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a b s t r a c t

Wind forecasting holds the key to the management of wind power. Previous vector or matrix wind
forecast methods may not best reflect the intrinsic inter relationship among the wind velocity compo-
nents of a three-dimensional wind field. Alternatively, a tensor-based model is developed to reconstruct
the wind velocity distribution within a short period of time, enabling a new way for wind forecasting. A
third-order CFD database is established by CFD simulations and the Tucker decomposition is used to
obtain the tensor basis off site. Then in real time, the tensor basis can be employed to rapidly reconstruct
wind velocity distributions in any direction, which can also form a new way to reconstruct wind velocity
distribution in 3-D spaces. A comparison of the maximum and relative reconstruction errors shows that
the newly proposed method performs better than the authors' previously published wind field recon-
struction method. The influences of sampling rate, noise level and sensor distributions on the recon-
struction error are also discussed in this paper. Finally, a wind tunnel experiment is carried out to
evaluate the accuracy of the proposed method, and in most cases, the experimental results show that
relative errors drop around 0.03%-0.4% and maximum errors drop around 0.02%-1.7% when using the
newly proposed method.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Wind energy is the main source of renewable energy. Although
the wind resource is abundant, its intermittent and variable char-
acteristics make it difficult to balance a constant supply of elec-
tricity. That is why wind velocity forecasting is so important, and
many interesting researches have been devoted to solve this
problem [1]. There are many forecasting ways which can be broadly
divided into two categories, statistical models, numerical weather
prediction models (also called physical models) [2]. Physical
models, which are mainly based on numerical weather forecasts
[3,4] usually take various meteorological data (such as wind di-
rection, temperature, humidity, air density) into consideration.
Statistical models [5], such as time-series methods [6,7], Artificial
Neural Networks methods [8], Kalman Filter methods [9] and
Support Vector Machine methods [10], are mainly used to find the
relationship between the input data and the output wind speed or
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, China
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wind power, using historical wind data. Yang et al. proposed a
hybrid forecasting method to forecast wind speed [11], while it is
also based on historical data. In Ref. [12], Dong et al. proposed a
day-ahead prediction model based on NWP data and wind power
data from awind farm, but this method only focuses on the forecast
in specific positions, not a whole wind field. Khosravi [6] et al.
proposed a time-series wind prediction method employing ma-
chine learningmethods that can predict future values of the system
based on past data, but this method cannot predict the wind ve-
locity distribution in a continuous space.

In order to predict thewind velocity distribution in a continuous
space, Qin et al. [13] introduced awind field reconstruction method
based on PCA and CFD data, which can predict wind velocity dis-
tributions in a short time. However, this method is essentially a
vector or matrix-based method that in the current cases very often
treats the wind velocity components of a three-dimensional (3D)
wind field as separate entities, which may destroy their intrinsic
inner relationship. Therefore, methods that can overcome this
shortcoming need to be developed. Compared with vector and
matrix-based methods, tensor-based methods usually have better
performance in representing high-dimensional data. Higher-Order
Singular Value Decomposition (HOSVD) which is also called the
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Nomenclature

A Location-based matrix
B Co-efficient matrix
S Core tensor
U(1) Mode-1 factorization factor matrix
U(2) Mode-2 factorization factor matrix
U(3) Mode-3 factorization factor matrix
N Normal distribution function
n Number of data points
V CFD database (Sample tensor)
W Basis tensor
X Original wind field matrix(m/s)
XR Reconstructed wind filed matrix(m/s)
Y Measured data in the domain (m/s)
g Gaussian noise
s Standard deviation

R Domain of analysis
t Shear stress
r Density (kg/m^3)
p Pressure (Pa)
Subscripts
i Nodal point
n, k Position of elements in a matrix
m Number of samples

Abbreviations
ANSYS Analysis Systems
CFD Computational Fluid Dynamics
MATLAB Matrix Laboratory
PCA Principal Component Analysis
HOSVD Higher-Order Singular Value Decomposition
SVD Singular Value Decomposition
NWP Numerical Weather Prediction
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Tucker decomposition is an effective data-driven approach that can
be used inmany areas [14e18], such as image and signal processing,
computer vision, data mining and fluid science. Here, we improve
our previous wind field reconstruction work by using the Tucker
decomposition technique.

In this paper, the authors propose a wind forecasting method by
reconstructing the wind velocity distribution in a short time. The
consideration is that if the wind field is much larger than the wind
farm that is inside the wind field, then a certain period is required
for the wind to travel from the border to the wind farm. The wind
velocity in the wind farm is related to the wind speed from the
boarder of the wind field, and it can be obtained before the wind
reaches the wind farm. This is in fact equivalent to a short term
wind forecast, and this period of time is the forecast time. This
establishes the relationship between the wind field reconstruction
and wind forecast for a wind farm situated inside the wind field.

In this paper a tensor-based method which combines a CFD
databasewith a higher-order singular value decompositionmethod
and the Least Square method is developed to improve the wind
field reconstruction in 3-D spaces. The newly developed mathe-
matical model is applied to CFD models with different geometric
configurations. The reconstruction results are analysed at three
elevations of the models. In addition, the newmethod is compared
with the existingwind velocity distribution reconstructionmethod,
and some interesting results are revealed. A range of parameters,
e.g. sampling rate, noise error, sensor distribution as well as the
number of sensors, are also taken into consideration so as to
analyse their impact on the reconstruction error. Finally, wind
tunnel experiments are carried out to test the performance of the
proposed method. The experimental results also show that the
newly proposed method has a better performance compared with
the existing published method, leading to around 0.03%-0.4% lower
relative reconstruction errors and 0.02%-1.7% lower maximum
reconstruction errors, in most calculated cases.
2. CFD database

The data used in this paper are illustrated on a 3-D database,
obtained from FLUENT with a series of inlet boundary conditions.
This paper is concerned with steady flows passing an obstruction at
a constant temperature. The motion of a compressible, Newtonian
fluid is typically represented by mass and momentum (Navier-
Stokes) conservation equations. The mass conservation is given by
vðruxÞ
vx

þ v
�
ruy

�
vy

þ vðruzÞ
vz

¼ 0; (1)

where r is the density (kg/m3), and ux, uy, uz represents velocity
components (m/s) in the x, y and z directions, respectively. The
momentum equations are shown in equations (2)e(4).

V � ðrux u!Þ ¼ �vp
vx

þ vtxx
vx

þ vtyx
vy

þ vtzx
vz

þ rfx; (2)

V � �ruy u!� ¼ �vp
vy

þ vtxy
vx

þ vtyy
vy

þ vtzy
vz

þ rfy; (3)

V � ðruz u!Þ ¼ �vp
vz

þ vtxz
vx

þ vtyz
vy

þ vtzz
vz

þ rfz: (4)

Here t is the shear stress, caused by the viscous effects, p rep-
resents the pressure (Pa) and f represents the body forces on the
fluid element (m/s2).

Based on equations (1)e(4), a CFD database is built. To obtain
the CFD database, the inlet velocity is set to vary from 1 to 31m/s at
5m/s increments, and the inlet velocity direction changes from
0� to 80� with 20� increments. The CFD database is also called the
sample tensor V, the dimension of which is n� 4�m, where n is
the number of nodes in a 2-D plane, and m represents the number
of sample matrices (which are also called snapshot matrices).

3. Tensor and Tucker decomposition

First of all, we briefly recall standard decomposition methods of
matrices and tensors. Singular Value Decomposition was initially
derived for square matrices by Beltrami in 1873; Eckart and Young
applied SVD to rectangular matrices in 1939 [19], as shown in
equation (5)

V ¼ WSUT; (5)

where matrix V ε Rn�m, S ε Rn�m, W ε Rn�n and U ε Rm�m.

S ¼
�
S1O
OO

�
; S1 ¼ diagðs1;s2; :::;srÞ: (6)

In equation (6), s1�s2� … �sr> 0, r¼ rank(V). Normally, the
first k columns of W can be used as basis vectors, which contain the
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main information of the CFD database.
When V ε RI

1
�I

2
�I

3, V is a third-order tensor. In order to explore the
main characters of tensor V, the concept of tensor decomposition
was originally introduced by Hitchcock in 1927 [20]. The Tucker
decomposition can be explained in equation (7):

V ¼ S�1U
ð1Þ�2U

ð2Þ�3U
ð3Þ0S ¼ V�1U

ð1ÞT�2U
ð2ÞT�3U

ð3ÞT;
(7)

where S ε RJ
1
�J

2
�J

3 is the core tensor, U(1)
ε RI

1
�J

1 is a mode-1 factor-
ization factor matrix, U(2)

ε RI
2
�J

2 is a mode-2 factorization factor
matrix and U(3)

ε RI
3
�J

3 is a mode-3 factorization factor matrix. Fig. 1
shows the routine to decompose a three-way array tensor using the
HOSVD method. It can be seen from equation (7) that the elements
of the concerned tensor are calculated together and the element
position is not changed.

Kolda introduced a method in 2006 [21,22] to represent an Nth-
order tensor by amode-nmatrix V(n), which can be called the Kolda
unfolding. Fig. 2 shows the horizontal unfolding of a third-order
tensor. When a third-order tensor is decomposed, the Kolda
unfolding can be employed to obtain the tensor factorization factor
matrices.

The following equation shows a way to calculate the mode-n
factorization factor U(n),

VðnÞ ¼ UðnÞSPðnÞT: (8)

4. Mathematical description of the new method

To reconstruct the wind velocity distributions in a short time, a
new mathematical method based on tensor analysis is proposed in
this section. Firstly, the measured wind velocity distribution data
are stored in matrix Y(m�4), each column of which represents the
absolute velocity, and velocity components ux, uy and uz, respec-
tively. The relationship between Y and X can be shown as

Y ¼ AX; (9)

where X(n�4) is the original wind velocity distribution matrix and
A(m�n) is the position matrix given by

Aði;jÞ ¼
�
0; if the data is missing in the i� th position
1; if the data is not missing in the i� th position

:

(10)
Fig. 1. HOSVD decom
Normally, the number m is much smaller than n, so it is difficult
to solve equation (9). To overcome this difficulty, a newmethodwas
introduced to reduce the dimension of X, which is now called the
Tucker decomposition or higher-order singular value decomposi-
tion. We consider that the reconstructed matrix XR can be repre-
sented in a dimension-reduced manner, which takes the form of

XRð:;iÞ ¼ Wð:;i;:ÞBð:;iÞ; (11)

where the dimensions of W, B and XR are respectively n� 4� k,
k� 4 and n� 4. In equation (11), XR represents the reconstructed
result of the wind velocity distribution, and the tensor basis can be
obtained from the Tucker decomposition, where W is determined
by

W ¼ S�1U
ð1Þ�2U

ð2Þ: (12)

Considering the i-th column of Y, equation (9) can be rewritten
as

Yð:;iÞ þ gð:;iÞzAWð:;i;:ÞBð:;iÞ; (13)

where Gaussian noise g is introduced during the reconstruction
process. The proposed noise g obeys a Normal distribution N (0, s2)
shown as

gð :; iÞ � N
�
0;s2

�
; (14)

where s represents the standard deviation of Gaussian noise. Now,
the inverse problem of equation (9) is to solve the following
equation

minf1 ¼ 1
2
kYð :; iÞ � AWð :; i; : ÞBð :; iÞ þ gð :; iÞk22; (15)

and the coefficient matrix B can be determined by the least squares
method. After matrix B is known, the reconstruction result XR can
be obtained by equation (11). The relative reconstruction error can
be calculated by

Relative reconstruction errorðiÞ ¼

			XRð:;iÞ � Xð:;iÞ
			
1			Xð:;iÞ

			
1

� 100%; i

¼ 1;2;3;4:

(16)
position scheme.



Fig. 2. Horizontal unfolding of three-way array (Kolda unfolding).
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5. Simulations

The first step for reconstructing the wind velocity distribution is
to set up a CFD database from various simulation cases. It is very
important to choose appropriate geometry models to test the ac-
curacy of the proposed mathematical model. In the current paper,
three different types of CFD physical models are presented.

5.1. Physical models in CFD

Fig. 3 shows detailed geometric configurations of three Physical
models tested in CFD simulations. The complexity of the models
changes with the number of obstructions and their relative
positions.

Table 1 shows that the height of the isolated ellipsoidal model is
0.15m with the center at (0, 0, 0). Meanwhile, two types of double
sinusoidal models are installed, where the height of sinusoidal A is
0.2m and the height of sinusoidal B is 0.15m, and the distance
between the center bases (A and B) is 0.5m. For the complexmodel,
ellipsoid A, semi-sphere B and sinusoidal C are combined, and their
heights are 0.15m, 0.18m and 0.2m, respectively. It should be
noted that the ellipsoid used in the combined model is identical to
the simple model with a long axis of 0.581m and a short axis of
0.387m. The same analysis domain (4m� 3m� 1m) is used for
the three models.

ANSYS ICEM 16.0 is used for modelling. A mesh independency
check is done, and the total mesh nodes of these three models are
set to 238452, 230944 and 137065, respectively. The simulated
results are obtained at several inlet boundary conditions. Specific
planes are chosen to test the accuracy of the proposed method.
ANSYS WORKBENCH FLUENT 16.0 is introduced to conduct a series
of simulations, where the same standard k-ε turbulence model is
used with the 2nd upwind difference scheme and standard wall
functions. In this paper k-ε turbulence model is selected, due to the
fact that in this study the physical models in the simulation are
relatively simple with rather smooth changes of the shapes, thus k-
ε model is quite often used in such or similar situations [23]. The
model constants are set to ANSYS FLUENT 16.0 default values with
an initial gauge pressure of 0. The ‘SIMPLE’ solutionmethod is used,
the Gradient is set to ‘Least Squares Cell Based’ and the Pressure is
set to ‘Second Order’ with initial gauge pressure. In this paper, the
residual convergence of all simulations is set to 1� 10�5, and the
calculation is set to ‘steady’.

5.2. Reconstruction results

The reconstruction results of three different models are given
respectively in sections 5.2.1, 5.2.2 and 5.2.3.

5.2.1. Ellipsoidal model
For the ellipse model, the velocity data in the plane at height

0.2m is introduced here. The dimension of the sample tensor V is
10000� 4� 35. Fig. 4 shows the information of the relative
reconstruction errors when the number of tensor bases changes
from 1 to 35 and the number of proposed sampling nodes is set to
100 with a Gaussian noise of standard deviation 0.001. It can be
seen from Fig. 4 that the relative reconstruction error decreases
with an increasing number of tensor bases. Especially for velocity v,
the relative reconstruction error (the maximum error is 18.9976%)
is higher than that of other directions. This is possibly due to the
velocity in the z direction beingmuch smaller than in the other two
directions. It can also be seen that when the number of tensor bases
is more than 5, the relative reconstruction errors in x, y directions
are nearly kept at 0.03%, and the relative reconstruction error in z
direction is kept at 0.88%. It should be noted that in Fig. 4 u-velocity,
v-velocity and w-velocity represent wind velocities in the x, z, y
directions respectively.

Fig. 5 compares the results between the reconstructed stream-
lines and the CFD streamlines at a 0.2m high plane. The number of
the sampling nodes is set to 100 and the proposed standard devi-
ation of Gaussian noise is set to 0.001. Here, u, v, w represents the
velocity in x, z, y direction, respectively. As a result, the overall
relative reconstruction error is 0.0543%, and the relative recon-
struction error of u, v, w is 0.0462%, 1.1627% and 0.0697%, respec-
tively. Fig. 5 (a) gives the information about the reconstructed result
and the CFD result of velocity u and velocity w, where the recon-
structed streamlines match the CFD streamlines well, so the red
streamlines nearly overlap the black streamlines. Fig. 5 (b) shows
that the reconstructed streamlines also match well with the CFD
streamlines of velocity u and velocity v, where velocity v is pre-
sented in the y direction. In Fig. 5 (c), the reconstructed streamlines
and the CFD streamlines shown for velocity v and velocity w give a



Fig. 3. The proposed CFD geometry models and analysis domain.

Table 1
The detailed information of geometry.

Geometry Height (m) Bottom Center (m)

Ellipsoidal model Semi-Ellipsoid-A 0.15 (0, 0, 0)
Double sinusoidal model Sinusoidal-A 0.2 (0, 0, 0)

Sinusoidal-B 0.15 (0, 0.5, 0)
Complex model Semi-Ellipsoid-A 0.15 (0, 0.3, 0)

Semi-Sphere-B 0.18 (-0.3, �0.21, 0)
Sinusoidal-C 0.2 (0.3, �0.21, 0)
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slightly larger difference compared with Fig. 5 (a)&(b). It should be
noted that velocity v in Fig. 5 (c) is shown in the x direction. In order
to make the red lines clearer, Fig. 5(d)e5(f) represent the local
amplification details of Fig. 5(a)e5(c), respectively.
Fig. 4. Relative reconstruction errors with the increasing number of tensor basis
(Semi-ellipsoid).
5.2.2. Double sinusoidal model
The velocity data in the plane (0.8m� 1.2m) at height 0.2m for

the double sinusoidal model is introduced here. The dimension of
the sample tensor V is 9600� 4� 35. Fig. 6 gives the change of
relative reconstruction errors with the number of tensor bases
rising from 1 to 35. The number of proposed sampling nodes is set
to 100 and a Gaussian noise with a standard deviation of 0.001 is
introduced into the proposed mathematical model. It can be seen
that Fig. 6 shows the same trend as Fig. 4. The largest error of ve-
locity v is 16.3895%, dropping to 0.3892% when the number of
tensor bases is larger than 5. The relative reconstruction errors of
absolute velocity, velocity u and velocity w nearly drop from 1.9% to
0.06%. It should be noted that in Fig. 6 u-velocity, v-velocity and w-
velocity represent wind velocities in x, z, y directions respectively.

Fig. 7 gives the reconstruction result of wind streamlines as well
as CFD simulated streamlines in the plane (0.8m� 1.2m) at the
height of 0.2m, where the overall relative reconstruction error is
0.0914%, and the relative reconstruction error of u, v, w is 0.1748%,



Fig. 5. Reconstructed (red line) and original (black line) streamlines of wind velocity distributions, here the inlet velocity is set to 8.5m/s with inlet wind direction 50� . The number
of proposed sampling nodes is 100 with a Gaussian noise having a standard deviation (s) of 0.001. (Semi-Ellipsoid). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 6. Relative reconstruction errors with the increasing number of tensor bases
(Double sinusoidal model).

Fig. 7. Reconstructed (red line) and original (black line) results of wind velocity distribution
proposed sampling nodes is 100 with a Gaussian noise having a standard deviation (s) of 0
figure legend, the reader is referred to the Web version of this article.)
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0.8633% and 0.1183%. It can also be seen from Fig. 7 that the
reconstructed result matches well with the original simulation
result.
5.2.3. Complex geometry model
To test the accuracy of the proposed mathematical model, a

complex physical model is introduced in this section. It can be seen
from Fig. 8 that the relative reconstruction error of velocity u, v, w
and the absolute velocity decreases when the number of the pro-
posed tensor basis increases. Especially, when the tensor basis
number is bigger than 5, the relative error of absolute velocity
drops to around 0.46%. It is noted that in Fig. 8 u-velocity, v-velocity
and w-velocity represent wind velocities in x, z, y directions
respectively.

Fig. 9 shows a particular case with the tensor bases number of 6,
and the sampling nodes number set to 100 with a Gaussian noise of
standard deviation 0.001. Fig. 9 (a) compares the reconstructed
streamlines and CFD streamlines in velocity u and velocity w, and
they match well. Same results are also shown in Fig. 9 (b) and (c).
Overall, the relative reconstruction errors in the x, y, z directions are
0.4675%, 6.7230% and 0.7550%, respectively.
s, here the inlet velocity is set to 8.5m/s with inlet wind direction 50� . The number of
.001. (Double sinusoidal model). (For interpretation of the references to colour in this



Fig. 8. Relative reconstruction errors with the increasing number of tensor basis
(Complex model).
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5.3. Reconstruction results at different elevations

Section 5.2 gives the calculation results in plane 1 at a height of
0.2m, so plane 2 (at a height of 0.22m) and plane 3 (at a height of
Fig. 9. Reconstructed (red line) and original (black line) results of the wind velocity distribu
of proposed sampling nodes is 100 with a Gaussian noise of standard deviation (s) 0.001. (C
legend, the reader is referred to the Web version of this article.)
0.24m) are also considered in this section in order to show more
results and to test and validate the accuracy of the proposed
method. More results in different planes are given in Fig. 10 for the
complex geometry model. When the height is set to 0.22m, the
overall relative reconstruction error is 0.2519%, and the relative
reconstruction error in velocity u, v, and w is 0.3764%, 5.7101% and
0.5297%, respectively. Meanwhile, when the height is set to 0.24m,
the overall relative reconstruction error is 0.1485%, and the relative
reconstruction error in velocity u, v, and w is 0.2979%, 5.2040% and
0.3757%, respectively. These calculation results show a satisfactory
validation.

5.4. Error analysis

Section 2 has shown satisfactory results of different types of
geometry models, so the more complex geometry model is used for
error analysis. Sampling rate, noise level as well as sensor distri-
butions are considered in this section to give a detailed analysis of
errors.

5.4.1. Sensitivity of reconstruction error on sampling rate
Fig. 11 (a) shows information about the relative reconstruction

error of the absolute velocity based on 3 different sensor distribu-
tions. It can be seen that when the sampling rate is lower than a
tions, here the inlet velocity is set to 8.5m/s with inlet wind direction 50� . The number
omplex geometry model). (For interpretation of the references to colour in this figure



Fig. 10. Reconstructed result and CFD result shown in plane 2 and plane 3 (Complex geometry model).
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specific figure (around 0.2%), the relative reconstruction result can
be influenced by the distribution of sensors. In addition, with an
increasing sampling rate, the relative reconstruction error nearly
stays at the same level. Fig. 11 (b)e(d) give a similar result
compared with Fig. 11 (a).
Fig. 11. Dependency of reconstruction relative error (%) with the increasing sampling rate o
standard deviation 0.1%. The inlet boundary conditions are set to 8.5m/s for inlet wind vel
5.4.2. Sensitivity of reconstruction error on noise level
The first 2, 4, 6, 8, 10 tensor bases are proposed in this section

with Gaussian noise of standard deviation from 0 to 20%. Here, the
noise level is represented by standard deviation. The targeted test
case is the one with inlet velocity of 8.5m/s and inlet direction of
50�. Fig. 12 shows the relative reconstruction error of wind velocity
f wind speed sensors at 3 different distributions with an added Gaussian noise error of
ocities with 50� of inlet wind direction.



Fig. 12. Dependency of reconstruction error with the increasing noise level, the first 2, 4, 6, 8, 10 tensor bases are considered.
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distributions in any direction, and a similar trend is given by Fig. 12
(a)&(b)&(c)&(d), where the relative reconstruction error is more
sensitive to the noise level as the number of the proposed tensor
bases increases.
5.5. Method comparison

The authors have introduced a new method based on tensor
analysis to reconstruct wind velocity distributions, which can be
applied to higher dimensional data. In order to test the accuracy of
the proposed method, it is compared with a previous method
which employs a classic SVD technique. Fig. 13 shows the
maximum error (m/s) calculated by the twomethods in plane 1 at a
height of 0.2m, and themaximum error in i-th column is calculated
using equation (17):

Maximum ErrorðiÞ ¼ Max



XRð:;iÞj � Xð:;iÞj




; i ¼ 1;2;3;4; j

¼ 1;2; :::; 10000:

(17)
In this paper, the authors mainly focus on the wind velocity
distributions in any direction. Fig. 13 (b)e(d) shows that the pro-
posed method has a smaller maximum error compared to the
previous method, which means that the proposed method is more
suitable to find the intrinsic relationship between the velocities
from different directions, even though Fig. 13 (a) shows that when
the number of the proposed bases is chosen between 10 and 20, a
slightly higher error in the proposed method is found. Essentially
the two methods yield comparable errors, with the new method
showing slight improvement, Fig. 13(c) and (d).

In order to compare more results by more methods, the relative
reconstruction errors are given in Fig. 13(e)e(h). With the number
of proposed basis changing from 2 to 35, it can be seen that the
relative errors from the new method show a slight improvement
over the previousmethod. The only exception is Fig.13(f) where the
number of proposed basis is 1. However, this should not be a
concern in real applications where a number of basis vectors will
seldom be 1, since the errors caused by such a choice will always be
large, whichever methods used. Therefore, in general the new
method is slightly better than the previous one.



Fig. 13. Comparison between the proposed method and the previous method.
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6. Experimental validation

A wind tunnel experiment is used in this section to test the
accuracy of the proposed method, so the calculated result of the
proposed algorithm is compared with the experimental result.

6.1. Experimental setup

The experimental facility consists of a wind tunnel
(11� 3� 1m) housing the obstruction, i.e. the physical models, in
the test section, a fan and a data acquisition system (Fig. 14). A
variable diameter section was used to connect the test section with
the fan. Fig. 14 shows the test section of 4� 3� 1 (m), the transition
section with guiding vanes to regulate the wind directions, and the
stabilizing section of 1.6m between the test section and transition
section. Considering the transition sectionwith a length of 3m, two
guiding vanes are installed, and the length of the first blade is 1.2m.
To obtain reliable wind tunnel results, a series of tests at each point
are carried out, and then the average results are used as the
measured data. According to [13], the precision of the sensor
(hotwire anemometer) is 1.5% with the resolution of 0.1m/s, and
these could also support the reliability of this measured data. The
complex geometry model was used as the test object, and wind
speed sensors (hotwire anemometers) were placed at selected lo-
cations on a 9� 9 grid around the test object. The sensors were
connected to a data logger, in order to transfer the data to a
Fig. 14. Experim
computer. The guiding vanes (in the transition section) was used to
regulate the wind speed in the test section.

Fig. 15 shows the complex geometry model that is used in this
wind tunnel experiment. The data were collected from the plane at
a height of 0.22m.

Here, each time wind speed sensors are placed at selected po-
sitions where they do not have too much influence on the original
flow, as Fig. 16 shows.

The procedure of this experiment is given below:

1. All anemometers are calibrated and positioned at their grid
locations.

2. The fan speed is adjusted by using a 45 kW inverter.
3. Wind speed data (120 values for each location) are acquired

using the data acquisition system (over a time span of 3min).
The average speeds are used for each point.

4. The fan is switched off and the anemometers are positioned at
new locations.

5. The above procedure is repeated, until all the required grid lo-
cations are covered.
6.2. Experimental results

During the reconstruction process, the CFD database is built for
the combined geometry model according to section 5. After
ent setup.



Fig. 15. Wind tunnel experiment in real time.

Fig. 16. Top view of the test part.

Fig. 17. Relative reconstruction error (%) with different num
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obtaining tensor bases from the CFD database off site, sensor
measured data are used to reconstruct the wind velocity distribu-
tion on site. Here, the number of proposed nodes is set to 3, 5, 7, 9,
11, 13,15, 17 and 19, and these nodes are placed at different places
using the first 2 and 3 tensor bases. Fig.17 (a)& (b) give the result of
four different sensor distributions with random combinations of
the sensor placement. Even though the sensor distribution is
changed, it can still be seen that the relative reconstruction errors
generally do not exceed about 10%. The relative error may generate
frommeasurement data. In addition, thewind speed distribution in
real time is more natural comparedwith the CFD database, the inlet
velocity of which is set to uniform flow. From Fig. 17, we could also
see that the sensor distribution has little influence on reconstruc-
tion error when the number of sampling nodes is larger than a
certain value (around 10). For the same number of sampling nodes,
there are four different combinations of sensor placement, shown
in Figs. 17 and 18. Distribution 1-distribution 4 are in fact arranged
at randomly picked locations.

Fig. 18 shows the relative reconstruction error of the proposed
method with four sensor distributions (random combinations of
sensor placement) with the number of tensor bases increasing from
1 to 12, and the number of sampling nodes set to 16. It can be seen
from Fig. 18, when the tensor bases number is smaller than 6, the
reconstruction error is relatively smaller, and the sensor distribu-
tion also has little influence on the reconstruction error. However,
when the number of tensor bases is larger than 6, reconstruction
errors become larger for all sensor distributions. It can be seen that
the relative reconstruction errors nearly stay between 8% and 6%
when the number of tensor bases increases from 1 to 6, while the
difference of relative reconstruction error (among these 4 distri-
butions) becomes larger when the number of tensor bases is more
than 6. Thus, for the real time reconstruction process, the number
of tensor bases is important for the reconstruction performance.
Figs. 17 and 18 show that the proposed method has a good per-
formance for experimental cases with a satisfactory reconstruction
error. It can be seen from Fig. 18 that when the number of tensor
bases is set to 6 in the experimental case, the relative reconstruc-
tion error is the lowest, so 6 tensor bases are suggested in this
manuscript. In many cases we have studied we can see a general
trend that the error curve tends to level off after several basis
vectors have been used. Therefore normally a few bases, say 6, can
be an initial choice. When the geometry model in CFD is changed,
ber of proposed nodes with 4 different distributions.



Fig. 18. Relative reconstruction error (%) with different number of tensor bases at 4
different distributions.

Fig. 19. Wind Velocity Distribution shown in experimental results (red bar), the
reconstruction results using the proposed method (yellow bar) and the reconstruction
results using the previous method (blue bar), the number of sampling nodes is set to 6
and the first 3 bases being used. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 20. Some representative points of Fig. 19.
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more analyses will need be given.
In order to compare the performance between the newly pro-

posed method and an existing method [9], a series of tests are
carried out and the comparison results are given in Figs. 19 and 20,
Tables 2e4. Fig. 19 shows wind velocity distributions, and a smaller
difference between the reconstruction result of the proposed
method (yellow bar) and sensor measured data (red bar) than the
difference between the reconstruction of the proposedmethod and
sensor measured data. To show the calculated results in Fig. 19
more clearly, Fig. 20 gives some representative comparison re-
sults, from which we can see that the height of red bar (the
calculated results of the new proposed method) is closer to that of
the yellow bar (sensor measured data).

It can be seen from Table 2 that when the first 3 bases are
employed with the 6 sampling nodes, the maximum errors (at five
Table 2
Comparison between the proposed method and the existing method, the number of sam

Distribution 1 Distribution 2

The proposed method
RE (%) 6.5454 7.7522
Maximum error (%) 19.1782 28.5453
The existing method
RE (%) 6.6255 8.2876
Maximum error (%) 19.0334 31.0963

Table 3
Comparison between the proposed method and the existing method, the number of sam

Distribution 1 Distribution 2

The proposed method
RE (%) 9.1854 6.4618
Maximum error (%) 29.7943 21.4059
The existing method
RE (%) 9.2191 6.5001
Maximum error (%) 30.2314 21.1056

Table 4
Comparison between the proposed method and the existing method, the number of sam

Distribution 1 Distribution 2

The proposed method
RE (%) 7.1231 6.8507
Maximum error (%) 19.2448 25.5128
The existing method
RE (%) 7.1295 6.9731
Maximum error (%) 19.4413 25.6607
random distributions) of the new tensor-based method are the
lowest, and the proposed method also sees lower relative recon-
struction errors at these distributions with 6.5454%, 7.7522%,
8.0783%, 6.6166% and 6.6305% respectively, and the figures for the
existing method are 6.6255%, 8.2876%, 8.3073%, 6.7148% and
6.8733%. When the number of the sampling nodes is set to 10,
pling nodes is set to 6 and the first 3 bases being used.

Distribution 3 Distribution 4 Distribution 5

8.0783 6.6166 6.6305
25.2029 18.4927 24.1383

8.3073 6.7148 6.8733
25.6753 17.7275 24.9878

pling nodes is set to 10 and the first 3 bases being used.

Distribution 3 Distribution 4 Distribution 5

6.4494 7.1403 6.817
20.0256 25.1918 24.2729

6.8068 7.2359 7.0781
20.049 25.7244 25.9017

pling nodes is set to 14 and the first 3 bases being used.

Distribution 3 Distribution 4 Distribution 5

6.8107 7.7665 7.2041
21.257 19,306 24.5673

6.7982 8.1431 7.26
21.5824 20.5414 24.6889
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Table 3 shows that the relative reconstruction error of the proposed
method is lower compared with the figure for the existing method
in most cases, and the relative reconstruction error nearly drops
0.03%e0.4%. From Table 3, it can also be seen that in most cases, the
maximum error of the proposed method is about 0.02% -1.7% lower
than the figure for the existing method. In addition, there are also
lower maximum errors and relative reconstruction errors of the
proposed method in Table 4. Overall, compared with the existing
method, the proposed method sees around 0.03%-0.4% lower
relative reconstruction error and 0.02%-1.7% lower maximum
reconstruction errors, in most cases.

7. Conclusions

In this paper, a higher-order singular value decomposition
method and the least squaresmethod (based on a CFD database and
measured sensor data) have been successfully introduced to
reconstruct wind velocity distributions in a short time. The pro-
posed reconstruction method gives a new way for wind forecasting
in 3-D space, and this research mainly shows that:

i. The proposed method can be used to solve this three-way
array problem in a short time and the low reconstruction
error shows the accuracy of this model.

ii. The proposed model can be applied to different-types of CFD
geometry models at variable planes.

iii. Compared with the existing method, the newmethod shows
a better result for wind velocity distributions. The experi-
mental results show that the relative reconstruction errors
calculated by the new proposed method are around 0.03%-
0.4% lower than the figure for the existing method, and the
maximum reconstruction errors calculated by the new pro-
posed method are around 0.02%-1.7% lower than the figure
for the existing method, in most cases.

iv. The sensor distribution does not have much influence on the
reconstruction error, especially when the sampling rate is
higher than a specific amount which is also small.

v. The proposed model shows a good performance for filtering
noisy data.

vi. The reconstruction result of the proposed method matches
well with the sensor measured data of a real experimental
case.

Overall, this paper proposes a novel method to predict wind
velocity distributions in 3-D. In the future, the authors will focus on
time-series wind predictions. However, the understandings of
more turbulent conditions, together with the complications in time
and space, such as the topology of the wind field, will need more
studies in the future, which is the aim of our future work.
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