The energy equality for weak solutions to the equations of non-Newtonian fluids

Jiaqi Yang

Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O

Article history:

Received 17 July 2018
Received in revised form 12 September 2018
Accepted 12 September 2018
Available online xxxx

Keywords:

Non-Newtonian fluids
Weak solution
Energy equality

Abstract

In this short paper, we extend the result of Shinbrot (1974) to an incompressible fluid with shear dependent viscosity. It is shown that a weak solution to the equations of non-Newtonian fluids lying in a space $L^{q}\left(0, T ; L^{p}\right)$ satisfies an energy equality, where $\frac{2 r}{r-1} \leq p \leq \frac{2 r}{r-2}$ and $\frac{1}{p}+\frac{1}{q} \leq \frac{r-1}{r}$, if $r>2 ; p \geq \frac{2 r}{r-1}$ and $\frac{r-1}{p}+\frac{1}{q}=\frac{r-1}{2}$, if $\frac{2(n+1)}{n+2}<r \leq 2$. In particular, our result implies that the weak solution must satisfy the energy equality when $r \geq \frac{3 n+2}{n+2}$, which is consistent with the known fact.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ be a domain with a sufficiently smooth boundary. We consider a non-Newtonian incompressible fluid which is governed by the following system

$$
\begin{cases}\mathbf{u}_{t}+\mathbf{u} \cdot \nabla \mathbf{u}-\operatorname{div}\left(|D(\mathbf{u})|^{r-2} D(\mathbf{u})\right)+\nabla \pi=0, & \text { in } \Omega \times(0, T), \tag{1}\\ \operatorname{div} \mathbf{u}=0, & \text { in } \Omega \times(0, T), \\ \mathbf{u}(0, x)=\mathbf{u}_{0}(x), & \text { in } \Omega\end{cases}
$$

where $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ denotes the unknown velocity of the fluid and π the pressure, and

$$
D(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)
$$

We first give the definition of a weak solution to (1). To this end, we denote by $C_{0}^{\infty}(\Omega)$ the space of smooth functions with compact support. Let $C_{0, \sigma}^{\infty}(\Omega)=\left\{\varphi \in C_{0}^{\infty}(\Omega) \mid \nabla \cdot \varphi=0\right\} . L_{\sigma}^{p}\left(\mathbb{R}^{3}\right)$ denotes the closure of $C_{0, \sigma}^{\infty}(\Omega)$ in the norm $\|\cdot\|_{p} . \dot{H}_{0, \sigma}^{1, p}(\Omega)$ denotes the closure of $C_{0, \sigma}^{\infty}(\Omega)$ in the norm $\|\nabla \cdot\|_{p}$. We write

$$
\|\mathbf{u}\|_{p, q}=\left(\int_{0}^{T}\|\mathbf{u}(t)\|_{p}^{q} d t\right)^{\frac{1}{q}}, \quad 1 \leq q<\infty
$$

[^0]and
$$
\|\mathbf{u}(t)\|_{p, \infty}=\text { ess } \sup _{0<t<T}\|\mathbf{u}\|_{p}
$$

Definition 1. Let $r \geq \frac{2 n}{n+2}, \mathbf{u}_{0} \in L_{\sigma}^{2}(\Omega)$. A vector-valued function $\mathbf{u} \in L^{\infty}\left(0, T ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \dot{H}_{0, \sigma}^{1, r}(\Omega)\right)$ is called a weak solution to (1) if the following identity

$$
\begin{equation*}
\left(\mathbf{u}_{0}, \boldsymbol{\varphi}(0)\right)+\int_{0}^{T}\left[\left(\mathbf{u}, \partial_{t} \boldsymbol{\varphi}\right)-(\mathbf{u} \cdot \nabla \mathbf{u}, \boldsymbol{\varphi})-\left(|D(\mathbf{u})|^{r-2} D(\mathbf{u}), D(\boldsymbol{\varphi})\right)\right] d t=0 \tag{2}
\end{equation*}
$$

holds for all $\varphi \in C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$. Here, one restricts $r \geq \frac{2 n}{n+2}$ to make sure that the expression $\int_{0}^{T}(\mathbf{u} \cdot \nabla \mathbf{u}, \boldsymbol{\varphi}) d t$ makes sense.

The existence of weak solutions of (1) is shown in [1,2] with the periodic boundary condition, and in [3] for the whole space. In [4], J. Wolf showed the existence of weak solutions with Dirichlet boundary condition for $r>\frac{2(n+1)}{n+2}$. Moreover, we know that a weak solution satisfies the global energy inequality

$$
\|\mathbf{u}(t)\|_{2}^{2}+2 \int_{0}^{t}\|D(\mathbf{u})(\tau)\|_{r}^{r} d \tau \leq\left\|\mathbf{u}_{0}\right\|_{2}^{2}, \quad t \geq 0
$$

A natural question is to consider the possible validity of the energy equality. For Newtonian fluids, i.e. $r=2$, the pioneering results by Prodi [5] and Lions [6] concern the validity of energy equality for a weak solution such that

$$
\mathbf{u} \in L^{4}\left(0, T, L^{4}(\Omega)\right)
$$

Later, Shinbrot [7] enlarged the range of exponents proving that if a weak solution belongs to

$$
\mathbf{u} \in L^{q}\left(0, T ; L^{p}(\Omega)\right), \quad \frac{1}{p}+\frac{1}{q} \leq \frac{1}{2}, \quad p \geq 4
$$

More results in this respect, the reader can see [8] and references therein. However, as far as I know, there is no result for the non-Newtonian fluids. In this paper, we will extend Shinbrot's result to the non-Newtonian fluids. Our main result is stated as follows.

Theorem 1. Let $r>\frac{2(n+1)}{n+2}, r^{\prime}$ is the Hölder conjugate of $r, \mathbf{u}_{0} \in L_{\sigma}^{2}(\Omega)$, and let \mathbf{u} be a weak solution of (1). If $\mathbf{u} \in L^{q}\left(0, T ; L^{p}(\Omega)\right)$, where $2 r^{\prime} \leq p \leq \frac{2 r}{r-2}$ and $\frac{1}{p}+\frac{1}{q} \leq \frac{1}{r^{\prime}}$, if $r>2 ; p \geq 2 r^{\prime}$ and $\frac{r-1}{p}+\frac{1}{q} \leq \frac{r-1}{2}$, if $r \leq 2$. Then \mathbf{u} satisfies the energy equality

$$
\begin{equation*}
\|\mathbf{u}(t)\|_{2}^{2}+2 \int_{0}^{t}\|D(\mathbf{u})(t)\|_{r}^{r} d \tau=\left\|\mathbf{u}_{0}\right\|_{2}^{2}, \quad 0 \leq t<T \tag{3}
\end{equation*}
$$

Remark 1. Here, since the existence of weak solutions to (1) is still unsolved for $r \leq \frac{2(n+1)}{n+2}$, see [4], we have to restrict $r>\frac{2(n+1)}{n+2}$.

Remark 2. It is well known that the weak solution is strong and unique for $r \geq \frac{3 n+2}{n+2}$, see for example [2], thus the weak solution satisfies automatically the energy equality. It is remarkable that our result is consistent with this fact. Actually, by virtue of Gagliardo-Nirenberg inequalities and Korn's inequality, one easily verifies

$$
L^{\infty}\left(0, T ; L_{\sigma}^{2}(\Omega)\right) \cap L^{2}\left(0, T ; \dot{H}_{0, \sigma}^{1, r}(\Omega)\right) \hookrightarrow L^{\frac{(n+2) r^{2}-2 n r}{n}}\left(0, T ; L_{\sigma}^{2 r^{\prime}}(\Omega)\right)
$$

When $r \geq \frac{3 n+2}{n+2}$, one can easily check that

$$
\frac{1}{2 r^{\prime}}+\frac{n}{(n+2) r^{2}-2 n r} \leq \frac{1}{r^{\prime}}
$$

which implies a weak solution of (1) must satisfy the energy equality for any $r \geq \frac{3 n+2}{n+2}$.

2. The proof of Theorem 1

Firstly, we have the following property of weak solutions.
Lemma 2. Let $r>\frac{2(n+1)}{n+2}, \mathbf{u}_{0} \in L_{\sigma}^{2}(\Omega)$, and let \mathbf{u} be a weak solution of (1). Then, after suitable redefinition of \mathbf{u} on a set of values of t of one-dimensional measure zero, we have

$$
\begin{align*}
(\mathbf{u}(t), \boldsymbol{\varphi}(t))= & \left(\mathbf{u}_{0}, \boldsymbol{\varphi}(0)\right) \\
& +\int_{0}^{t}\left[\left(\mathbf{u}, \partial_{\tau} \boldsymbol{\varphi}\right)-(\mathbf{u} \cdot \nabla \mathbf{u}, \boldsymbol{\varphi})-\left(|D(\mathbf{u})(\tau)|^{r-2} D(\mathbf{u})(\tau), D(\boldsymbol{\varphi})(\tau)\right)\right] d \tau=0 \tag{4}
\end{align*}
$$

holds for all $\varphi \in C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$ and all $0 \leq t<T$.
This lemma is completely similar with that of Lemma 2.1 in [9], see also [5,10,11], we omit the details here.

Lemma 3. Let $r>1, \phi \in L^{p}(\Omega), \boldsymbol{\psi} \in \dot{H}_{0}^{1, r}(\Omega), \chi \in L^{2}(\Omega) \cap L^{p}(\Omega)$, where

$$
\begin{align*}
2 r^{\prime} \leq p \leq \frac{2 r}{r-2}, & \text { if } r>2 \tag{5}\\
& p \geq 2 r^{\prime},
\end{align*} \quad \text { if } 1<r \leq 2 .
$$

Then

$$
\begin{equation*}
|(\boldsymbol{\phi} \cdot \nabla \boldsymbol{\psi}, \boldsymbol{\chi})| \leq\|\boldsymbol{\phi}\|_{p}\|\nabla \boldsymbol{\psi}\|_{r}\|\boldsymbol{\chi}\|_{2}^{\theta}\|\boldsymbol{\chi}\|_{p}^{1-\theta} \tag{6}
\end{equation*}
$$

where

$$
\theta=\frac{\frac{1}{q}-\frac{1}{p}}{\frac{1}{2}-\frac{1}{p}}=\frac{2(p-q)}{q(p-2)}
$$

and q is defined by $\frac{1}{p}+\frac{1}{q}=\frac{1}{r^{\prime}}$.
Proof. If $\chi \in L^{q}(\Omega)$, then

$$
|(\phi \cdot \nabla \boldsymbol{\psi}, \boldsymbol{\chi})| \leq\|\phi\|_{p}\|\nabla \boldsymbol{\psi}\|_{r}\|\boldsymbol{\chi}\|_{q} .
$$

From the assumption (5), one can easily check that $2 \leq q \leq p$. Hence we can use interpolation and write q as $\frac{1}{q}=\frac{\theta}{2}+\frac{1-\theta}{p}$, which give us $\theta:=\frac{\frac{1}{q}-\frac{1}{p}}{\frac{1}{2}-\frac{1}{p}}=\frac{2(p-q)}{q(p-2)}$. Thus,

$$
|(\boldsymbol{\phi} \cdot \nabla \boldsymbol{\psi}, \boldsymbol{\chi})| \leq\|\boldsymbol{\phi}\|_{p}\|\nabla \boldsymbol{\psi}\|_{r}\|\boldsymbol{\chi}\|_{2}^{\theta}\|\boldsymbol{\chi}\|_{p}^{1-\theta} .
$$

Lemma 4. Let $r>1$, and

$$
\phi \in L^{\tilde{q}}\left(0, T ; L^{p}(\Omega)\right), \boldsymbol{\psi} \in L^{r}\left(0, T ; \dot{H}_{0}^{1, r}(\Omega)\right), \boldsymbol{\chi} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\tilde{q}}\left(0, T ; L^{p}(\Omega)\right),
$$

where p satisfies the assumption (5). Then
(i) If $r>2$ and $\frac{1}{p}+\frac{1}{\tilde{q}}=\frac{1}{r^{\prime}}$, one has

$$
\begin{equation*}
\left|\int_{0}^{T}(\boldsymbol{\phi}(t) \cdot \nabla \boldsymbol{\psi}(t), \boldsymbol{\chi}(t)) d t\right| \leq T^{\left(\frac{1}{r^{\prime}}-\frac{1}{2}\right) \theta}\|\boldsymbol{\phi}\|_{p, \tilde{q}}\|\nabla \boldsymbol{\psi}\|_{r, r}\|\boldsymbol{\chi}\|_{2, \infty}^{\theta}\|\boldsymbol{\chi}\|_{p, \tilde{q}}^{\frac{q}{2}-1} \tag{7}
\end{equation*}
$$

(ii) If $1<r<2$ and $\frac{r-1}{p}+\frac{1}{\tilde{q}}=\frac{r-1}{2}$, one has

$$
\begin{equation*}
\left|\int_{0}^{T}(\boldsymbol{\phi}(t) \cdot \nabla \boldsymbol{\psi}(t), \boldsymbol{\chi}(t)) d t\right| \leq\|\boldsymbol{\phi}\|_{p, \tilde{q}}\|\nabla \boldsymbol{\psi}\|_{r, r}\|\boldsymbol{\chi}\|_{2, \infty}^{\theta}\|\boldsymbol{\chi}\|_{p, \tilde{q}}^{\frac{q}{2}-1} . \tag{8}
\end{equation*}
$$

Proof. If $r>2$ and $\frac{1}{p}+\frac{1}{\tilde{q}}=\frac{1}{r^{\prime}}$, one can easily check that

$$
\frac{1}{\tilde{q}}+\frac{1}{r}+\frac{1-\theta}{\tilde{q}}+\left(\frac{1}{r^{\prime}}-\frac{1}{2}\right) \theta=1
$$

then by Hölder's inequality, one can obtain (7) by Lemma 4. If $1<r<2$ and $\frac{1}{\tilde{q}}+\frac{r-1}{p}=\frac{r-1}{2}$, it is easy to know that

$$
\frac{1}{\tilde{q}}+\frac{1}{r}+\frac{1-\theta}{\tilde{q}}=1
$$

thus, one can get (8) by virtue of Lemma 4.

Now, using the above result, we can prove Theorem 1.

Proof of Theorem 1. The proof follows [7]. Let

$$
\left(k_{\varepsilon} * \phi\right)(t)=\int_{0}^{t_{0}} k_{\varepsilon}(t-\tau) \phi(\tau) d \tau
$$

be a mollifier, so that k_{ε} is C^{∞}, real-valued, nonnegative function, supported in $[-\varepsilon, \varepsilon]$, and integrating to unity. Let $\left\{\mathbf{u}_{m}\right\} \subset C_{0}^{\infty}\left([0, \infty) ; C_{0, \sigma}^{\infty}(\Omega)\right)$ be a sequence converging to \mathbf{u} in $L^{2}\left(0, T ; L_{\sigma}^{2}(\Omega)\right) \cap$ $L^{r}\left(0, T ; \dot{H}_{0, \sigma}^{1, r}(\Omega)\right) \cap L^{q}\left(0, T ; L^{p}(\Omega)\right)$. Set $t=t_{0}$ and $\boldsymbol{\varphi}=k_{\varepsilon} * \mathbf{u}_{m}$ in (4). One obtains

$$
\begin{align*}
& \int_{0}^{t_{0}} k_{\varepsilon}\left(t_{0}-t\right)\left(\mathbf{u}\left(t_{0}\right), \mathbf{u}_{m}(t)\right) d t \\
= & \int_{0}^{t_{0}} k_{\varepsilon}(-t)\left(\mathbf{u}_{0}, \mathbf{u}_{m}(t)\right)+\int_{0}^{t_{0}} \int_{0}^{t_{0}} \partial_{t} k_{\varepsilon}(t-\tau)\left(\mathbf{u}(t), \mathbf{u}_{m}(\tau)\right) d \tau d t \\
& -\int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)\left[\left(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}_{m}(\tau)\right)+\left(|D(\mathbf{u})(t)|^{r-2} D(\mathbf{u})(t), D\left(\mathbf{u}_{m}\right)(\tau)\right)\right] d \tau d t \tag{9}
\end{align*}
$$

From Lemma 3, we have

$$
\begin{aligned}
& \left|\int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)\left(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}_{m}(\tau)-\mathbf{u}(\tau)\right) d \tau d t\right| \\
\leq & \int_{0}^{t_{0}}\|\mathbf{u}(t)\|_{p}\|\nabla \mathbf{u}(t)\|_{r} d t \int_{0}^{t_{0}}\left\|\mathbf{u}_{m}(\tau)-\mathbf{u}(\tau)\right\|_{2}^{\theta}\left\|\mathbf{u}_{m}(\tau)-\mathbf{u}(\tau)\right\|_{p}^{1-\theta} d \tau
\end{aligned}
$$

Since $r^{\prime} \leq q$, we have

$$
\int_{0}^{t_{0}}\|\mathbf{u}(t)\|_{p}\|\nabla \mathbf{u}(t)\|_{r} d t \leq C\left(t_{0}\right)\|\mathbf{u}\|_{p, q}\|\nabla u\|_{r, r}
$$

On the other hand, since $\frac{1}{2}+\frac{1}{q} \leq 1$, we have

$$
\int_{0}^{t_{0}}\left\|\mathbf{u}_{m}(\tau)-\mathbf{u}(\tau)\right\|_{2}^{\theta}\left\|\mathbf{u}_{m}(\tau)-\mathbf{u}(\tau)\right\|_{p}^{1-\theta} d \tau \leq C\left(t_{0}\right)\left\|\mathbf{u}_{m}-\mathbf{u}\right\|_{2,2}^{\theta}\left\|\mathbf{u}_{m}-\mathbf{u}\right\|_{p, q}^{1-\theta} \rightarrow 0, \quad \text { as } m \rightarrow \infty
$$

Thus, let $m \rightarrow \infty$ in (9), we have

$$
\begin{align*}
& \int_{0}^{t_{0}} k_{\varepsilon}\left(t_{0}-t\right)\left(\mathbf{u}\left(t_{0}\right), \mathbf{u}(t)\right) d t \\
= & \int_{0}^{t_{0}} k_{\varepsilon}(-t)\left(\mathbf{u}_{0}, \mathbf{u}(t)\right)+\int_{0}^{t_{0}} \int_{0}^{t_{0}} \partial_{t} k_{\varepsilon}(t-\tau)(\mathbf{u}(t), \mathbf{u}(\tau)) d \tau d t \\
& -\int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)\left[(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}(\tau))+\left(|D(\mathbf{u})(t)|^{r-2} D(\mathbf{u})(t), D(\mathbf{u})(\tau)\right)\right] d \tau d t \tag{10}
\end{align*}
$$

The term here involving the derivative vanishes if k is chosen to be even. We send ε to zero in the remaining terms. Because of the usual properties of mollifiers,

$$
\int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)\left(|D(\mathbf{u})(t)|^{r-2} D(\mathbf{u})(t), D(\mathbf{u})(\tau)\right) d \tau d t \rightarrow \int_{0}^{t_{0}}\|D(\mathbf{u})(t)\|_{p}^{p} d t
$$

In addition,

$$
\int_{0}^{t_{0}} k_{\varepsilon}\left(t_{0}-t\right)\left(\mathbf{u}\left(t_{0}\right), \mathbf{u}(t)\right) d t=\int_{0}^{\varepsilon} k_{\varepsilon}(t)\left(\mathbf{u}\left(t_{0}\right), \mathbf{u}\left(t_{0}-t\right)\right) d t
$$

since as a function of t, \mathbf{u} is continuous in the weak topology of $L_{\sigma}^{2}(\Omega)$ (see [4] Theorem 1.3 for example), we have

$$
\int_{0}^{t_{0}} k_{\varepsilon}\left(t_{0}-t\right)\left(\mathbf{u}\left(t_{0}\right), \mathbf{u}(t)\right) d t=\int_{0}^{\varepsilon} k_{\varepsilon}(t)\left[\left\|\mathbf{u}\left(t_{0}\right)\right\|_{2}^{2}+o(1)\right] d t \rightarrow \frac{1}{2}\left\|\mathbf{u}\left(t_{0}\right)\right\|_{2}^{2} .
$$

Similarly,

$$
\int_{0}^{t_{0}} k_{\varepsilon}(-t)\left(\mathbf{u}_{0}, \mathbf{u}(t)\right) d t \rightarrow \frac{1}{2}\left\|\mathbf{u}_{0}\right\|_{2}^{2}
$$

Finally, we consider the nonlinear term in (10). We have

$$
\begin{align*}
& \int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}(\tau)) d \tau d t-\int_{0}^{t_{0}}(\mathbf{u}(t) \nabla \mathbf{u}(t), \mathbf{u}(t)) d t \\
= & \int_{0}^{t_{0}}\left(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t),\left(k_{\varepsilon} * \mathbf{u}\right)(t)-\mathbf{u}(t)\right) d t \tag{11}
\end{align*}
$$

By Lemma 4, this is bounded by

$$
C\left(t_{0}\right)\|\mathbf{u}\|_{p, q}\|\nabla \mathbf{u}\|_{r, r}\left\|k_{\varepsilon} * \mathbf{u}-\mathbf{u}\right\|_{2, \infty}^{\theta}\left\|k_{\varepsilon} * \mathbf{u}-\mathbf{u}\right\|_{p, q}^{\frac{q}{2}-1}
$$

This goes to zero because of usual properties of mollifiers. Thus (11) goes to zero. Now, we prove $\int_{0}^{t_{0}}(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}(t))=0$. From Lemma 4, we have that the function F defined by

$$
F(\boldsymbol{\psi}, \boldsymbol{\chi})=\int_{0}^{t_{0}}(\mathbf{u}(t) \cdot \nabla \boldsymbol{\psi}(t), \boldsymbol{\chi}(t)) d t
$$

is continuous on $L^{2}\left(0, t_{0} ; \dot{H}_{0}^{1, r}(\Omega)\right) \times L^{q}\left(0, t_{0} ; L^{p}(\Omega)\right)$. On the other hand, integration by parts shows that $F(\boldsymbol{\psi}, \boldsymbol{\psi})=0$ if $\boldsymbol{\psi}$ is smooth. Let $\left\{\mathbf{u}_{m}\right\}$ be a sequence from $C_{0}^{\infty}\left([0, T) ; C_{0, \sigma}^{\infty}(\Omega)\right)$ converging to \mathbf{u} in the appropriate spaces. Then we find

$$
0=F\left(\mathbf{u}_{m}, \mathbf{u}_{m}\right) \rightarrow F(\mathbf{u}, \mathbf{u})
$$

All of this shows that

$$
\int_{0}^{t_{0}} \int_{0}^{t_{0}} k_{\varepsilon}(t-\tau)(\mathbf{u}(t) \cdot \nabla \mathbf{u}(t), \mathbf{u}(\tau)) d \tau d t \rightarrow 0
$$

as $\varepsilon \rightarrow 0$. Now, let $\varepsilon \rightarrow 0$ in (9), we have

$$
\frac{1}{2}\left\|\mathbf{u}\left(t_{0}\right)\right\|_{2}^{2}+\int_{0}^{t}\|D(\mathbf{u})(t)\|_{r}^{r} d \tau=\left\|\mathbf{u}_{0}\right\|_{2}^{2}
$$

which is (3) for $t=t_{0}$. Since t_{0} is arbitrary, we have finished the proof of Theorem 1 .

Acknowledgment

I thank the anonymous referee for giving me many helpful suggestions and comments which led to improvement of the presentation.

References

[1] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, second ed., Gordon and Breach, New York, 1969.
[2] J. Málek, J. Nečas, M. Rokyta, M. Ruz̆ička, Weak and Measure-valued Solutions to Evolutionary PDEs, 1996s.
[3] M. Pokorny, Cauchy problem for the non-newtonian viscous incompressible fluid, Appl. Math. 41 (3) (1996) $169-201$.
[4] J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech. 9 (1) (2007) 104-138.
[5] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1) (1959) $173-182$.
[6] J.L. Lions, Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes, Rend. Semin. Mat. Univ. Padova 30 (1960) 16-23.
[7] M. Shinbrot, The energy equation for the Navier-Stokes system, SIAM J. Math. Anal. 5 (6) (1974) $948-954$.
[8] L.C. Berselli, E. Chiodaroli, Remarks on the energy equality for weak solutions to Navier-Stokes equations, 2018, arXiv preprint arXiv:1807.02667 [math. AP].
[9] G.P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, in: Fundamental Directions in Mathematical Fluid Mechanics, in: Adv. Math. Fluid Mech., Birkhäuser, Basel, 2000, pp. 1-70.
[10] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951) $213-231$.
[11] J. Serrin, The initial value problem for the Navier-Stokes equations, in: Rudolph E. Langer (Ed.), Nonlinear Problems, University of Wisconsin Press, Madison, 1963, pp. 69-98.

[^0]: E-mail address: yjq@imech.ac.cn.

