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1 Introduction

Large-eddy simulation (LES) has been increasingly applied to theoretical studies and engi-
neering applications, particularly on flows with complex geometric boundaries. However, the
LES suffers the prohibitive computational cost in resolving the turbulent boundary layer[1].
The number of grid points required for the LES to resolve the viscous sublayer scales with
Re1.8

L
[2], where ReL is the Reynolds number based on the large-scale velocity and its integral

length scale. More than 99% of the grid points have to be concentrated in the inner region of
the turbulent boundary layer when ReL > 106[3]. The wall-modeled LES is able to significantly
reduce the grid resolution, which bypasses the flow details near the wall to avoid fully resolving
the inner region of the turbulent boundary layer. Different wall models have been proposed dur-
ing the last decades[1,3–4]. The wall models were initially designed for the boundary-conformal
mesh method, and recently extended to the non-boundary-conformal mesh method, e.g., the
immersed boundary (IB) method[5–6].

Tessicini et al.[7] combined the IB method with wall models. They identified all grid points
outside the solid bodies, and solved the flow equations down to the second grid point from the
wall (see Fig. 1(a)). The flows between the second grid point and the wall were reconstructed
based on an equilibrium stress balance model. The reconstruction can ensure the appropriate
velocity profiles when the grid points are within the log layer, and thus extend the applicability
of the IB method to turbulent flows. Cristallo and Verzicco[8] improved the above procedure
by solving the flow equations to the first grid point from the wall and computing the wall shear
stress based on the equilibrium wall model. Choi et al.[9] introduced the tangency correction to
reconstruct the flows near the wall by using a power-law function without explicitly referring
to the wall shear stress. Besides near-wall velocity reconstruction, Roman et al.[10] introduced
a near-wall eddy viscosity model with the consideration of near-wall damping effects. Yang
et al.[11] proposed a generalized off-wall boundary condition to combine wall models with the IB
method, in which the conservation of the near-wall momentum was ensured by imposing velocity
boundary conditions to convection terms and shear stress boundary conditions to diffusion
terms. Yang et al.[12] improved the wall-modeled LES with the IB method by referring to
the integral wall model to account for the non-equilibrium effects. All these wall models are
combined with the sharp-interface IB method, where the solid and fluid phases are treated
distinctly[5]. To implement the sharp-interface IB method, we need to identify the types of the
points on the Eulerian grids, e.g., the fluid grid points, solid grid points, and interface grid
points (see Fig. 1(a)). The type identification for the Eulerian grid points involves the famous
problem of “point-in-polygon”, which challenges the robustness and efficiency of the algorism
in handling complex geometries and moving boundaries. In addition, the sharp-interface IB
method suffers from spurious oscillations because of the spatial and temporal discontinuities of
the flow near the IB, especially those associated with moving bodies[5]. The issues of spatial
and temporal discontinuities are not encountered in the diffuse-interface IB method because the
diffuse-interface provides a smooth transition between the fluid phase and the solid phase[5]. The
diffuse-interface IB method does not need to identify the type of Eulerian grid points, which is
efficient and robust, especially for the massively-parallel computing with domain decomposition
strategy. However, the diffuse-interface IB method has rarely been applied to the LES of
turbulent flows because of the difficulties in fully resolving the structures of near-wall flows
and/or combining the wall models. It is still unclear whether the diffuse-interface IB method
is applicable to the simulation of turbulent flows or not.

The advantages of the diffuse-interface method have been shown in the LES of wind turbines
with rotor models. The rotor models (such as the actuator line model)[13] for wind turbines
share some similar ideas with the diffuse-interface IB method, where the effects of blades on the
incoming wind are modeled by an effective body force, and are computed with the blade element
method, parameterized airfoil geometry (e.g., chord length and twist angle), and aerodynamic



Wall-modeling for LES of flows around an axisymmetric body using the IB method 3

(e.g., drag and lift coefficients) information instead of resolving the boundary layer flow around
the blade. To model the nacelle of a wind turbine, Yang and Sotiropoulos[14] recently developed
an actuator surface model, and calculated the normal component of the force with the direct
forcing IB method under the non-penetration condition. The tangential component of the force
was computed by using the incoming wind speed and an empirical friction coefficient, because
the grid was extremely coarse and could not even resolve the logarithmic layer. The diffuse-
interface enables the implementation of the model without identifying the grid points outside
the nacelles/at different sides of the blades (see Fig. 1(b)). The circumvention of identifying
different grid points ensures the efficient coupling between the turbulent flows and the motion
of wind turbines. Though the rotor models instead of the wall models are mainly used, the
successful applications to different wind turbines[15] indicate the potential to combine the wall
models with the diffuse-interface IB method.

- -

Fig. 1 Schematic diagrams of the sharp-interface and diffuse-interface for the IB method, where the
red solid curves show the IB, the blue solid circles show the Eulerian grid points for solving
the flow equations, the red open circles indicate the Eulerian grid points near the boundary
(interface grid points), the purple open squares indicate the Eulerian grid points within the
solid body, and the purple solid squares are the Lagrangian points on the immersed wall (color
online)

The aim of this work is to propose a novel method for combining the diffuse-interface IB
method with wall models for the LES. We use wall models to reduce the computational cost
while retain the advantages of the diffuse-interface IB method in handling complex geome-
tries on Cartesian grids. The proposed method is validated by the benchmark simulation of
the DARPA SUBOFF model, which is one of the well-documented turbulent benchmarks for
complex geometries. The flows over the DARPA SUBOFF model involve both adverse and
favorable pressure gradients, which are of great challenges for the wall-modeled LES. We apply
the diffuse-interface IB method to the simulation of turbulent flows, and the results obtained
are well comparable to the ones reported in the literature. The remainder of the paper is or-
ganized as follows. In Section 2, the flow equations and the numerical methods are described.
In Section 3, the method for combining wall models with the diffuse-interface IB method and
the implementations of different kinds of wall models are presented. In Section 4, the applica-
tion of the proposed method to the simulation of flow around the DARPA SUBOFF model is
presented. Finally, in Section 5, the summary and conclusions are given.

2 Numerical method

We solve the filtered Navier-Stokes (NS) equations for incompressible flows as follows:

∂ũi

∂xi
= 0, (1)
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∂ũi

∂t
+

∂ũiũj

∂xj
= −

1

ρ

∂p̃

∂xi
+ ν

∂2ũi

∂xj∂xj
−

∂τ̃ij

∂xj
+ fi, (2)

where ũi (i = 1, 2, 3) and p̃ are the filtered velocity components and pressure, respectively,
fi (i = 1, 2, 3) are the body forces representing the boundary effects on the flows for the IB
method, ν is the kinematic viscosity of the fluid, and τ̃ij is the sub-grid stress (SGS) given by

τ̃ij −
1

3
τ̃kkδij = −2νtS̃ij , (3)

in which νt is the SGS viscosity, and S̃ij is the strain rate tensor based on the resolved velocity
field. The wall-adapting local eddy-viscosity (WALE) model[16] is used for calculating νt, i.e.,

νt = Cw∆̄2
(S̃d

ijS̃
d
ij)

3/2

(S̃ij S̃ij)
5/2

+ (S̃d
ij S̃

d
ij)

5/4
, (4)

where Cw = 0.6, and S̃d
ij is the traceless symmetric part of the tensor defined by

S̃d
ij =

1

2

(
g̃2

ij + g̃2
ji

)
−

1

3
δij g̃

2
kk. (5)

In the above equation,

g̃2
ij = g̃ikg̃kj , g̃ij =

∂ũi

∂xj
.

The flow equations are solved on an Eulerian grid without conforming to the immersed walls,
for which geometry and kinematics are described by a set of Lagrangian points (see Fig. 1(b)).
Equations (1) and (2) are solved by using a projection method as follows:

ũ∗
i − ũn

i

∆t
= hn+1/2

r −
∂p̃n

∂xi
+ f

n+1/2
i , (6)

∂2δp

∂xi∂xi
=

1

∆t

∂ũ∗
i

∂xi
, (7)

ũn+1
i = ũ∗

i − ∆t
∂δp

∂xi
, (8)

p̃n+1 = p̃n + δp, (9)

where the superscript n denotes the previous time step, ũ∗
i are the intermediate velocity com-

ponents, hr contains the discretized advective and diffusive terms, and δp is the correction to
the pressure. All the spatial derivatives are discretized by using a second-order center difference
scheme on a staggered grid. The evaluation of the momentum forcing term fi will be discussed
in the next section. The details of the flow solver and the related validations can be found in
Refs. [17] and [18].

3 Wall models for the diffuse-interface IB method

3.1 Difficulties in implementing wall models for the diffuse-interface IB method

The effective body forces, f
n+1/2
i in Eq. (6), represent the effects of immersed walls on flows.

To implement wall models in the framework of diffuse-interface IB methods, we first focus on
the direct-forcing diffuse-interface IB method proposed by Vanella and Balaras[19], which can
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be easily extended to other direct-forcing IB methods with diffuse-interfaces. According to
Vanella and Balaras[19], the effective body forces can be calculated by

f
n+1/2
i = WijF

n+1/2
j , i, j = 1, 2, 3, (10)

where Wij are interpolation operators based on the moving-least-squares with a linear basis[19],

and F
n+1/2
j are the effective forces obtained by Lagrangian points, i.e.,

F
n+1/2
j =

Ud
j − Ũ∗∗

j

∆t
. (11)

In the above equation, Ud
j are the desired velocity boundary conditions specified on the im-

mersed walls, Ũ∗∗
j are the predicted velocities at the Lagrangian points, and

Ũ∗∗
j = Wjiũ

∗∗
i , i, j = 1, 2, 3, (12)

where ũ∗∗
i is the predicted velocity on the Eulerian grid computed by using Eq. (6) without the

effective body forces f
n+1/2
i , i.e.,

ũ∗∗
i = ũn

i + ∆t
(
hn+1/2

r −
∂p̃n

∂xi

)
. (13)

The effective body forces obtained from Eq. (10) have been shown to be able to give reason-
able results for laminar flows as long as the grid is fine enough to resolve the near-wall flows. In
the wall-modeled LES, the near-wall grids are not fine enough to resolve the viscous sublayer.
The interpolation based on a linear basis (see Eq. (12)) is not valid anymore, which results in
inaccurate predicted velocities and inaccurate effective body forces at the Lagrangian points.
In the sharp-interface IB method, an explicit local velocity reconstruction based on wall models
is used to account for the non-linear velocity distribution near the wall, for which the effective
body force on an Eulerian grid can be directly obtained by

fi =
ur

i − ũ∗∗
i

∆t
, (14)

where ur
i is the velocity near the wall reconstructed based on the wall model, and ũ∗∗

i is the
predicted velocity obtained from Eq. (13) at the same Eulerian point.

As discussed above, the sharp-interface IB method uses the velocity near the wall (see ur
i

and ũ∗∗
i in Eq. (14)), which can be easily reconstructed using a wall model, to compute the

effective body force on the Eulerian grid, while the effective body force in the diffuse-interface
IB method is usually computed by using the velocity on the wall (see Ud

j and U∗∗
j in Eq. (11)).

This makes the explicit local velocity reconstruction used in the wall model for the sharp-
interface IB method cannot be directly used for the diffuse-interface IB method. This is one
of the major challenges. The wall shear stress boundary condition is usually used in the wall-
modeled LES as it can model the wall effects on the outflow with a coarse mesh. To apply wall
models to the diffuse-interface IB method, a feasible approach is used to compute the effective
body force based on the wall shear stress and/or introduce an explicit reconstruction near the
diffuse-interface.
3.2 Combination of wall models with the diffuse-interface IB method

We propose a method for combining wall models with the diffuse-interface IB method, with
which the effective body force is calculated based on the wall shear stress and a local flow
reconstruction on a set of Lagrangian points near the wall. The combination is processed as
follows.
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(i) Decompose the velocities in a local orthogonal coordinate system
Wall models usually need the velocity in the tangential direction of the wall to compute the

wall shear stress. A convenient way to implement wall models is to use the local orthogonal
coordinate system with its coordinate origin fixed on the corresponding Lagrangian point on
the wall (see Fig. 2), where the axis η points outside the solid body along the normal direction,
the axis ξ is parallel to the tangential velocity near the wall, and the axis ζ goes along the
direction perpendicular to the axes η and ξ according to the right-hand rule. The flow velocity
at the near-wall Lagrangian point M (see Fig. 2) can be decomposed as follows:

u = uw + uηeη + uξeξ, (15)

where uw is the velocity at Point S on the wall, eη and eξ are the unit vectors of the local
orthogonal coordinate system along the normal and tangential directions, respectively, and uη

and uξ are the normal and tangential components of the velocity in the local coordinate system,
respectively. The velocity on the wall uw is zero in the current work due to a stationary solid
body. The velocity component uξ is zero (not shown in Eq. (15)) in the local orthogonal
coordinate system because of the definition of the ξ-direction. Similarly, the effective body
forces are decomposed in the local orthogonal coordinate system as follows:

f = fηeη + fξeξ, F = Fηeη + Fξeξ, (16)

where fη and fξ are the normal and tangential components of the effective body forces on
the Eulerian grid, respectively, and Fη and Fξ are the normal and tangential components of
the effective body forces on the Lagrangian grid, respectively. We calculate the normal and
tangential components of the effective body forces separately.

Fig. 2 Schematic diagram of the local orthogonal coordinate system (color online)

(ii) Compute the tangential components of the effective body forces
We integrate the momentum equation along the normal direction to link the effective body

force to the wall shear stress, i.e.,

∫ ∆

0

f · eξdη =

∫ ∆

0

(∂u

∂t
+ u · ∇u + ∇p −

1

Re
∇2u

)
· eξdη, (17)

where ∆ is the distance between Points M and S on the wall. We set ∆ to be the same as the
Eulerian grid length ∆h, which is about 200 wall units in the current simulation. Equation (17)
can be expressed in terms of the variables at the Lagragian points between Points S and M by
using the mean value theorem for integrals, i.e.,

Fξ(∆1) =
(∂Uξ

∂t
+ U · ∇U · eξ +

∂P

∂ξ

)∣∣∣
∆2

+
τw

∆
−

τ∆

∆
, (18)
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where ∆1 and ∆2 are points between Points S and M. The capital letters indicate the variables
at the Lagrangian points. τw and τ∆ are the shear stresses at the wall and Point M, respectively.
For the wall-modeled LES of the turbulent flows over the stationary wall, the right-hand-side
of Eq. (18) can be approximated by the dominant wall shear stress term as follows:

Fξ (∆1) ≈
τw

∆
. (19)

It is worth mentioning that Eq. (18) is consistent with the direct-forcing method proposed
by Vanella and Balaras[19] if the grid is fine enough to compute the spatial derivatives of the
flows. The discretized form of Eq.(18) is

Fξ (∆1) =
(Ud

ξ − Ũn
ξ

∆t
+ HR

)∣∣∣
∆2

=
Ud

ξ (∆2) − Ũ∗∗
ξ (∆2)

∆t
, (20)

where HR includes all the discretized advection term, the diffusion term, and the pressure
gradient in the NS equations. Equation (20) reduces to Eq. (11) as Point M moves towards the
wall (∆, ∆1, ∆2 → 0), which recovers the direct-forcing method for laminar flows. If the grid
resolution is far from resolving the flow details around the wall (or too coarse to resolve the
log-law region of the boundary layer), the effective body forces on the Lagrangian points (see
Eq. (18)) can be computed by an integral model for specific flows. The proposed model then
reduces to some kinds of actuator type models, e.g., the actuator line/surface model for wind
turbines. In this sense, Eq. (18) reduces to the results of Refs. [13] and [14] for the LES with
rotor models.

(iii) Compute the normal components of the effective body forces

The normal component of the effective body forces is computed at a Lagrangian point Q
which has a distance ∆1 (0 < ∆1 < ∆) away from the wall, i.e.,

Fη (∆1) =
Uη (∆1) − Ũ∗∗

η (∆1)

∆t
, (21)

where U∗∗
η (∆1) is the intermediate normal velocity component near the wall in the predictor

step interpolated from the intermediate velocities ũ∗∗
i (i = 1, 2, 3) based on the moving-least-

square reconstruction. Uη (∆1) is the desired normal velocity component near the wall, and
can be computed from an interpolation using the velocity at Point P (see Fig. 2). In order to
satisfy the impenetrability condition and the zero normal derivative of the wall-normal velocity
component at the wall, a parabolic distribution of the wall-normal velocity between Points S

and P is assumed[10]. Therefore,

Uη (∆1) =
∆2

1

∆2
p

Ũη (∆p) , (22)

where ∆p is the distance from Point P to the wall.

Note that both the tangential and normal components of the effective body forces are com-
puted at the auxiliary point Q near the wall instead of Point S on the wall (see Fig. 2). The
Lagrangian points near the wall, which are denoted as Q in Fig. 2, are the new Lagangrian
points introduced in this work as a surrogate wall to combine wall models with the diffuse-
interface IB method. We find that the setup of ∆1 = ∆h/4.0 gives acceptable results for all the
simulation in the current work. We will show the effects of ∆1 (∆1 ∈ [0, ∆h/2.0]) in the next
section. The effective body forces computed at the auxiliary Lagrangian point Q are applied to
the Eulerian grids by using Eq. (10) in the same way as in the diffuse-interface IB method.
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3.3 Implementation of the wall models

The wall shear stress can be computed based on the unsteady thin-boundary-layer equation
(TBLE)[20–21] as follows:

∂

∂η

(
(ν+νt)

∂ũ

∂η
· eξ

)
= S, (23)

where

S =
1

ρ
∇p̃m · eξ +

∂ũ

∂t
· eξ + (ũ · ∇) ũ · eξ, (24)

and ν and νt are the fluid kinematic viscosity and eddy viscosity, respectively. p̃m is the filtered
near-wall pressure from the outer flow. p̃m is detected from a point along the normal direction
of the wall (hereinafter referred to as the probe point) as Point P shown in Fig. 2. Note that
the probe point P is not necessary to be coincident with Point M , since the probe point P is
used by the wall model while Point M is an auxiliary point to introduce the forcing point Q for
the IB method. ũ is the filtered velocity vector. eξ is the unit vector of the local orthogonal
coordinate system along the tangential direction, and η indicates the direction normal to the
wall.

We investigate two simplified models of Eq. (23). The first one has the source term in
Eq. (23) as S = 0, which corresponds to the boundary layer equation with the local equilibrium
hypothesis (hereinafter referred to as the EB model). The second one has the source term
with S = 1/ρ (∇p̃m · eξ), which accounts for the non-equilibrium effect caused by the pressure
gradient (hereinafter referred to as the NEB). For the EB and NEB models, Eq. (23) reduces
to an ordinary differential equation, which can be integrated from the probe point down to the
wall to give a closed-form expression for the wall shear stress, i.e.,

τw =
ρ

∫ ∆p

0
1

ν+νt
dη

(
ũ (∆p) · eξ − S

∫ ∆p

0

η

ν + νt
dη

)
, (25)

where ũ (∆p) is the filtered velocity at the probe point P .

Following the work of Duprat et al.[22], we use the following definition of eddy viscosity
which takes the pressure gradients into account:

νt

ν
= κη∗

(
α + η∗(1 − α)

3
2

)β(
1 − e

−
η∗

1+α3A

)2

, (26)

where the mixing scaling for the normalized wall distance is defined as η∗ = ηuτp/ν, where

uτp =
√

u2
τ + u2

p is a combination of the frictional velocity uτ =
√
|τw| /ρ and the velocity

based on the pressure gradient |ν/(ρ (∇p̃m · eξ))|
1/3

. The parameter α = u2
τ/u2

τp in Eq. (26)
quantifies the preponderant effect between the shear stress and the pressure gradient. κ = 0.41,
β = 0.78, and A = 18 are constant according to the work of Duprat et al.[22]. If the effect of the
pressure gradient is negligible, Eq. (26) will recover to the van Driest formula[23], which gives
the velocity profile for the flow with zero pressure gradient.

To determine η∗ and thus the wall-layer eddy viscosity νt in Eq. (26), the friction velocity
uτ is required, which depends on the wall shear stress. In the present implementation, uτ =√
|τw| /ρ is evaluated using the instantaneous τw from the previous time step. In this sense, the

simplified models given by Eq. (25) are algebraic, and the wall shear stress can be reconstructed
by the numerical integration of Eq. (25) under the boundary condition provided by the probe
point in each time step.
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We also implement the Werner-Wengle wall model[24] (hereinafter refer to as the WW
model), which is based on the assumption of a power law velocity profile outside the viscous
sublayer, i.e.,

u+ =





η+, η+
6 11.8,

A1(η
+)B, η+ > 11.8,

(27)

where u+ = |uξ| /uτ with uξ being the tangential velocity, η+ = ηuτ/ν, A1 = 8.3, and B = 1/7.
The wall shear stress can be computed by

|τw| =






ρν |uξ(∆p)|

∆P
, η+

∆p
6 11.8,

ρ
( |uξ (∆p)|

A1

) 2
B+1

(
ν

∆p

) 2B
B+1

, η+
∆p

> 11.8,

(28)

where uξ (∆p) is the tangential velocity at the probe point P , and η+
∆p

= ∆puτ/ν. ∆p is the
distance between the probe point and the wall.

4 Wall-modeling for the LES of flows around the DARPA SUBOFF model

4.1 Numerical setup

We validate the proposed method by using the simulation of flows over the DARPA SUBOFF
model. The axisymmetric bare hull of the SUBOFF model is used in the simulation. The hull
consists of a streamlined forebody, a parallel middle body, and a stern with contraction in
the radial direction (see Fig. 3). The hull has a maximum diameter D and a total length L,
satisfying L/D = 8.6. The model is fixed in uniform flows at 0 angle of attack and 0 yaw angle.
The Reynolds number based on the velocity of the uniform upstream flow and the length of the
model is ReL = U∞L/ν = 1.2 × 106.

Simulation is conducted in a domain of [−4.3D, 4.3D] × [−4.3D, 4.3D] × [−2.6D, 23.2D],
according to the setup of Posa and and Balaras[25]. The uniform upstream flow is specified at
the inlet, and the free-convection boundary condition is set at the outlet. The proposed method
along with the diffuse-interface IB method is used to represent the effect of hull on the flows
with different wall models. The free-slip boundary condition is used at other boundaries. The
flow is initially developed by the direct-forcing IB method without wall models, and then is
restarted with wall models.

Fig. 3 Schematic diagram of the DARPA SUBOFF model[29] without appendages

The computational domain is discretized by a block-structured Eulerian mesh with about
53 million grid points. The Eulerian grid length is ∆h = 0.033 6D, which corresponds to
∆h+ ≈ 225 near the middle body. The geometry of the SUBOFF is given by a set of Lagrangian
points distributed on the model surface. The averaged distance between the Lagrangian points
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is approximately equal to the Eulerian grid length. The time step is dynamically adjusted to
keep the maximum Courant-Friedrichs-Lewy number at 0.3. The distance from the immersed
surface to the probe point P varies from ∆p = 2.0∆h to ∆p = 1.0∆h. The semi-width of
the interpolation stencil is ∆r = 1.2∆h, and the probe point is carefully selected to keep the
undesired pollution away from the diffuse-interface.
4.2 Distributions of the velocity and pressure

The instantaneous distribution of the streamwise velocity on a symmetric plane obtained
with the NEB model is shown in Fig. 4(a). The velocity distributions obatined with the EB
and WW models are similar. The low speed regions are concentrated around the stagnation
point, boundary layer, and stern. There is no apparent flow separation at the streamlined
forebody and parallel middle body, and the flows are almost axisymmetric (see Figs. 4(b) and
4(c)). The disturbances to the streamwise flow increase near the stern (see the distributions
of the steamwise velocity in Figs. 4(d) and 4(e) and the vorticity magnitude in Fig. 5(b)). The
eddies move downstream and form vortex structures in the wake (see Fig. 5).

Fig. 4 Contours of the instantaneous non-dimensional streamwise velocity u/U∞, computed with the
NEB model (a) on the meridian plane, where (b), (c), (d), and (e) are the slices normal to
the mean streamwise directions located at the 2D, 5D, 7D downsteam from the stagnation
point and 1D downstream from the model tail, respectively (color online)

Fig. 5 Instantaneous flow structures identified by (a) the Q-criterion with Q = 0.5 and (b) the
magnitude of the non-dimensional spanwise vorticity (ωzD) /U∞ with the NEB model (color
online)
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The interaction between the upstream flows and the hull results in a deficit for the velocity
profile in the wake. The time-averaged streamwise velocity profiles by the NEB wall model
in the intermediate wake are shown in Fig. 6. The comparison is provided in the self-similar
coordinates, which are the maximum velocity deficit u0 and half-wake width l0.

The velocity defects located at three different points in the wake are self-similar, since they
nearly collapse onto one single curve at the scaled vertical distances. The mean velocity profiles
of the current simulation are in good agreement with the similarity law and the results in
Refs. [25] and [27].

Fig. 6 Time-averaged streamwise velocity profiles in the intermediate wake, where “6D”,“9D”, and
“12D” indicate the velocity profiles at 6D, 9D, and 12D downstream from the model tail,
respectively (color online)

The distribution of the time-averaged pressure in a symmetric plane is shown in Fig. 7. The
pressure reaches the maximum at the front stagnation point, and decreases along the forebody.
A nearly constant pressure is achieved at the parallel middle body. The adverse pressure
gradient is generated at the front part of the stern.

Fig. 7 Instantaneous non-dimensional pressure (p − p∞) /(ρU2
∞

) at the symmetric place (x = 0),
where p∞ and U∞ are the free-stream pressure and velocity at the inflow plane, respectively
(color online)

The distribution of the time-averaged pressure coefficient on the meridian of the hull is
shown in Fig. 8, where the time-averaged pressure coefficient is computed in terms of

Cp = 2
〈p〉 − p∞

ρU2
∞

, (29)

where 〈p〉 is the time-average pressure. p∞ and U∞ are the free-stream pressure and velocity,
respectively. We have calculated the pressure coefficient with different wall models. Figure 8
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shows the pressure coefficient predicted by using the WW, EB, and NEB models, respectively,
where the numerical results obtained by Posa and and Balaras[25] are wall-resolved LES with
full appendages while the results obtained by Posa and and Balaras[25] and Jimenez et al.[27]

are obtained from the side opposite to the sail. The distributions of the pressure coefficient are
not sensitive to different wall models for most locations except in the trailing edge, where the
pressure coefficient obtained by the NEB model is higher and agrees better with the data of
Jemenez et al.[27] and Huang et al.[26]. Overall, all the wall models give an acceptable prediction
for the distribution of the pressure coefficient.

Fig. 8 Time-averaged pressure coefficients on the meridian of the model, where the Reynolds numbers

of the experimental results by Huang et al.[26] and Jimenez et al.[27] are 12×106 and 1.1×106,
respectively, and the geometry has no stern appendages in both experiments (color online)

4.3 Distribution of the skin-friction coefficient

The time-averaged skin-friction coefficient is defined as follows:

Cf = 2
〈τw〉

ρU2
∞

, (30)

where 〈τw〉 is the wall shear stress.
Figure 9 shows the distributions of the time-averaged skin-friction coefficients predicted by

different wall models, where the probe point has a distance of ∆p = 2.0∆h from the wall.

Fig. 9 Time-averaged skin-friction coefficients on the meridian of the model, where the numerical

results by Posa and Balaras[25] are obtained from the side opposite to the sail, while the
results by Huang et al.[26] are rescaled with the Reynolds number of 12 × 106 (color online)
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From Fig. 9, we can see that both the WW model and the EB model give the nearly constant
skin-friction coefficient on the parallel middle body. However, the peaks of the skin-friction on
the stern predicted by the WW model and the EB model are shifted toward the downstream,
and neither the WW model nor the EB model obtains the peak of the skin-friction coefficient
on the forebody. The NEB model obtains both of the peaks near the forebody and the stern,
though the skin-friction coefficient is over-predicted.

The over-prediction of the skin-friction coefficient can be circumvented by moving the probe
point toward the wall. The distance between the probe point and the wall is set to be far away
enough from the wall to reduce the effect of the diffuse-interface on the wall model and to be
close enough to the wall to ensure that the wall models are able to capture the flow features.
We use ∆p = 2.0∆h in the above simulation, and have the results of ∆+

p ranging from 300 to
400 near the forebody and middle body of the hull. Grid refinements on the Eulerian meshes
can move the probe point towards the wall. However, the grid refinements near the wall usually
cause a dramatic increase in the computational cost. Instead of refining the Eulerian grid, we
move the probe point P towards the wall by reducing ∆p from 2.0∆h to 1.5∆h, 1.2∆h, and
1.0∆h, respectively. The prediction of the skin-friction coefficient is improved when the probe
point P moves toward the wall (see Fig. 10). The skin-friction coefficient predicted by the
non-equilibrium model is comparable to the wall-resolved LES of Posa and Balaras[25] and the
rescaled experimental measurement of Huang et al.[26] when the probe point P has a distance
of ∆p < 1.2∆h (corresponding to a ∆+

p ranging from 150 to 240 near the forebody and middle
body of the hull).

∆ ∆

∆ ∆

∆ ∆

∆ ∆

Fig. 10 Distributions of the time-averaged skin-friction coefficient at the meridian plane predicted
by using the NEB model with the probe point P at four different positions, i.e., ∆p = 2.0∆h,
1.5∆h, 1.2∆h, and 1.0∆h (color online)

The mean value theorem for integrals does not tell us the exact distance between the sur-
rogate wall and the real wall, i.e., the exact value of ∆1 in Eqs. (17) and (18). The exact value
of ∆1 depends on the distribution of the effective body force (or the velocity) near the wall.
When the effective body force is linearly distributed within [0, ∆h], we have ∆1 = ∆h/2.0.
When the effective body force has a nonlinear distribution and is concentrated near the wall,
0 < ∆1 < ∆h/2.0. We use the setup of ∆1 = ∆h/4.0 in all the above simulation. We have
investigated the effects of ∆1 on the distributions of the pressure coefficient and the skin-friction
coefficient in the simulation with the NEB model and ∆p = 1.2∆h. Neither the pressure coeffi-
cient nor the skin-friction coefficient sensitively depends on the distance between the surrogate
wall and the real wall when 0 < ∆1 < ∆h/2.0, except some deviation around the stern in the
case with ∆1 = ∆h/2.0, as shown in Fig. 11. The deviations of the pressure coefficient and
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skin-friction coefficient associated with the case of ∆1 = ∆h/2.0 should be caused by the inter-
action between the diffuse-interface and the wall model. The distance between the surrogate
wall and the real wall (∆1) affects the normal velocity at the surrogate wall (see Eq. (22)) and
the region on which the effective body forces are spread (see Eq. (10)). For a given probe point
at ∆p = 1.2∆h and a fixed semi-width of the interpolation stencil ∆r = 1.2∆h, a large ∆1

will result in a large overlap domain in spreading the effective body forces (see Eq. (10)) and
in computing the velocity at the probe point (see Eq. (12)), and thus increase the interaction
between the wall models and the diffuse-interface. We suggest to set up ∆1 to reduce the
interaction between the diffuse-interface and the probe points, since the velocities given by the
wall models are determined by the flow at the probe points.

∆ ∆

∆ ∆

∆ ∆ ∆ ∆

∆ ∆

∆ ∆

Fig. 11 Distributions of (a) the time-averaged pressure coefficient and (b) the skin-friction coefficient
at the meridian plane predicted by using the NEB model with the surrogate wall at different
∆1 (color online)

5 Summary and conclusions

The prohibitive computational cost for resolving the inner region of the turbulent boundary
layer blocks the applications of the LES to high-Reynolds number turbulent flows with complex
boundaries. The wall-modeled LES with the IB method is expected to reduce the computa-
tional cost and handle the complex boundaries. Several approaches have been proposed for
implementing wall models in the sharp-interface IB method, in which the velocities near the
wall are reconstructed based on wall models. However, the implementation of the wall mod-
els in the diffuse-interface IB method has been little explored, though the diffuse-interface IB
method has advantages in the efficiency and robustness in handling moving boundaries. The
major challenge is that the diffuse-interface IB method does not have an explicit procedure for
reconstructing the velocity near the wall.

We propose a method for implementing wall models in the diffuse-interface direct-forcing
IB method. In the method, the effective body forces representing the effect of walls on the
flows are computed based on the wall shear stress and a local velocity reconstruction at a set of
Lagrangian points near the wall. We integrate the momentum equation along the wall-normal
direction to link the tangential component of the effective body force for the IB method to
the wall shear stress predicted by the wall models. We introduce a set of Lagrangian points
near the wall to compute the normal component of the effective body force for the IB method
by reconstructing the normal component of the velocity near the wall. The proposed method
reduces to a classical direct-forcing IB method if the grid is fine enough to resolve all the spatial
gradients of the flows near the wall. If the grid is far from resolving the flows near the wall,
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the proposed method can be reduced to the actuator type models, e.g., actuator line/surface
models for wind turbines, by introducing integral models for the IB.

The proposed method has been validated by the benchmark simulation of flows around the
DARPA SUBOFF by using the wall-modeled LES with three different wall models, i.e., the
equilibrium stress balance model, the non-equilibrium stress balance model with the pressure
gradient, and the WW model. The distribution of the streamwise velocity in the wake, the
pressure coefficient, and the skin-friction coefficients on the wall predicted by different models
are reported and compared with the wall-resolved LES and experimental results in the literature.
An acceptable agreement is obtained for all the three models, while the non-equilibrium stress
balance model with the pressure gradient term gives better predictions on the peaks of pressure
and skin-friction coefficients.

We show that the diffuse-interface IB method combined with wall models has the capability
in handling wall-modeled LES of turbulent flows. Though the proposed method is validated
by a benchmark flow with both adverse and favorable pressure gradients, the capability of the
proposed method in predicting separations and reattachments is still to be investigated. We
combine a direct-forcing diffuse-interface IB method with different algebraic wall models, where
the non-equilibrium effect associated with the pressure gradient is taken into account. However,
the combination of the direct-forcing diffuse-interface IB method with the ordinary differential
equation/partial differential equation (ODE/PDE) based wall models is expected for the LES
of turbulent flows with strong non-equilibrium effects.
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