009) added a phase change model to the potential method
and simulated a bubble’s growth and departure from a
horizontal superheated wall during pool nucleate boiling
and flow boiling with however low velocities, and they
concluded that the bubble departure diameter (BDD) and the
bubble release frequency (BRF) are proportional to g−0.5

and g0.75, respectively. Gong and Cheng (2012) proposed
a new phase change model based on the entropy balance
equation and used this model to simulate the process of
pool nucleate boiling. They also concluded that BDD and
BRF are proportional to g−0.5 and g0.75, respectively (Gong
and Cheng 2012, 2013). In addition, they studied the
effects of wall superheat, contact angle on BDD and BRF.
However, they did not give the distribution of temperature
fields during nucleate boiling. Rostamzadeh et al. (2016)
simulated the pool nucleate boiling with nanofluid. They
concluded that BDD is proportional to g−0.51 and the BBD
is smaller for the nanofluid compared with its base liquid.
In sum, these numerical studies concluded that BDD is
proportional to g−0.5. However, without exception their
conclusions were based on two-dimensional simulations.

Some other scholars have numerically studied the pool
nucleate boiling based on Zheng’s (2006) improved free
energy model. Dong et al. (2010) firstly added source terms
to the C-H equation and energy equation to define the phase-
change and latent heat, respectively. This new hybrid model
was applied to simulate the bubble growth and departure
from a superheated wall, and the effects of gravitational
acceleration, wall superheat, surface tension force and fluid-
solid interaction parameter on BDD were investigated. In
terms of gravitational acceleration’s effect, they found that

BDD is proportional to g−0472. Using a similar numer-
ical method, Ryu and Ko (2012) simulated the progress
of pool nucleate boiling. They found that BDD is propor-
tional to g−0.5. In addition, they investigated the influence
of nucleation site density (n) and wall superheat on aver-
aged heat flux (q) and they found that averaged heat flux
is proportional to n3/8. It is worth mentioning that the law
of BDD∝ g−0.5 was also concluded by Dong et al. (2010)
and Ryu (2012). However, their conclusion were also based
on two-dimensional simulations. Sun and Li (2013a) simu-
lated the pool nucleate boiling by three-dimensional LBM
and they found that BDD is proportional to g−0.346 This
result is different from other results by two-dimensional
simulations.

As mentioned above, though LBM method was adopted
by many scholars to study the pool nucleate boiling,
there are still some problems that need to be solved.
Firstly, a majority of previous studies adopted the potential
method as the multiphase flow model, however numerical
simulations of pool nucleate boiling based on Zheng’s
(2006) free energy method are rare. It should be noted that
the potential method cannot explicitly describe the evolution
of the liquid-vapor interface because the region with non-
zero gradient of density difference is regarded as the
interface. In addition, the potential method isn’t applicable
for the simulation of actual multiphase system with large
density ratio. Secondly, previous studies on vapor bubble
dynamics during nucleate boiling were performed mainly
under two-dimensional condition, but the related three-
dimensional simulations are extremely rare. Undeniable, the
two-dimensional simulations are quite different from the
real cases. Thirdly, although the influence of gravitational
acceleration on BDD and BRF has been studied by plenty
of scholars, most of the previous numerical results were
obtained based on two-dimensional simulations. Finally,
although three-dimensional simulations about pool nucleate
boiling has been performed by Sun’s (2013a), they only
studied the influence of gravitational acceleration on BDD.
However, the BRF and averaged wall heat flux are
also important parameters, thus further three-dimensional
numerical study is needed to be performed to investigate the
influence of gravitational acceleration on BRF and averaged
wall heat flux.

To solve some of the above-mentioned problems, a
three-dimensional numerical study of vapor bubble growth
on and departure from a horizontal superheated wall was
performed in this paper. The evolutionary processes of
the bubble growth and the temperature fields in the pool
during nucleate boiling was obtained. Based on the three-
dimensional numerical results, the influence of gravitational
acceleration on bubble departure diameter, bubble release
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frequency and averaged heat flux at superheated wall is also
investigated in this study.

Numerical Method

Multiphase FlowModel

Prior to describing the lattice Boltzmann equations, the
macroscopic governing equations, including the C-H (1)
and N-S (2)-(3), to be solved are as follows Zheng et al.
(2006)

∂φ

∂t
+ ∇ · (φu) = θM∇2ψφ (1)

∂n

∂t
+ ∇ · (nu) = 0 (2)

∂(nu)

∂t
+ ∇ · (nuu) = −∇ · P + μ∇2u + Fb (3)

where ψφ is the chemical potential, which describes the
change in Helmholtz free energy by a small local change
in composition. θM is the mobility, which indicates the
intensity of diffusion. P is the pressure tensor. Fb is the
body force and Fb = �ρg, where �ρ is a constant and
presents the density difference between two phases and g

is the gravitational acceleration. Also, n is the total density
and φis an order parameter. They are defined as

n = ρC + ρD

2
, φ = ρC + ρD

2
(4)

here, if ρC(or ρD) is a liquid density, ρD (or ρC) becomes a
vapor density. φ becomes positive in the region where ρC >

ρD and negative elsewhere. Thus, it represents two-phase
distribution as defined by Swift et al. (1995).

The three-dimensional LB implementation of C-H
equation follows as

si(x+eiδt, t+δt)−si(x, t) = (1−β)[si(x+eiδt, t)

−si(x, t)]− β

1 − 0.5β

×[si(x, t)−s
eq
i (x, t)] (5)

where si is the distribution function of order parameter, ei

is the lattice velocity, i is the direction of lattice velocity,
and β is a constant coefficient which allows to control the
diffusion rate between neighboring sites. φ is calculated
by

φ =
∑

i

gi(x, t) (6)

The local equilibrium distribution function s
eq
i in Eq. 6 can

be calculated by Sun and Li (2013a)

s
eq
i = ηi + ςiφ + ϑiφei · u (i = 0, . . . , 6)

η0 = −3ψφ, η1 = 1

2
ψφ (i = 1, . . . , 6),

 = θM

0.5β(β + 1)
;

ς0 = 1, ς1 = 0 (i = 1, . . . , 6);
ϑi = 1

2β
(i = 0, . . . , 6) (7)

The D3Q7 model is used to solve (5-7) and the correspond-
ing lattice velocities are defined as

(e0, e1, e2, e3, e4, e5, e6) =
⎡

⎣
0 1 −1
0 0 0
0 0 0

0
1
0

0 0 0
−1 0 0
0 1 −1

⎤

⎦

(8)

The chemical potential ψφ in Eq. 1 can be obtained by
Zheng et al. (2006)

ψφ = 4γ [φ3 − (0.5 × �ρ)2φ] − k∇2φ

γ = 3σ

4W(0.5 × �ρ)4
, k = 1

8
γW 2(�ρ)2 (9)

where σ is surface tension coefficient and W is thickness of
interface layer.

The three-dimension LB implementation of N-S equa-
tions can be described as

ri(x + eiδt, t + δt) = ri(x, t) + �r
i (10)

�r
i = r

eq
i (x, t) − ri(x, t)

τn

+
(
1 − 1

2τn

)

× wi

1
2c

2

[
(ei − u) + (ei − u)

1
3c

2
ei

]
(ψφ∇φ + Fb)�t

where ri is the distribution function of density, wi is the
weighting factors, τn is a single relaxation time related to
the kinematic viscosity, and τn = 3v

�tc2
+ 0.5.

The macroscopic quantities such as density and velocity
are obtained as follows:

n =
∑

i

ri(x, t) (11)
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u = 1

n

[
∑

i

ei ri(x, t) + 1

2
(ψφ∇φ + Fex)

]
(12)

The local equilibrium distribution function r
eq
i in Eq. 10 is

calculated by Sun and Li (2013a)

r
eq
i = wiξi + win

[
3ei · u

c2
+ 4.5(ei · u)2

c4
− 1.5(u)2

c2

]

×(i = 0, . . . , 18)

ξ0 = 3n − 6
(
φψφ + n

3

)
,

ξ1 = 3φψφ + n (i = 1, . . . , 18) (13)

The D3Q19 model is used to solve (10) and (13), the
corresponding weighting factors are defined as w0 =1/3,
wi =1/18 (for i =1∼6) and wi =1/36 (for i =7˜18) and the
lattice velocities are defined as

(e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18)

=
⎡

⎣
0 1 −1
0 0 0
0 0 0

0 0 0
1 −1 0
0 0 1

0 1 −1
0 1 −1

−1 0 0

1 −1 1
−1 1 0
0 0 1

−1 1 −1
0 0 0

−1 −1 1

0 0 0
1 −1 1
1 −1 −1

0
−1
1

⎤

⎦ (14)

Phase ChangeModel

Before considering the phase change model, it’s necessary
to solve energy equation to obtain the temperature
distribution around the vapor bubble. The macroscopic
energy equation is described by Eq. 15 in the absence of
phase change model.

∂T

∂t
+ ∇ · (T u) = α∇2T (15)

where T is the temperature and α is the thermal diffusivity
coefficient.

According to Inamuro’s (2002) thermal lattice Boltz-
mann model, the macroscopic energy equation can be con-
verted into the lattice Boltzmann equation as following

hi(x + eiδt, t + δt) − hi(x, t) = − 1

τT

[hi(x, t) − h
eq
i (x, t)]

(16)

where τT is a single relaxation time related to the thermal
diffusivity coefficient α, and τT = 3α

�tc2
+ 0.5. The

temperature T is obtained as follows:

T =
∑

i

hi (17)

A local equilibrium distribution function in Eq. 16 is
expressed as Eq. 18 and D3Q19 model is used to solve (16)
and (18).

h
eq
i = wiT (1 + ei · u

c2s
) (18)

According to Dong’s (2010) study, the phase change can
be identified by the change of phase order parameter.
Thus, a phase-change source term related to phase order
parameter is added to the Cahn-Hilliard equation and the

corresponding interface capturing (5) can be rewritten as
Eq. 19

si(x+eiδt, t+δt)=(1−β)si(x+eiδt, t)+βsi(x, t)

− β

1 − 0.5β
[si(x, t)−s

eq
i (x, t)]+wiφ̇

(19)

Based on D3Q7 model, the weighting factors are defined as
w0 =1/4 and wi =1/8 (for i =1∼6). φ̇ is the phase-change
source term which can be calculated by Eq. 20 (Dong et al.
2010).

φ̇ = − ρ2
L

ρG

Ja

Pe
(
∂2T

∂x2
) (20)

where Ja and Pe are important dimensionless parameters,
defined as follows

Ja = CpL

�T

hfg

, P e = ρLuclcCpL

κL

(21)

where �T is the wall superheat, κL is thermal conductivity
of liquid, hfg is the latent heat of vaporization and CpL is
the specific heat capacity. lc and uc are characteristic length
and characteristic velocity, respectively, which are defined
as follows Ryu and Ko (2012).

lc =
√

σ

ge�ρ
, uc = √

gelc (22)

where ge is the earth gravitational acceleration.
What’s more, the latent heat term should be added to the

energy equations when phase change model is present. Thus
Eqs. 15 and 16 should be rewritten as follows

∂T

∂t
+ ∇ · (T u) = α∇2T + ρG

ρ2
L

φ̇

Ja
(23)
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Cases
(a) Numerial resultes by LBM in 

this study

(b) Numerical results by VOF in 

Annaland et al. (2005)

(c) Numerical results by VOSET 

in Wang (2016)

1

2

3

Fig. 1 Bubble shapes simulated by (a) LBM (b) VOF (c) VOSET in different cases

hi(x + eiδt, t + δt) − hi(x, t) = − 1

τT

[hi(x, t) − h
eq
i (x, t)]

+wi

ρG

ρ2
L

φ̇

Ja
(24)

The shapes of a rising vapor bubble after departure are
dependent on the Eötvös number (Eo) and Morton number
(Mo).

Eo = g�ρl2c

σ
, Mo = g�ρμ4

L

ρ2
Lσ 3

(25)

Numerical Model Validation

Validation of Multiphase FlowModel

The buoyancy-driven motion of a bubble through a viscous
liquid was simulated by the three-dimensional LBM to
verify the multiphase flow model proposed in the present
study, and the numerical results obtained in this study are
compared with the numerical results obtained by Annaland
et al. (2005) and Wang (2016) , as shown in Fig. 1. In these
simulations, a bubble with radius R =16 is initially located
at a cuboid computational domain of (100× 100× 200) and
was released from the position (50, 50, 50) at the beginning
of the computation, and the no-slip boundary condition is
adopted in the simulations. The computational conditions
for the simulations are taken the same as those by Annaland
et al. (2005) and Wang (2016), shown in Table 1.

Figure 1 represents the comparison of the numerical
results of bubble shapes obtained by the present numerical
method in different cases with those obtained by Annaland
et al. (2005) and Wang (2016). As shown in Fig. 1, in
case 1, 2 and 3, the numerical results of bubble shapes are

ellipsoidal, skirted and dimpled, respectively. In terms of the
bubble shapes in each case, the numerical results obtained
in this paper are in very good agreement with those of
Annaland et al. (2005) and Wang (2016). These numerical
results indicate that the multiphase flow model in this paper
is pretty reliable.

Validation of Phase ChangeModel

In order to validate the phase change model used in this
study, a bubble growth in superheated liquid is simulated
(g =0). There is no wall in the computational domain. As
an initial condition, a spherical bubble with small radius was
positioned at the center of the computational domain. The
parameters for the simulations are as follows: the density of
liquid ρL =1000, density of vapor ρG =1, surface tension
coefficient σ =2, thickness of phase interface W =5 and
Ja for the simulations are 0.0056 or 0.0112, respectively.
The evolution of bubble radius during the has been collected
and depicted in Fig. 2 along with the analytical solutions
obtained by Mikic et al. (1970). It can be seen in Fig. 2 that
vapor bubble grows continually because the surrounding
liquid around the vapor bubble is superheated and provides
heat to the bubble continually. In each case, the bubble
radius (R) has a tendency of being proportional to the square
root of time. This result is consistent with the analytical
solutions obtained by Mikic et al. (1970). The comparison

Table 1 Parameters for validation of multiphase flow model

Cases ρc/kg·m−3 ρd /kg·m−3 Eo Mo

1 1000.0 1.0 10.0 0.1

2 1000.0 1.0 100.0 1.0

3 1000.0 1.0 100.0 1000.0
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Fig. 2 Comparison in bubble growth between numerical results and
analytical solutions by Mikic et al. (1970)

shown in Fig. 2 indicates that the phase change model used
in this paper is feasible for the three-dimensional numerical
simulation of nucleate boiling.

Numerical Results and Discussions

In the simulations below, the computational conditions are
taken as the same as those in Ryu and Ko (2012). These
parameters, including the density, specific heat capacity,
thermal conductivity, latent heat of vaporization surface
tension coefficient, and contact angle, are shown as follows

ρL = 1000, ρV = 1, CpL = 4.216, κL = 0.68,

κV = 0.025, hfg = 2257, σ = 2, θW = 53◦

What’s more, the averaged wall heat flux (q) is an important
parameter for this study and it can be calculated by Eq. (26).

q = 1

Asf −1

∫ f −1

0

∫

As

qloc(A)dAdt,

qloc(A) = κ(A)
∂T

∂z
|z=0 (26)

where As is the area of the superheated wall, qloc(A) is the
local heat flux, κ(A) is the local thermal conductivity which
can be calculated by

κ(A) =
(

φ

�ρ
+ 0.5

)
κL −

(
φ

�ρ
− 0.5

)
κG

where the order parameter φ ∈ [−�ρ
2 ,

�ρ
2 ].

The dimensionless time t∗ is defined as Eq. (27) to
represent the same growth stage of vapor bubble during pool
nucleate boiling under different conditions.

t∗ = t

tw + tg
= tf (27)

where f is the bubble release frequency tw and tg are bubble
waiting time and bubble growth period, respectively.

Pool Nucleate Boiling on a SuperheatedWall

(1) Bubble dynamics in normal gravity
Figure 3 represents the evolution of the bubble

shapes and temperature fields before bubble departure.
In Fig. 3, the gravitational acceleration is set as earth
gravitational acceleration(g = ge =9.8m/s2), and the
wall superheat is set as 5K (�T =5K). Thus, the
dimensionless parameters are Eo= 1,Mo = 9.5 × 10−5

and Ja=0.00934. As shown in Fig. 3a and b, since
the bubble volume is small at the beginning of the
calculation, almost the entire bubble is immersed in the
superheated layers, the bubble grows fast due to heat
transfer from the surrounding superheated layers. At this
stage, the bubble shape is semi-spherical and the bubble
base diameter increases continuously. In Fig. 3c and d, as
the bubble volume increases, the temperature gradient at
the top position of vapor bubble decreases. At this time,
the heat for evaporation is mainly supplied by the bubble
base and the bubble growth rate decreases. In Fig. 3e
and f, a neck starts to form near the bubble base and the
bubble tends to depart away from the superheated wall
under the effect of increasing buoyancy forces. As the
bubble grew further, the buoyancy forces finally become
strong enough to overcome the adhesion force between
the vapor bubble and superheated wall, and the bubble
departed away from the superheated wall, as shown in
Fig. 4. It can be seen from Fig. 4 that the rising vapor
bubble is an ellipsoid and the thermal boundary layer is
distorted due to the trailing wake of the rising bubble.

(2) Bubble dynamic under microgravity condition
Figure 5 represents the evolution of in bubble shapes

and temperature fields during pool nucleate boiling
under microgravity condition. Compared with Fig. 3,
the gravitational acceleration in Fig. 5 reduces to g =
0.1ge, thus the dimensionless parameters are Eo=0.1,
Mo= 9.5 × 10−6 and Ja=0.00934. In Fig. 5a-c, similar
to Fig. 3a-c, the vapor bubble grows fast due to the heat
transfer from the surrounding superheated layers, but the
bubble growth rate decreases gradually. In Fig. 5d and
e, with the increase in bubble volume, buoyancy forces
becomes stronger, the vapor bubble tends to depart away
from the superheated wall and a neck forms near the
bubble base. In Fig. 5f, the bubble starts to rise after its
departure. Compared with that in Fig. 4, the bubble rises
more slowly in Fig. 5f because of the reduced gravity.

Figure 6 presents the distribution of phase fields,
temperature fields and local heat flux q on superheated
wall along the horizontal axis of symmetry. The data
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(a) Time steps=0 (b) Time steps=1000 (c) Time steps=2000

(d) Time steps=3000 (e) Time steps=4000 (f) Time steps=5000

Fig. 3 Evolution of bubble shapes and temperature profiles with time before bubble departure (Eo=1, Ja=0.00934)

used in Fig. 6 is extracted from Fig. 5c. As shown in
Fig. 6, the local heat flux increases gradually outside of
the vapor bubble but decreases suddenly inside of the
vapor bubble. As a result, the local heat flux reaches a
maximum near the contact line. It’s because the local heat
flux is affected by the temperature difference between
wall and the fluid near the wall, as well as the thermal

conductivity of fluid near the wall. Outside of the vapor
bubble, the local heat flux increases gradually because
the temperature difference increases as its position
gets closer to the contact line. Inside of the vapor bubble,
the local heat flux decreases suddenly because the
thermal conductivity of vapor is much smaller than that of
liquid.

Fig. 4 Evolution of bubble
shapes and temperature profiles
with time after bubble departure
(Eo=1, Ja=0.00934)

(a) Time steps=8000 (b) Time steps=13500
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(a) Time steps=0 (b) Time steps=4000 (c) Time steps=8000

(d) Time steps=14000 (e) Time steps=19000 (f) Time steps=24000

Fig. 5 Evolution of bubble shapes and temperature profiles with time under microgravity condition (Eo=0.1, Ja=0.00934)

Effect of Gravitational Acceleration on BDD and BRF

For nucleate boiling, bubble departure diameter (BDD) is
an important parameter because BDD is related to the

Fig. 6 The distribution of temperature fields, phase fields and local
heat flux q on superheated wall along the horizontal axis of symmetry
under microgravity condition when t =8000 (Eo=0.1, Ja=0.00934,
x =50, z =0)

boiling heat transfer efficiency. Figure 7 represents the
three-dimensional numerical results of BDD under different
conditions with gravitational accelerations. As shown in
Fig. 7, BDD increases with the decrease in gravitational
acceleration. By the regression method, it can be found that
the BDD is proportional tog−0.301.

Table 2 lists the correlations of BDD, which are
based on experiments and theoretical studies, proposed by
previous scholars. As shown in Table 2, these correlations
are quite different in form. In terms of the effect of
gravitational acceleration on BDD, it can be found that
BDD is proportional to gϕ , where ϕ equals to -0.5 in the
correlations of Fritz (1935), Kocamustafaogullari (1983b)
and Cole and Rohsenow (1969) and ϕ equals to -1/3 in
the correlation of Gorenflo et al. (1986). On the other
hand, by numerical simulations, the relationship between
gravitational acceleration and BDD has been studied by
Hazi and Markus (2009), Gong and Cheng (2013), Dong
et al. (2010) and Ryu and Ko (2012), and all of them
concluded that BDD is proportional tog−0.5.

Obviously, the numerical results of BDD in Fig. 7
differ from those obtained by Hazi and Markus (2009),
Gong and Cheng (2013), Dong et al. (2010), Sun et al.
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Fig. 7 Effect of gravitational acceleration on bubble departure
diameter

(2013b) and Ryu and Ko (2012). It’s because their results
were based on two-dimensional simulations. However,
as can be seen from Fig. 7 and Table 2, the three-
dimensional numerical results in present study are in good
agreement with Sun’s (2013a) three-dimensional numerical
result and Gorenflo’s (1986) correlation. The numerical
results indicate the rationality of the numerical model and
calculation results and that Gorenflo’s (1986) correlation
could describe the influence of gravitational acceleration on
Dd in three-dimensional simulations. It is worth pointing
out that Sun et al. have studied the effect of gravitational
acceleration on BDD based on both two-dimensional and
three-dimensional numerical simulations. They also found

that BDD is proportional tog−0.5 and g−1/3 in two-
dimensional numerical simulations and three-dimensional
numerical simulations, respectively.

The correlation of Fritz (1935) was proposed through
theoretical analysis. According to hydrostatic principle,
Fritz (1935) obtained the correlation by balancing the
buoyancy force with surface tension force. However,
significant deviations are caused when Fritz’s correlation is
used to predict BDD in practical boiling, especially at high
pressures. The correlations of Cole and Rohsenow (1969),
Kocamustafaogullari (1983b) and Gorenflo et al. (1986)
were obtained by theoretical analysis and experimental
method, and the experimental data at low pressures, high
pressures and high heat fluxes were used, respectively.
In their studies, the effect of gravitation acceleration on
BDD was not included and the gravitation acceleration
was just regarded as a constant instead of a variable.
In fact, the relationship between BDD and gravitation
acceleration in the studies of Cole and Rohsenow (1969)
and Kocamustafaogullari (1983b) was derived from the
theoretical analysis by Fritz (1935). Whereas the theoretical
source of the relationship between BDD and gravitation
acceleration in the study of Gorenflo et al. (1986) wasn’t
given. Besides the correlations in Table 2, Wallis (1969) also
obtained a correlation to predict BBD, as shown in Eq. 28.

Dd = 2[σR0/(�ρ)g]1/3 (28)

Obviously, the correlation of Wallis (1969) suggested that
Dd ∝ g−1/3, which was consistent with the correlation
of Gorenflo (1986) and the numerical results in this paper.
Wallis assumed a bubble was formed at a circular orifice
of radius R0 facing upward in a stationary fluid and
obtained the correlation of BBD by balancing the buoyancy

Table 2 Correlations about bubble departure diameter in published literatures

Authors Correlations Characteristic Approach

Fritz (1935) Dd = 0.0208θW [ σ
g�ρ

]0.5 1) Only contact angle, surface Theoretical analysis

tension and gravity are taken

into account;

2) Dd ∝ g−0.5;

Cole and Rohsenow (1969) Dd = 1.5 × 10-4
√

σ
g�ρ

(Ja
ρL

ρV
)
5
4 1) Influence of Ja is taken into ; Theoretical analysis

account and data-fitting

2) Dd ∝ g−0.5;

Kocamustafaogullari (1983b) Dd = 2.64 × 10−5
√

σ
g�ρ

(
�ρ
ρV

)0.9 1) Fluid property parameters Theoretical analysis

are taken into account; and data-fitting

2) Dd ∝ g−0.5;

Gorenflo et al. (1986) Dd = C1(
Ja4α2

L

g
)
1
3 [1 +

√
1 + 2π

3Ja
] 4
3 1) Fluid property parameters Theoretical analysis

and Ja are taken into account and data-fitting

2) Dd ∝ g−1/3;
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Fig. 8 Effect of gravitational acceleration on the inverse of bubble
release frequency

force with surface tension force. In this paper, we found
the size of bubble base stayed almost constant when the
bubble starts to depart away from the superheated wall and
gravitational acceleration had little effect on the size of
bubble base. This result is appropriate to the hypothesis of
Wallis (1969). Therefore, the numerical results in this paper
are most consistent with the correlation of Wallis (1969) and
Gorenflo et al. (1986).

It should be noted that there are still some drawbacks
in Gorenflo’s (1986) correlation. For example, the effects
of contact angle and surface tension are not taken into
its consideration. Therefore, more efforts must be made
to obtain a more accurate correlation for bubble departure
diameter and the influences of other parameters, such as
wall superheat, contact angle and surface tension should be
investigated by three-dimensional numerical simulations.

Bubble release frequency (BRF) is also an important
parameter for pool nucleate boiling. BRF is the inverse
of the sum of waiting and growth period. However, both
of the waiting time tw and growth period tg are difficult
to determine quantitatively, thus BRF can’t be calculated
by tw and tg directly. By the three-dimensional LBM,
the numerical results of f −1 under different gravitational
accelerations are shown in Figure 8. It can be seen that f −1

decreases with the increase in gravitational acceleration,

thus the detachment of vapor bubble becomes harder under
the reduced gravitational acceleration. By the regression
method, it can be found that the inverse of BRF is
proportional to g−0.556.

Table 3 represents the experimental correlations of
BRF proposed by previous scholars. It can be seen that
predictions of f are often associated with the BDD. In
Table 3, all of these correlations are semi-empirical formula
obtained by experimental fitting. In general, the accurate
relationship between BRF and BDD was ambiguous and
these correlations deviated from each other greatly. It’s
because the physical mechanism between BRF and BDD is
not clear and BRF can be affected by much factors, such
as temperature fields, cavity-cavity interaction, microlayer
evaporation contribution, and bubble merger. However,
these factors may be also influenced by gravitational
acceleration. Therefore, the relationship between BRF and
gravitational acceleration is much complex and difficult.
In three-dimensional conditions, if the numerical result of
Dd ∝ g−0.301 is substituted into these correlations, the
relationship between gravitational acceleration and f could
be obtained, as shown in the third column of Table 3. It can
be found that the bubble release frequency is proportional
to gλ, where λ equals to −0.301 −0.551, −0.651 and -
0.602 in the correlations of Jacob (1949), Zuber (1959),
Mcfadden and Grassmann (1962), and Siegel and Keshock
(1964), respectively. Obviously, the numerical results of
f −1 ∝ g−0.556 in present study is very close to Zuber’s
correlation, as well as that of Siegel & Keshock. The
correlation of Siegel &Keshock was obtained based on
short-term microgravity experiments. Thus, the agreement
mentioned above proves the rationality of numerical model
and calculation results once again. The numerical results
also indicate that the correlations of Zuber and Siegel
& Keshock can be used to describe the influence of
gravitational acceleration on BRF and BDD in three-
dimensional simulations. It needs to be pointed out that
only the effect of gravitational acceleration is investigated
in this paper. In order to obtain a more accurate correlation
for bubble release frequency by verifying or revising the
correlations of Zuber and Siegel & Keshock, the effects of
wall superheat, contact angle and surface tension have to be
investigated further.

Table 3 Correlations about
bubble release frequency in
published literatures

Authors Original correlations Three-dimensional

results (Dd ˜g−0.301)

Jacob (1949) f Dd = const f −1 ∝ g−0.301

Zuber (1959) f Dd = 0.59( σ�ρg

ρ2
L

)0.25 f −1 ∝ g−0.551

Mcfadden and Grassmann (1962) f D0.5
d = 0.56

√
g f −1 ∝ g−0.651

Siegel and Keshock (1964) f D2
d = const f −1 ∝ g−0.602
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Fig. 9 Influence of gravitational acceleration on averaged wall heat
flux

Influence of Gravitational Acceleration on Averaged
Wall Heat Flux

Figure 9 presents the numerical results of averaged heat flux
q on superheated wall under different gravitational accelera-
tions. As shown in Fig. 9, averaged heat flux decreases with
the decrease in gravitational acceleration. When the gravi-
tational acceleration reduces from ge to 0.1ge, q decreases
by about 40%. It’s because the BDD increases with the
decrease in gravitational acceleration, and the thermal
conductivity of vapor is much smaller than that of liquid,
while κV /κL ≈0.037. Therefore the boiling heat-transfer
capability decreases. By the regression method, it can be
found that averaged heat flux q is proportional tog0.201.

Table 4 lists the correlations for averaged heat flux in
published literatures. As shown in Table 4, these corre-
lations are quite different in form. Kurihara and Myers
(1960) studied the effects of liquid superheat and sur-
face roughness on boiling coefficients through a series
of experiments in which water, acetone, n-hexane, car-
bon tetrachloride, and carbon disulfide were boiled on a
flat plate. Thus the effects of fluid density, dynamic vis-
cosity coefficient and heat conductivity coefficient were
included in the correlation of Kurihara and Myers (1960).
The correlation of Tien (1962) was proposed through the

established analytical results in axisymmetrical stagnation
flow, a relation between the heat-transfer coefficient and the
thermal boundary-layer thickness induced by rising bubbles
is obtained, and a good agreement with measured results
in the low heat-flux region is indicated. In the studies of
Kurihara and Myers (1960) and Tien (1962), the effects of
gravitational acceleration on averaged heat flux were not
included. The correlation of Rohsenow (1952) was pro-
posed by theoretical analysis and experimental method. In
his study, the heat flux was expressed as a function of BDD
and BRF. The correlations of Fritz (1935) and Jacob (1949)
were used to calculate BDD and BRF, thus Rohsenow
(1952) suggested that q is proportional to g0.5. The correla-
tion of Kocamustafaogullari and Ishii (1983a) was proposed
throughy theoretical analysis and expressed as a function of
fluid density, specific heat capacity, wall superheat, Prandtl
number, BDD and active nucleation site density. After sim-
plification, Kurihara and Myers (1960) suggested that q is
proportional to g0.125. In sum, Tien (1962) and Kurihara and
Myers (1960) suggested that q is independent of gravita-
tional acceleration, Kocamustafaogullari and Ishii (1983a)
suggested that q is proportional to g0.125 and Rohsenow
(1952) suggested that q is proportional to g0.5. Therefore,
no agreement has been reached in the relationship between
q and gravitational acceleration.

As shown in Fig. 9, the three-dimensional numerical
results of q are closest to the Kocamustafaogullari’s
correlation. The difference between numerical results and
Kocamustafaogullari’s correlation may be caused by two
reasons. On the one hand, the effect of BRF on q was
not included in Kocamustafaogullari’s correlation. On the
other hand, the relationship between microlayer evaporation
heat flux and gravitation acceleration obtained in this
paper was distinct from the formula in Dhir’s review.
Figure 10 presents the distribution of local heat flux on the
superheated wall under different gravitational accelerations
at the same t∗, which could ensure the same growth stage
of vapor bubble during pool nucleate boiling. As shown
in Fig. 10, the maximum of the local heat flux increases
with the increase in gravitational accelerations. However,
according to the review by Dhir (2010), the microlayer
evaporation heat flux qe ∝ D2

d ∝ g−0.6. Obviously, the
numerical results obtained in this paper are inconsistent

Table 4 Correlations for averaged wall heat flux in published literatures

Authors Correlations Characteristic

Rohsenow (1952)
q
√

σ
g�ρ

μLhfg
= C−3

s [ cpl�T

hfg
]Pr-nl q ∝ g0.5

Kurihara and Myers (1960) q = 36κL Pr0.33l (ρV /μL)1/3�T n1/3 q ∝ g0

Tien (1962) q = 61.3 Pr0.33L κL�T n1/2 q ∝ g0

Kocamustafaogullari and Ishii (1983a) q = 14κL(
ρLcpl

ρV hfg
)0.5 Pr−0.39

L [2.5 × 10−5(
ρL−ρV

ρV
)0.9θW

√
σ

g�ρ
]−0.25�T 1.5n3/8 q ∝ g0.125
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Fig. 10 The distribution of local heat flux on the superheated wall
along the horizontal axis of symmetry under different gravitational
accelerations at t∗ =0.4 (Ja=0.00934, x =50, z =0)

with the review by Dhir (2010). Thus, the numerical model
used in this paper should be improved in future and more
detailed investigation on the relationship between q and
gravitation acceleration should be investigated. Besides, as
shown in Table 4, no agreement has neither been reached
in the relationship between q and nucleation site density,
wall superheat. Therefore, further investigation by three-
dimensional numerical method should be performed to
obtain a more accurate correlation for heat flux.

Conclusions

Based on Zheng’s (2006) improved free energy model,
a three-dimensional hybrid lattice Boltzmann method was
used to simulate the dynamic evolution of vapor bubbles
growing and departing on a horizontal superheated wall
during pool nucleate boiling. The influence of gravitational
acceleration on bubble departure diameter, bubble release
frequency and averaged heat flux was analyzed on the basis
of the three-dimensional numerical results. The conclusions
derived from the numerical results can be summarized as
follows:

1. With the decrease in gravitational acceleration, the
bubble departure diameter increases and the bubble
release frequency decreases because the reduced
buoyancy forces make it difficult for the bubble depart
from the heated surface.

2. The three-dimensional numerical simulations result
shows that bubble departure diameter is proportional
to g−0.301. This result is in good agreement with
the correlation proposed by Gorenflo et al. (1986),
however, is different from two-dimensional numerical

results reported in other literatures. The bubble release
frequency obtained in the present simulations is
proportional to g−0.556. This result is in good agreement
with the correlation suggested by Zuber (1959) and
Siegel and Keshock (1964).

3. With the decrease in gravitational acceleration, the
averaged heat flux on superheated wall decreases,
indicating that the heat transfer efficiency of pool
nucleate boiling is weakened under reduced gravities.
The results of averaged heat flux is proportional to
g0.201. This result is in closest agreement to the
empirical correlation proposed by Kocamustafaogullari
and Ishii (1983a).

4. In previously published literatures, the empirical
correlations for bubble departure diameter and bubble
release frequency are quite different in not only the
form of the correlations but also the prediction results
of the correlations. Thus, the influences of many
parameters, such as wall superheat, surface tension
and contact angle of the liquid to the heater surface
and so forth on bubble departure diameter and bubble
release frequency should be investigated further using
three-dimensional numerical methods.
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