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Abstract: 

In practical engineering, the uncertainties commonly exist in the design process of composite 

structures due to the dispersion of composite materials. This paper proposes an uncertain 

optimization method based on interval model updating technique and non-probabilistic reliability 

(NPR) theory. A novel interval model updating method is firstly established by modifying the 

deterministic constraint condition parameters, which retains the quantification results of the material 

parameters and has a convinced updating model. In the design section, a new two-step optimization 

process for composite structures, which combines NPR method and progressive failure theory, is 

presented based on the updated simulation model. The traditional composite structural design 

method (safety factor based method) is also introduced to be compared. The NPR based 

optimization can optimize the nominal value and deviation of the structural response simultaneously, 

and will achieve a more significant weight reduction effect. A complete process including the 

uncertainty quantification, interval model updating, NPR based optimization and experimental 

verification for a composite stiffened plate under the compressive and shear load conditions were 

performed to verify the effectiveness of the proposed methodology.  

Keywords: composite structural design; model updating; uncertainty; progressive failure 

analysis. 
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1. Introduction 

The composite materials with the advantages of high specific strength, high specific stiffness, 

fatigue resistance and corrosion resistance have been widely used in the design and manufacture of 

modern advanced structures. The composite provides a wider design space for the designers, and 

the optimization design of composite structures has been a hot topic by researchers [1, 2].  

The composite structures have the excellent strength performance due to the post buckling 

loading capacity and anti-tearing properties. A lot of researches have been done to study the strength 

of the composite structures. The structural failure load is an important performance index to 

measure the performance of bearing capacity, therefore the structural failure criterion is the core 

issue. There are two different assumptions in the study of structural failure of laminate, namely, the 

first ply failure (FPF) criterion and the last ply failure (LPF) criterion. The FPF reckons that the 

laminate system is made of components in series and the failure of any layer in a single plate is 

regarded as failure of the system. This assumption is suitable for the problem with single loading 

path such as a pressure vessel with higher sealing requirement. Nevertheless, the FPF theory is too 

conservative in the most cases. The LPF reckons that the laminate system is made of parallel 

components. The remaining structure still has a certain bearing capacity after a single layer failure 

in the laminate structure. When all layers are in the failure, the structural system is defined as 

failure. The LPF is more close to the actual situation and attracts the attention of the composite 

designers. Lopez [3], Zhou [4], Qian [5] carried out a series of research of probabilistic system 

reliability based on the LPF criterion. However, the theory is hard to implement when the structure 

is complicated and all the failure paths are hard to determine entirely. Therefore, the scholars always 

launches research on the reliability by taking a single element as an object. Despite the FPF theory 

and LPF theory have high theoretical value, for practical engineering structures the failure load 

obtained by curve of the displacement to the load is an important experimental basis for measuring 

structural failure load. The corresponding computing process for the curve of the displacement to 

the load can be completed by the displacement loading mode and progressive failure analysis. The 

failure load is defined as the applied load at the point where the load is dropped with the increase of 

the displacement.  
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However, composites bring structural design challenges due to the uncertainty in the 

optimization. On the one hand, the dispersion induced in the manufacturing process will inevitably 

decrease the reliability of the optimization. On the other hand, the modelling error of the established 

FE model will lead to incorrect computing result. 

There are two main methods to consider the dispersion of composites in the design procedure, 

namely the safety factor (SF) based method and reliability based method. SF is a magnification 

coefficient to cover the uncertain factors on the basis of production experience and design analysis. 

The SF is utilized as the envelope of the uncertainties, thus greatly simplifies the analysis process. A 

reasonable SF can better balance the relationship between the cost and the performance. It has been 

developed rapidly for composite structures in virtue of the briefness of the concept of SF, and some 

standards have been formed. In recent years, some scholars [6, 7] have proposed the method of 

obtaining the value of the SF based on the reliability theory to improve the efficiency of 

optimization. However, the SF based optimization method describes various uncertain factors 

conservatively, resulting in a waste of materials and the extreme redundancy of structural 

performance.  

The reliability based design method which can not only optimize the nominal value but also 

the variance by refining the uncertainty in the process of structural design [8-11], has gradually 

drawn the attentions of scholars. The reliability analysis theory is to construct the reliability index 

through the uncertainty quantification for the uncertainty source in the design process, the 

uncertainty propagation analysis for the structural response and the reliability index computing by 

the intersection relationship between the uncertain response and its allowable value. Based on the 

probability reliability theory, the first-order second-moment (FOSM) [12], equivalent normalize [13] 

method (JC method) and the other methods [14-16] are developed to evaluate the reliability of 

laminated plates. Nevertheless, due to the condition of insufficient probability information, the 

optimization design based on the probability theory is difficult to apply in the actual engineering. 

By comparison, the non-probabilistic based reliability is more applicable to confront this situation. 

Recently, some scholars have concentrated on this issue and obtained some preliminary results. 

Wang [17] proposed non-probabilistic set-theoretic model for structural safety measure. Kang [18] 
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established a structural optimization model based on the uncertainty of convex model and proposed 

the optimization design method with the constraint condition of non-probabilistic reliability index. 

In general, the non probabilistic optimization design method is still in the developing stage, but the 

future development of it is wider due to the small dependence on the probability distribution 

information. 

The model updating procedure is required to improve the precision of the FE model to 

decrease the uncertainty induced by the modelling error. It is noted that the model updating is a kind 

of inverse problem, which contains certain ill-conditioning in the solution process, caused by the 

incompatibility of the prediction model and its parameterization [19]. Nowadays, the regularization 

techniques [20] provide a solution by replacing the ill-posed problem with a well-conditioned one 

that has an approximate solution to the original problem. The regularization techniques are carried 

out to solve the ill-conditioning problem in a deterministic way, which has unstable results due to 

the selection of the samples. Fortunately, the uncertainty analysis method can quantify the influence 

of the uncertainties in the updating process and has derived applications [21]. The uncertain 

structural model updating methods can be divided into statistical based theory[22], fuzzy based 

method [23], interval theory based method [24, 25] and mixed models which combine statistical and 

interval (or fuzzy) method [26-29]. Among these methods, the interval methods have the advantage 

of low dependence on the sample numbers, which is suitable for situation of lack of data 

information. However, the existing interval methods deem that the initial intervals of the model 

parameters are updated to make the experimental responses be included by the FE model response. 

Although the operation is easy to be understood and always has fine results, it seldom exploits the 

intervals of model parameters, which are quantified by rigorous approach for the samples. Thus, 

this paper will propose a new interval model updating method to make the best of the intervals of 

the model parameters, and obtain a more reasonable FE model. 

It should be noted that the composites have large number of design parameters including ply 

angles and ply thicknesses except for the geometric parameters, which will make the structural 

design a combined explosion problem. The coping strategy can be divided into two ideas, namely 

the effective optimization algorithm and the multistage strategy. The popular optimization 
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algorithms are permutation search (PS) algorithm [30] and particle swarm optimization (PSO) 

algorithm [31]. Although the global intelligent algorithm effectively improved the computational 

efficiency, the optimization process is still slow if the optimization strategy could not be simplified. 

Thus, a lot of scholars proposed hierarchical optimization strategy is always utilized to handle this 

[32, 33]. At the first level, the plate thicknesses are optimized to minimize the mass of the structure 

subject to strength and stiffness constraints. At the second level, a new modified particle swarm is 

used to determine laminate stacking sequences to search a better reserve factor for strength and 

stiffness. Despite the two-level optimization strategy may not lead to the global optimization in 

virtue of its rough decoupling mode, its convenient operation process and stable convergence can 

meet the composite structure design requirements. Additionally, some scholars studied the blended 

design scheme to obtain the manufacturable stacking sequence efficiently and provided repair 

strategy for dealing with continuity constraints [34]. Nevertheless, the above optimization have not 

taken the damage evolution and reliability analysis of the composite structures into account, which 

does not fully excavate the bearing potential of composite materials. 

In view of the shortcomings of the uncertainty optimization study for the failure load of 

composite structures, this paper is aimed at developing a novel interval model updating based 

two-level optimization design method considering the inherent dispersion of materials for 

composite structures. The progressive failure analysis and the NPR theory are combined to 

construct the optimization model, and the two-level solution strategy is utilized to solve the 

optimization. This paper is organized in details as follows. In section 2, the model updating method 

under the condition of uncertainty is established. In section 3, the non-probabilistic failure load 

analysis method based on the progressive degradation theory is built up. In section 4, the 

optimization model based on SF index and NPR theory are constructed, respectively. To verify the 

proposed method, a composite stiffened plate under two load cases is carried out experimentally in 

section 5, in which the effectiveness between the SF based method and non-probability based 

method are compared. Finally the conclusions are summarized in section 6. 

 

2. Structural model updating under the condition of uncertainty 
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In this part, the uncertainty quantification (UQ) is required to provide the quantified 

information of uncertain parameters for the interval updating procedure. In the following section, 

the UQ method this paper adopts is first introduced, then the interval model updating method is 

established. 

2.1 Uncertainty quantification 

Structural uncertainty analysis requires quantitative input data of uncertain sources. Generally, 

the UQ of uncertain parameters is based on experimental data, designing standard specifications, or 

past experience formula. Based on the classical probability theory, two kinds of criteria are given, 

namely, A basis value and B basis value. In recent years, a large number of researches have been 

carried out in view of the problem of normal distribution [35-37]. However, the sample information 

available in actual engineering structure design and service process is very limited. Thus, the 

non-probabilistic UQ analysis based on the finite samples becomes an important means in the field 

of uncertainty evaluation [38]. Among these methods, the grey mathematics method has the 

advantage of high efficiency and accuracy. The grey mathematics theory transforms the initial 

irregular data into a regular sequence by using data processing method. The dispersivity of the 

sample data are determined according to the dispersion of the regular sequence. Finally the 

information of uncertain parameters are gained [38, 39]. Compared with the traditional probability 

method and fuzzy method, the grey mathematics method requires smaller sample size, and has less 

subjective dependence. Therefore, the grey mathematics method is utilized to process the 

quantification for uncertain material parameters.  

In engineering problems, any uncertain information can be used to obtain the interval 

estimation of real value. A set of measured data is listed as 

 { ( ), 1,2, , }x k k n  ……X   

The series of numbers can be arranged from small to large, and one can obtain 

 
(0){ ( ), 1,2, , }x k k n (0) ……X  (1) 

where 
(0) (0)( ) ( 1), 1,2, , 1.x k x k k n     

The elements of (0)X are added up in sequence, and a new sequence (1)X  can be obtained, 
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which can be expressed as  

 
   

 

(1) (1) (1) (1)

(0) (0) (0) (0) (0) (0)

( ), 1,2, , (1), (2), , ( )

      (1), (1) (2), , (1) (2) ( )

x k k n x x x n

x x x x x x n

  

    

(1) … …

… …

X
 (2) 

If one defines the following terms 

 

(1)
(1)

max

max

( )
( ) ( )

max( (1), (2), , ( ))

x n
k k x k

n

n

s c
n


  

    
 
 


……  (3) 

where c is the constant grey coefficient, which is generally defined as 2.5; s is the estimated 

standard deviation of uncertainty based on grey evaluation. The above physical meaning of the 

estimation can be shown in Figure 1. The curved line represents the new sequence 
1( )X , which is 

called actual measurement process. When the dispersion is not considered, the value of each sample 

is defined as the arithmetic mean. The curved line is degenerated into the straight line, which is 

called the ideal measurement process. Taking normal distribution as an example, the interval 

bounds are reckoned as [ 3 , 3 ]x s x s  , where 
(0)

1

1
( )

n

i

x x i
n 

  . 

 

Figure 1 Schematic diagram of the grey system estimation method 

The uncertainty quantification has two applications: one is to provide uncertainty input of the 

uncertainty analysis for the interval model updating and the optimization; the other is to determine 

the intervals of the experimental structural responses for the interval model updating. 
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2.2 Model updating based on the non-probabilistic interval theory 

The difference between the simulated responses of FE model and actual structure originates in 

the following factors [40], the dispersion of material parameters, inaccuracy of boundary conditions 

and errors rooted in FEM. The dispersion of material comes from the defects in fiber and matrix and 

interfacial defects in the process of manufacturing. The boundary condition contains the connection 

stiffness between components, loading mode, sensor measurement errors and so forth. The 

simulation errors arise in the simplification of physical model and discretization error. The source of 

error considered in this paper are the uncertainty of material properties and boundary conditions, as 

the intrinsic error of simulation can be eliminated by the denser mesh for the FE model. In this 

paper, the boundary conditions are assumed to be deterministic variables due to the experiment 

equipment is unique.  

The problems of mechanical analysis in this article can be expressed as the following form 

  ,I Ify x P  (4) 

where { }I I

iyy  is the interval structural response such as strain, stress, displacements, buckling 

load and failure load due to the uncertainty of material property; { }I I

ixx  is the interval of 

material parameter; { }I

iPP =  is the boundary condition to be updated. There are a number of 

samples of structural responses y . The interval bounds of x  are also known. The goal of the 

model updating is to determine the most possible value of P . 

In the probabilistic theory, the estimation of parameter P  can be solved by moment 

estimation theory, maximum likelihood estimation and other estimation method. This paper will 

propose an interval model updating method to determine the boundary condition. The basic idea of 

the interval model updating method is to minimize the difference between the simulated interval 

bounds of structural responses and the experimental interval bounds of responses. The proposed 

method treat the interval material properties in the FE model and the experimental results the same 

important, in which the interval material properties of FE model are obtained from the mechanical 

testing. The structural model updating can be accomplished by optimization method.  
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    

 

exp sim I exp sim I
q i i i i

i
exp exp

i 1
i i

find

y -y , y y ,
min w

0.5* y +y

 



P

P x P x  (5) 

where iw  is the weighting coefficient for the i -th structural response; exp exp

i iy y,  are the interval 

bounds of i -th experimental structural response obtained from experimental samples; 

   sim I sim I

i iy , , y ,P x P x  are the interval bounds of i -th simulated structural response on the basis 

of the uncertainties of material property. The objective function is to minimize the difference 

between the simulated interval bounds and the experimental bounds of structural responses. Taking 

the model updating based on single response as example, the interval model updating process can 

be illustrated in Figure 2. The blue lines are the interval bounds of the structural response, which 

vary as the boundary condition changes. The goal of the model updating is to make the simulated 

interval responses coincide with the experimental interval responses. The optimal solution of the 

model updating is 
*P . When the structural responses become more, the optimal solution will be 

obtained by minimizing the summary of different responses multiplying the weighting coefficients.  

 
Figure 2 The interval bounds of simulated and experimental responses 

 

3. The non-probabilistic failure load analysis based on the progressive degradation theory 

In this paper, the optimization is for the reduction of weight and the improvement of structural 

carrying capacity. From the point of view of this paper, the reasonable calculation method for the 

failure should be the progressive failure analysis combined with the displacement-load curve. 

Considering the uncertainties in the material properties, this paper applies the non-probabilistic 
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theory into the solution of structural carrying capacity. 

3.1. Failure load computing procedure based on the progressive degradation analysis 

The structural failure analysis is based on the procedure of step loading and progressive 

degradation for materials. The structural failure is first initiated at local stress concentration, where 

the stress reaches the failure criterion, then the relative local stiffness decreases. The common 

failure criteria used for judging failure of material are Hashin criterion[41], Puck criterion[42], 

Chang criterion[43], LaRC04 criterion[44] and so on. The elastic parameters of the elements that 

satisfy the failure criterion will drop to small values. When a certain amount of elements on the 

cross section of the load-transferred path are failed, the constraint force will decrease as the 

displacement increases, namely the structural failure. The procedure of computing failure load is 

shown in Figure 3. The improved quadratic Hashin criterion [45] and the stiffness reduction scheme 

are given, respectively. 

Longitudinal (one direction) tension failure  1 >0  

 

2 2

1 12

12

1
tX S

 


   
    

  
 (6) 

Longitudinal (one direction) compression failure  1 <0  

 

2

1 1
cX

 
 

 


 (7) 

Transverse (two directions) tension failure  2 >0  

 

2 2

2 12

12

1
tY S

 


   
    

  
 (8) 

Transverse (two directions) compression failure  2 <0  

 

2

2 1
cY

 
 

 


 (9) 

In-plane shearing failure: 

 
2

12

12

1
S

 
 

 

  (10) 
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where 1 2 12, ,    are the fiber direction stress, transverse stress and in-plane shear stress, 

respectively; 12, , , ,t c t cX X Y Y S  are the longitudinal direction tensile strength, fiber direction 

compressive strength, transverse direction tensile strength, transverse direction compressive 

strength and in-plane shear strength, respectively;   is the contribution of the shear stress to the 

longitudinal and transverse tensile initiation. 

When the above dimension failure criteria are satisfied, the material properties of the damage 

unit will be weakened. In different failure modes, elastic parameters can be degraded based on 

different rules [46, 47]. In this paper, the following material degeneration is adopted to characterize 

the damage of the laminate. 

1) When the longitudinal tension failure happens, let 1E  be 10.07E ; 

2) When the longitudinal compression failure happens, let 1E  be 10.14E ; 

3) When the transverse tension failure happens, let 2E  be 20.07E ; 

4) When the transverse compression failure happens, let 2E  be 20.14E ; 

5) When the shearing failure happens, let 12E  be 120.4E . 

The procedure of the progressive failure method is as follows, and the flowchart is shown in 

Figure 3. The calculation steps are as follows. 

Step 1: initialize the FEM model, where the material parameters are in undamaged state;  

Step 2: start the displacement loading; 

Step 3: static analysis for the structure and extract the constraint force of the loading point; 

Step 4: if the constraint force decline, output the failure load and finish the procedure, else 

extract the stress of the structure and proceed the next step; 

Step 5: if the elemental stress tensor satisfies the failure criterion, reduce the elemental elastic 

moduli, else increase the displacement load and go to Step 3. 
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Figure 3 The flowchart of computing failure load 

3.2. Non-probability reliability (NPR) analysis of failure load for composite 

In this paper, the failure load analysis of composite structure is taken as a black box, in which 

the input is material parameter information and output is the interval of failure load.  

The structural responses I
y  are uncertain due to the dispersion of material parameters I

x . 

The method of calculating the interval of structural responses can be divided into vertex method 

[48], series expansion method [49] and collocation method [50] according to the relationship 

between input uncertain parameters and structural responses. 

The structure performance is usually marked by the limit state function established by the 

structural response and the allowable value. The stress–strength interference model [51] is 

introduced to define the NPR. Herein, for the convenience of description, S is short for the 

structural carrying capacity, and R is short for the allowable structural carrying capacity. S 

represents iy  that is shown in Eq.(4). The S and R are taken as the basic interval variables to 

illustrate the process of NPR solution. 
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 , , ,         
I IS S S S R R R R  (11) 

where I means the interval number; ‘¯’ denotes the upper bound of the interval number; and ‘_’ 

denotes the lower bounds of the interval number. 

The structural limit state function is taken as 

  ,M R S R S   (12) 

where R and S space is divided into safety domains and failure domain by (12), and the dividing 

line is the failure plane as  , 0M R S R S   . The interval variables of the corresponding force 

and strength are standardized as 

    / , /     c r c r

S RS S S R R R  (13) 

where        / 2, / 2, / 2, / 2c c r rS S S R R R S S S R R R        . The stress interval and 

the strength interval are interfered when the structure is likely to be dangerous, as shown in Figure 4 

a). Although the central value of S is less than the central value of R, it cannot absolutely guaranteed 

that S is always less than R in any case. That is, the possibility that S is greater than R is positive, 

and is expressed as 

   , 0 0R SM      (14) 

Similarly, the interference relationship between stress and strength in the one-dimensional axis 

can be converted to the interference relationship in two-dimensional normalized interval variable 

space, as shown in Figure 4 b). The possibility of failure can be defined as the ratio of the area of 

the failure domain to the total area of the basic variable. 

   , 0
failure

set R S

total

S
F M

S
      (15) 

Similarly, the reliability can be defined as the ratio of the area of the safety domain to the total 

area of the basic variable. 

   , 0 1
failure

set R S

total

S
R M

S
       (16) 
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a) 1D R-S interference           b) 2D R-S interference 

Figure 4 Non-probabilistic R-S interference   

 

4. The optimization approach for the improvement of the structural carrying capacity 

To compare the optimization effect of the traditional method (SF based method) and the 

non-probability based method, the SF based method is firstly illustrated, and the non-probability 

based method is then presented. In the both methods, the two-level optimization strategy is adopted 

to decouple the design variables, namely the ply thickness and the angle. 

4.1. Two-level optimization approach based on SF 

In the SF based optimization method, the first step is to optimize the thicknesses or the 

numbers of layers with different angles when the lamina has a specific thickness. The second step is 

to optimize the stacking sequence of the laminates based on the first optimization results. The 

optimization model of the first step is shown as follows. 

  
1 2 1 2

1 1 2 2

min

find , ,

s.t.

 

          

, ，

， ，

W

t t n n

F n F F n F

   
 (17) 

where W  is the total mass of the structure;  
i i

t n
 

 is the thickness or the number of super layers 

with angle i ; jF  are the failure load of the jth load condition, which is calculated by the 

progressive failure analysis; jF    are the critical failure load of the jth load condition. The 

objective is to minimize the weight of the structure. The constraint condition is that the failure loads 

satisfy the allowable values. 
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Figure 5 The super layers and final laminates 

After the thicknesses of all super layers have been optimized in the first step, the stacking 

sequence optimization of the laminate is processed in the second step. The transformation from the 

super layers in the first step to the final laminates in the second step is illustrated in Figure 5. The 

optimization model of the second step is shown as follows. 

 
 

*

o o

*

max ,

find , ( 0 ,45 )

s.t. ( ) 0,    1,2

  

 

  

          

1 2

1 1 2 2

，

，

，

， ，

u

j

F F

u

g t j

F n F F n F


 (18) 

where  u  is the stacking sequence scheme; * ( ) 0
j

g t   is the processing constraints to be met 

in the layer scheme. The objective is to maximize the failure loads in different load cases. The 

constraint conditions are the manufacturing constraints and the failure loads are not less than the 

allowable values. 

4.2. Two-level optimization approach based on NPR theory 

Similarly to the SF based two-level optimization approach, the NPR based method is 

processed by the super layer optimization and the stacking sequence optimization except the failure 

load is replaced by the NPR index. The optimization model of the first step is shown as follows. 
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where  ,I I I

jF E X , caused by the dispersion of strength parameters and elastic parameters, 

expresses the interval of the failure load of the j-th load condition, which is computed by 

progressive failure analysis and the interval mathematic theory.   ,    
I I I

j jR F FE X  expresses 

the NPR of the failure load of the j-th load condition by the non-probabilistic set reliability theory. 

1

SFR    expresses the NPR index of the j-th load condition of the optimization scheme based on SF 

method. Herein, ,I I
E X  represent I

x  in Eq.(4), and  ,I I I

jF E X  expresses I

iy  in Eq.(4). In 

this step, the thicknesses of the laminate is optimized under the premise of the laminate has the 

reliability not worse than it based on the SF method. 

After the thicknesses of the super layers have been optimized by the optimization model in 

(19), the stacking sequences can be optimized to raise the lower bounds of the failure load in 

different load conditions. The optimization model of the second step is shown as follows. 
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where jF  is the lower bound of the failure load of the j-th load condition. 

Through the two-step NPR based optimization, the optimization scheme will be obtained with 

better bearing capacity. The flowchart of the whole procedure of this paper is illustrated in Figure 6. 

The whole process of the proposed method can be divided into 4 parts as model updating for the 

FEM model, optimization based on the SF, reliability analysis for the SF based optimization scheme 

and optimization based on non-probabilistic reliability. In every part, the progressive degradation 

analysis for the solution of failure load is involved. 
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Figure 6 Flowchart of the optimization process 

 

5. Experimental study 

To verify the effectiveness of the proposed methodology, an experimental work of stiffened 

plates under two load cases as compressive and shear loads were processed. The typical stiffened 

plate of the optimization problem is selected from a kind of aircraft. All the composite components 

are made of T300/901. The T300/901 carbon/epoxy composite laminate is made of bidirectional 

carbon-fiber-impregnated materials (woven fabric composite material), and the single layer is 0.22 

mm thickness. The FE models were updated firstly by the experimental results of the original layer 

scheme. Then the optimization based on the SF, reliability analysis for the SF based optimization 
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scheme and optimization based on non-probabilistic reliability were processed step by step. At last, 

the optimal layer scheme was verified experimentally. 

 

Figure 7 The CAD model of the stiffened plate for the compressive load and shear load 

 

Figure 8 The dimension of the stiffened plate(mm) 

The CAD models of the stiffened plate for the compressive load and shear load are shown in 

Figure 7. The stiffened plates contain panels, reinforced piece, ribs, cap ridge and fixture. The 

panels are the principle bearing parts, but have poor stability. The ribs are arranged to increase their 

stability and the reinforced piece, cap ridges are utilized to link the panels and the ribs. The two 

structures are basically the same except that the fixture are different due to the diverse load cases. 

The fixture parts are made of aluminum alloy and the other parts are made of fabric composites. 

The dimension of the stiffened plate are shown in Figure 8. In the initial scheme, the stacking 

sequence is o o o o o

2 s[45 / 0 / 45 / 0 / 45 ]  for all the composite parts. In view of the CAD model, the 

FEM model is established as shown in Figure 9. 
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Figure 9 the FEM model of the stiffened plate 

  

Figure 10 The experimental setup and loading sketch: (a) experimental setup of CLC; (b) loading 

sketch of CLC; (c) experimental setup of SLC (d) loading sketch of SLC. 

The experimental setup and loading sketch of compressive loading condition (CLC) and shear 

loading condition (SLC) are shown in Figure 10. In the loading sketch of SLC, the tensile force is 

transformed on the fixtures through the plane hinge, which makes that the structure is under shear 

load. The FE models were modified on the basis of the experimental data before they were used to 

process the optimization. 

In this experimental work, each test piece was tested including elastic state and limit state. The 

test of elastic state is loaded from 0 to 20kN with 2kN increments. The tests of limit state were 

loaded from 0 to 80kN by taking 5kN as loading step, and from 80kN until it were destroyed taking 
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0.5kN as loading step. There are 8 test samples as 4 specimens for the compressive test and 4 

specimens for the shear test.  

5.1. Model updating for the FE models in small sample situation 

The interval boundaries of elastic parameters and strength parameters are listed in Table 1 

based on the grey mathematical method. The samples are shown in Appendix A. The elastic 

parameters are assumed to obey normal distribution and the strength parameters are assumed to obey 

two-parameter Weibull distribution[52]. 

Table 1 The interval boundaries of elastic parameters and strength parameters 

Elastic parameters Lower bounds Upper bounds Strength parameters Lower bounds Upper bounds 

 1E GPa  42.940 61.086  tX MPa  465.247 531.420 

 2E GPa  42.940 61.086  cX MPa  121.144 157.178 

 12E GPa  0.938 1.510  tY MPa  465.247 531.420 

12v  0.043 0.121  cY MPa  121.144 157.178 

    12S MPa  38.591 57.307 

 

 

Figure 11 The strain measurement points of (a)CLC and (b)SLC 
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In FE model updating process, the structural responses include structural local strains, buckling 

loads and failure loads need to be considered. The reason for selecting these kind of respoonses are 

as follows. The structural local strains reflect the local elastic property, and the buckling loads 

reflect the global elastic property. The failure loads mirror the elastic and strength property of the 

FE model simultaneously. The ditribution diagram of the strain measurement points used for the 

model updating are shown in Figure 11. The compressive strains under the compressive load case 

and the in-plane shear strains under the shear load case are tested in the measurement points.  

Before the model updating, the sensitivity analysis for the parameters of constraint condition 

(PoCCs) and uncertain parameters are performed to pick the sensitive parameters of constraint 

condition (PoCCs) and acertain the change regulation of the structural responses with the uncertain 

parameters vary. For the stiffened plate, the PoCCs for updating are the stiffness coefficients in 

different direction of the hinges and equivalent thickness of the fixture of the stiffened plate. The 

stiffness of hinges are picked out because the there inevitable exists gap in the hinges. The thickness 

of the fixture is chose since the space exists between the fixture and the specimen. The Latin 

hypercube design (LHD) is one of Design of experiments (DOE) methods with excellent abilities of 

space filling and nonlinear response fitting, and is utilized to carry on the sensitivity analysis. 1000 

samples are adopted for the sensitivity analysis. The Pareto graph for structural responses are 

displayed in Figure 12. The lateral axis represent the factors affect the structural response. The 

factors include the elastic parameters, PoCCs and strength parameters. 1 12 2 12, , ,E E E v  are the 

elastic parameters; 1 5~k k  and t  is the PoCCs, namely, the stiffness of hinges and the equivalent 

thickness of the fixture, where 1 3~k k are the translational stiffness and 4 5~k k  are the rotational 

stiffness ( 6k  is defined as extremely small value); 12, , , ,t c t cX X Y Y S  are the strength parameters. 

The longitudinal coordinates express the contribution rates for the structural responses induced by 

every factors. Different colors means different structural response influenced by the factors. 

_1~ 3Strain  are the strains at different measurement points of the stiffened plate under shear load 

case. From the plots it can be seen that the PoCCs affect the elastic strains and failure load, where 
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4 5~k k  rarely affect the structural responses. At the same time, the elastic parameters have major 

infuence on the strains and failure load. Among the 5 strength parameters, the cX  is the most 

influential factor on the failure load. Thus the 1 3~k k  and t  are selected as the PoCCs to be updated. 

 

Figure 12 Pareto graph for structural response 

Figure 13~Figure 15 show the effect trends of uncertainty parameters to strains, buckling load and 

Figure 13 shows that the structural strains and buckling load are monotonic with the uncertain 

variables. From Figure 14 and Figure 15 it can be seen that the failure loads are monotonic with the 

uncertain variables 1 12 2, , , cE E E X . Although the rest uncertain variables have no monotonic 

relationship with the failure load, the contribution rates of them are little as shown in Figure 12 and 

can be neglected for the computational efficiency. Among the uncertainty propagation methods, the 

interval vertex method [53-55] can obtain the precise results when the maximum and minimum 

values fall on the interval vertexes. The amount of calculation is based on the number of the 

uncertain variables. The number of the structural analysis is 2N  ( N  is the number of uncertain 

variables). The interval bounds can be gained by the following equation 

      
2 2

11
max , , min ,
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 

N N

i i
ii

y f y fZ P Z P  (21) 

where Z  is the interval parameter matrix, which can be expressed as 
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In this paper, the vertex method is applied for the solution of the uncertain intervals of the 

structural responses. 

 

Figure 13 Effect trends of uncertainty parameters to (a) strains and (b) buckling load 

 

 

Figure 14 Effect trends of uncertainty parameters to compressive failure load 
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Figure 15 Effect trends of uncertainty parameters to shear failure load 

The model updating was accomplished by the optimization method, which matches the 

responses of the FE model with the experimental datas, and the optimization model are as follows. 
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where ik  is the stiffness in different direction of the hinges; t  is the equivalent thickness of the 

boundary of the stiffened plate; ,P,F  are the strain, buckling load, failure load, respectively; 

 jw  are the weighting coefficients of the responses, herein the values are all defined as unity; 

,E X
I I

 are the intervals of the elastic modulus and strength parameters, respectively. ,sim exp  

represent the simulation and experimental values.  

Through the model updating, the stiffness coefficients and the equivalent thickness of the 

fixture modified are shown as follows. 

 
1 2 3532546 , 180082 , 724937 , 78.6k N / mm k N / mm k N / mm t mm     (24) 

The simulated and experimental interval structural responses including the failure loads, the 

buckling loads and strains at different position are listed in Table 2. The experimental results are 

obtained based on the grey mathematics method and the sourse datas are listed in Appendix B. The 
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simulated intervals were calculated by the vertex method. It should be noted that the table only 

shows the compress buckling load, which is due to the shear failure load is less than the shear 

buckling load. In order to compare the difference between the experimental and the simulation 

results, the relative errors calculated by the middle values of experimental and numerical values are 

also listed in the table. The errors of the failure load, buckling load and strain are less than 5%, 2% 

and 7%, respectively. It can seen that the structural responses obtained from the FE models are 

almost tend to be consistent with the experimental results. 

Table 2 the comparison between simulation and experimental value after model updating 

 Load case simulation experiment error 

Failure load (kN) 

compressive  96.7 139.9,   99.8,127.2  4.2% 

shear  125.4 173.8,   132.6,171.7  1.7% 

Buckling load (kN) compressive  39.7 64.0,   44.4,60.6  1.2% 

Strain (με) 

compressive 

1  347.1 625.4,   399.5,515.6  6.3% 

2  242.8 395.4,   279.1,375.9  2.6% 

3  314.7 578.2,   375.7,483.8  3.9% 

shear 

1  701.56 949.9,   673.0,968.0  0.64% 

2  778.21091.7,   792.6,1192.5  5.8% 

3  662.8 981.6,   797.7,909.8  3.7% 

The buckling modes and failure modes of the simulated results are compared with the 

experimental results to verify the rationality of the FE models. Herein, in order to simplify the 

coparison, the simulated results are displayed in which the uncertain parameters are defined as the 

middle values.  

The experimental and simulated 1st buckling mode is shown in Figure 16 a) and Figure 16 b). 

Figure 16 a) shows the stiffened plate under the compressive load conditioin appeared large 
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displacement the middle of the panels, and second large displacement at the upper and lower parts 

of the panel. Figure 16 b) shows the simulated buckling mode, which is similar with the 

experimental phenomenon. The elastic property of the FE model is verified by the fact that the 

simulated buckling mode is in coincidence with the experimental result. 

 

Figure 16 The 1st buckling mode: (a) experimental mode; (b) simulated mode 

 

Figure 17 Failure patterns under (a) CLC and (b) SLC 

Figure 17 (a) and Figure 17(b) show the failure patterns of the stiffened plate under 

compressive load and shear load. Figure 18 shows the simulated damage evolution process of the 

stiffened plate under the compressive load case. The elements which are in longitudinal compression 

failure mode in the 0
o 
layer are marked in red. The failure mechanism of the stiffened plate under 

compressive load case is that the large deformation occurred in the intermediate position of panel 

lead to the flexural fracture after instability, then the fracture extend to the free end from the 

openning position, which lead to the total failure of the structure. The failure pattern of the 

experimental and simulated stiffened plate extent the same at the start point of the failure. It is 

important to note that the fracture path of the experimental stiffened plate arise in the one side of the 

panel, however the symetric failure mode arise in the simulated stiffened plate. The difference is 
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come from the initial defect of the experimental samples is always asymmetrical, which lead to the 

one-side failure path.  

       

a) 76.5% failureF              b) 95% failureF              c)100% failureF  

Figure 18 The damage evolution process under the compressive load case 

Figure 19 shows the simulated damage evolution process under the shear load case. The 

elements which are in longitudinal compression failure mode in the 45
o 
layer are signed in red. The 

failure mechanism of the stiffened plate under shear load case is that the compression damage 

appears at the compression corner, then the failure path extends along the diagonal direction of the 

panel until the stiffened plate lose its capacity. The experiment and simulation for the damage 

evolution perform alike at the beginning position of the failure. The comparisions between the 

experiments and simulations indicate that the FE models have enough accuracy in the 

characterization for the strength property of real structures.The strength property of the FE model is 

verified by the fact that the simulated failure mode is in coincidence with the experimental result.  

 

Figure 19 The damage evolution under the SLC: (a) 73% failureF ; (b) 85% failureF ; (c)100% failureF  

Above of all, the local and whole elastic property of the FE model are verified by the strains 

and buckling load and mode. The strengh property of the FE model is proved through the failure 
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load and failure mode. Thus, the constructed FE model can be utilized to process the following 

optimization procedure. 

5.2. The SF based optimization for the laminate 

After updating the FE model, the SF based optimization method is utilized to optimize the 

stiffened plate. The candidate ply orientations are selected as 0
o
 and 45

o
, which is due to the 

following reasons. On the one hand, the layers of 0
o
 is usually utilized to bear the in-plane 

compressive loads; the layers of 45
o
 is usually utilized to bear the shear load. On the other hand, in 

the process of design and manufacture, the the number of laying directions should be minimized in 

order to simplify the workload. The elastic parameters are defined as the middle values, and the 

strength parameters are defined as the lower bounds of their intervals. The optimization model is as 

follows. 
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s.t.          ，shear shear shear compress compress compress

W
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where W  is the mass of the composite stiffened plate; 0 45,n n  are the numbers of 0
o
 and 45

o
 plies 

in the structure, which is preparation for the second-step optimization; ,shear compressF F , are the failure 

loads in shear and compress load cases; ,shear compressiveF F        are the critical failure load in shear 

and compressive load cases. ,shear compressn n  are the SFs in shear and compressive load cases. Herein, 

1.1 shear compressn n , which is defined as the same effects caused by the uncertainty of elastic 

modular parameters. shearF   , compressF    are the allowable load, and 

=112.0kN, =89.1kNshear compressF F       .  

Table 3 the number of plies and weight of the initial and SF based design scheme 

Component Panels Ribs Reinforced piece, cap ridge Weight 

(kg) Stacking angle 0° 45° 0° 45° 0° 45° 

Initial design scheme 6 5 6 5 6 5 1.295 

SF based design scheme 6 5 6 3 6 5 1.251 
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The Hooke and Jeeves (HJ) algorithm[56] is utilized to solve the optimization model, where 

the initial point is the initial layer scheme, corresponding to the intact state of the structure. The 

relative step size is 0.02 and step size reduction factor is 0.5. Through the first-level super-layer 

thickness optimization, the optimized number of plies of different components are shown in Table 3. 

The structural weight of composite stiffened plate can be reduced up to 3.5%. Then the stacking 

sequence library is established and the stacking sequence optimization of the composite stiffened 

plate is executed with global algorithm in the second level. The SF based second-level optimization 

model is expressed as 
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where  u   is the stacking sequence libraries of different components. The candidate angles are 

o o0 ,45  for the woven materials. * ( ) 0
j

g t   is the manufacturing constraints.  

Table 4 The stacking sequence scheme based on the SF method 

Component Stacking sequence 

Panels o o o o o

2 s[45 / 0 / 45 / 0 / 45 ]   

Ribs o o o o

2 s[0 / 45 / 0 / 45 ]   

Reinforced piece, cap ridge o o o o o

2 s[45 / 0 / 45 / 0 / 45 ]   

The genetic algorithm [57] is utilized to solve the optimization model. The final stacking 

sequence scheme based on the SF method for composites is shown in Table 4. From the table one 

can see that the stacking sequence scheme based on the SF method is different from the initial 

stacking sequence scheme. The failure loads of the initial scheme and two-step optimization results 

are shown in Table 5. The table shows that through the two-step optization process, the compression 

failure load is not improved and the shear failure load is improved. The reason may be that the 
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secongd top 45
o
 layers of the panels in the initial scheme are transferred to the top layer, which 

reduced the compression capacity and improved the shear capacity. Nevertheless, the designed 

scheme still satisfies the requirement of the critical load. 

Table 5 the failure load of the SF based optimization result 

 Compression failure load Shear failure load 

Initial scheme 99.6 kN 128.2 kN 

thickness optimization 98.5 kN 128.2 kN 

stacking sequence optimization 98.5 kN 128.4 kN 

5.3. The NPR based optimization for the laminate 

In this part, the optimization based on NPR theory is performed and the optimization scheme is 

verified experimentally. Before the optimization, the NPR of the SF based optimization scheme is 

calculated for the constraint condition. The uncertainty analysis is performed based on the uncertain 

parameters including the elastic and strength parameters. The interval bounds of the failure load are 

calculated and the non-probabilistic index is obtained. The interval bounds of the compressive failure 

load are  93.4kN,136.2kN , and the interval bounds of shear failure load are  111.5kN,153.6kN . The 

corresponding non-reliabilities are 100%compress

SFR     and 98.8%shear

SFR    , respectively. Similar 

to the optimization method based on SF, the NPR based optimization is performed in two stages as 

the thickness optimization and stacking sequence optimization. The optimization model is shown 

in(27), where ,I I
E X  represent I

x  in Eq.(4) and [ ; ]I I

shear compressF F  express I
y  in Eq.(4). The HJ 

algorithm is used for the thickness optimization, and the optimization results are shown in Table 6. 

The table shows that the number of the stiffened plate is reduced compared with the SF based 

design scheme, and the reduced ratio of weight is up to 7.6%.  
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Table 6 The number of plies and weight of the SF and NPR based design scheme 

Component Panels Ribs Reinforced piece, cap ridge Weight 

(kg) Stacking angle 0° 45° 0° 45° 0° 45° 

SF based design scheme 6 5 6 3 6 5 1.251 

NPR based design scheme 6 5 6 3 6 3 1.156 

Next, the sequence stacking optimization utilizing the genetic algorithm is processed based on 

the optimization model shown in Eq.(28). The stacking sequence scheme optimized in shown in Table 

7. Through the FE analysis and uncertainty analysis, the interval of the failure load is obtained. The 

interval bounds of the compressive failure load are  91.7kN,131.9kN , and the shear failure load is 

 112.4kN,157.1kN . The corresponding non-reliabilities are both 100% in the two load cases. 
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Table 7 The stacking sequence scheme based on the NPR method 

Component Stacking sequence 

Panels o o o o

2 2 s[0 / 45 / 0 / 45 ]  

Ribs o o o o

2 s[0 / 45 / 0 / 45 ]  

Reinforced piece, cap ridge o o o o

2 s[0 / 45 / 0 / 45 ]  

In order to verify the validity of optimization result, the specimens for the shear load and 

compressive load based on the stacking sequence in Table 7 were manufactured and the destructive 

tests were carried out. The load-displacement curves of the stiffened plate under the two load cases 

are shown in Figure 20, which display the failure load as the load drop point. For the convenience 

of comparison and analysis, the test results and simulated results are together listed in Table 8. From 
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the table one can see that the experimental failure loads have fallen in the simulated intervals of the 

failure load, which proved the effectiveness of the built FE model. The reliabilities of the NPR 

based method are improved compared with the reliabilities of the SF based method. That is owing 

to the nominal values and radii of failure load were both optimization variables and the intervals 

were narrowed. Thus the reliability based method can be reckoned as superior to the SF based 

method when the intervals can be narrowed. It should be noted that the interval of the responses 

cannot always be reduced.  

Table 8 the simulated reslut and test reslut of bearing capacity 

Load case Critical load (kN) 
The interval of failure load (kN) Experimental 

(kN) SF based Reliability based 

compress 89.1  93.4,136.2   91.7,131.9  104.9 

shear 110.0  111.5,153.6   112.4,152.1  126.8 

 

 

Figure 20 Load-displacement curves of the stiffened plate: (a)CLC; (b)SLC. 

6. Conclusion 

This paper proposes an interval model updating based uncertain optimization for the composite 

structures. The interval model updating method is performed to determine the boundary condition, 

through which the simulated interval bounds of the responses will coincide with the experimental 

ones. A new uncertain optimization method for composite structures based on progressive failure 
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theory, which overcomes the limitation of FPF and LPF for the failure analysis and SF based method 

for the uncertainty analysis. The reliability constraint for the NPR based method is defined as the of 

the NPR of the optimization scheme based on SF method. The proposed method was verified by an 

experimental work of the stiffened plate under two load cases. The FE model was updated under 

uncertainty conditions based on the proposed interval model updating theory. The structural 

responses including local strains, buckling loads and failure loads were close to the real 

measurements in the experiments by updating the constraint parameters. The SF based optimization 

and NPR based optimization were carried out one after another. The weight of the SF based 

optimization scheme was reduced under the constraint of the allowable failure load. The NPR based 

optimization was performed to increase the reliability of the composite stiffened plate. The 

reliabilities were increased and the weight is reduced by the reliability based method compared with 

the SF based method, which proved the superiority of the reliability based method to the SF based 

method when the intervals of the structural responses can be narrowed by optimization. The optimal 

composite stiffened plates under different load cases based on the reliability theory were fabricated 

and the failure loads were tested, and the failure load fell in the interval estimation, which proved the 

validity of the proposed method.  
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Appendix A. The samples of material parameters 

No.  1 2 3 4 5 6 7 8 9 10 

 1E GPa  57.95 48.86 49.34 55.08 51.64 49.23 49.92 49.17 57.08 51.87 

 12E GPa  1.22 1.41 1.19 1.05 1.21 1.08 1.35 1.33 1.15 1.25 

 2E GPa  57.95 48.86 49.34 55.08 51.64 49.23 49.92 49.17 57.08 51.87 

12v  0.064 0.053 0.075 0.058 0.065 0.072 0.055 0.058 0.065 0.071 

 tX MPa  516.20 498.56 479.10 516.39 489.93 521.51 519.56 516.21 522.51 505.58 

 cX MPa  142.93 133.09 154.85 145.33 151.65 141.47 147.09 144.85 137.33 149.23 

 tY MPa  516.20 498.56 479.10 516.39 489.93 521.51 519.56 516.21 522.51 505.58 

 cY MPa  142.93 133.09 154.85 145.33 151.65 141.47 147.09 144.85 137.33 149.23 

 12S MPa  49.12 54.92 47.00 49.64 51.52 46.72 55.40 46.36 53.68 51.76 
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Appendix B. The samples of material parameters 

No. 1 2 3 4 

Failure load (kN) 
Compressive 114.1 114.8 120.2 105.8 

Shear 154.6 140.5 159.5 155.2 

Buckling load (kN) Compressive 50 55 55 50 

Strain (με) 

Compressive 

1 476 436 443 475 

2 353 332 310 315 

3 419 407 459 434 

Shear 

1 912 817 800 753 

2 924 937 1049 1060 

3 854 819 873 869 
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