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In this paper, a general propagation la.“1ce oltzmann model for variable-coefficient non-
isospectral Korteweg-de Vries (ve-nKdV) equacion, which can describe the interfacial waves
in a two layer liquid and Alfvén v aves M a collisionless plasma, is proposed by selecting
appropriate equilibrium distribut..» func;ion and adding the compensate function. The
Chapman-Enskog analysis sho . s that .ae ve-nKdV equation can be recovered correctly
from the present model. Nun. +ic .l si-aulation for the non-propagating one soliton of this
equation in different situati s is ¢. aducted as validation. It is found that the numerical
results match well with the ana. -tical solutions, which demonstrates that the current general
propagation lattice Bolt ... nn model is a satisfactory and efficient method, and could be
more stable and accur. *e t'1an the standard lattice Bhatnagar-Gross-Krook model.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been used to describe some no. 'inear physical
phenomena in several branches of science and engineering, e.g., hydrodv ian ics, plasma physics,
elastic media and optical communication [1]. Investigation on various k.. Is of solutions of the
NLEEs plays an important role in nonlinear science fields [1].

The lattice Boltzmann method (LBM) has been used in simuls .ing . ~me fluid flows [2], and
extended to simulate some NLEEs, such as the nonlinear advectio. diffusion equation [3], the
generalized nonlinear wave equations [4-7], and the coupled vis ous Frurgers’ equation[8]. Unlike
traditional numerical methods which discretize the governing e natio’ s in time and space, LBM
is based on kinetic theory which tracks the dynamics of micr~cosmic particle ensembles [2].
Through the particle distribution function and equilibrium «'- .ribv ;ion function, the macroscopic
variables are educed and the macroscopic equations are res.~rea exactly [5].

Numerical studies for the NLEEs based on the IBM a e generally about the constant-
coefficient NLEEs. However, with the inhomogeneities ~f tne media and non-uniformities of the
boundaries considered, the variable-coefficient NI 705 Ccau provide more realistic models than
their constant-coefficient counterparts in modeling div rse phenomena [9]. Hence, in this pa-
per, we focus on the variable-coefficient non-isosy. ~c’ ra1 Korteweg-de Vries (ve-nKdV) equation,
which can model the interfacial waves in a t. . lay.r liquid and Alfvén waves in a collisionless
plasma [10],

up + Ko(t)(Upgs + 6uny) + 4K () up — h(v, 2u+xu,) =0, (1)

where wu is the wave-amplitude functi n of ti e scaled space coordinate x and time coordinate ¢,
Ky(t), Ki(t) and h(t) are all smoo’h fuw +'ons of time ¢, and the subscripts x and t represent
the spatial and temporal partial ¢ ~rivativ_s.

The remaining part of this » aper .1 be structured as follows. General propagation lattice
Boltzmann model (GPLB) for &q. ‘1) will be derived in Section 2. Detailed numerical simulation
for the non-propagating soli’v. of Eq. (1) will be performed in order to examine the accuracy
and the stability of our mc.‘el "1 Section 3. Finally, conclusions will be summarized in Section 4.

2. General prcosgetion lattice Boltzmann model for Eq. (1)

For the one-dim« nsion . \LEE (1), the evolution law of the particle distribution function can
be the corresponding tie ete velocity Boltzmann equation [11] by introducing the Bhatnagar-
Gross-Krook (B sK) c llision operator [2], which is written as the following form,

df; df; 1 (eq)

e L ) E 28 2

or Thay T i 2)
where f;(x,t) is « scalar function describing the particle distribution at position z and time
t, {&,1 = 0,1,...,n — 1} is the set of discrete velocities in the one-dimensional space with
n different velocity directions (D1Qn) lattice model, fi(eq) is the local equilibrium distribution
function, 7y is the single relaxation time, and F; is the source term. In this paper, we use the
D1@5 velocity model, where the discrete velocities can be defined as ¢ = {0, ¢, —c¢, 2¢, —2¢},
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where ¢ = aAx/At is a scale constant factor, Az and At are represented the lattice space and
time step, respectively, and a is a free parameter to adjust the propagation “tep of our model.

Eq. (2) can be decomposed into the collision and propagation steps [12] 1, applying the
time-splitting method,

Ofi _ ) A
o 7 [fl /i } +F (3a)
Ofi i

and solved sequentially at each time step. The advantage of thi: repla ement is that the collision
and propagation steps can be treated with different numeric ' scic.ues, respectively.

For the collision equation (3a), there is no spatial der va‘.ve ‘nvolved. Hence, the explicit
Euler scheme is used to discretize Eq. (3a) into the follow g fo.as,

fiT(z,t) = <1 — %) filx, t) + %ffe‘”(x,t) + AtC(z,) - AtE;, (4)

where 7 = 79/At is the dimensionless relaxation t..~e, and the correction term G;(z,t) is in-
troduced into the collision step to eliminate the < -~* o1 the additional term [12]. Tt should be
noted that the collision process is the same as that 1> the standard lattice Bhatnagar-Gross-Krook
(SLBGK) models.

For the propagation equation (3b), we lopt s explicit two-level, three-point scheme [12] to
discretize it,

fl<$,t+At) :poff(x,t)%—p,ﬂ[(x— Ll,t) —|—p1fz+(:(}+Lz,t), Lz = AZC'(E,L', (5)
where po+p_1+p1=1land p_1 — )y = a= At-&/L;. One solution of the above constraint can

be expressed as follows,

q+- q—a
pozl_Qa P-1=—7F7 -, m = 9 ) (6)

where ¢ is also one introdr ced iree parameter. Clearly, the propagation process of our general
model is different with that .. the standard LBGK models, which is just a special case, i.e.,
a = q = 1. Based or th. stxbility analysis in the numerical stability condition, these two
parameters should satisfy «? <. ¢ < 1.

From the above, he co. bination of the collision scheme given by Eq. (4) and the propagation
scheme given by Eq. () e~ nstructs the general propagation lattice Boltzmann model.

In the follow ng, w will apply the multi-scale Chapman-Enskog [13] and Taylor expansions
to obtain the sp cific >xpressions of the local equilibrium distribution function fi(eq) and the
correction te. w. 7' which will be used to complete our GPLB model for Eq. (1).

Firstly, app.. img the Taylor expansion to f;"(z + L;,t), f;"(z — L;,t) and f;"(x,t), retaining
the terms up to C(At?), and substituting them into Eq. (5), one can obtain that

i) DO, ) + S0 i ) S 1) = 1) AL 0 1 )

Azi;q (& 0.)" £ (z,1) — A_t“ (& - 8,)° fiF (x, ) + O(ALY).

6a?

(7)
+




Secondly, applying multi-scale Chapman-FEnskog expansion up to the third-order in time ¢,
the first-order in space z, the local particle distribution function f;, the cor' *~tion terms G; and
the source terms F; can be expressed as,

Oy = €0y, + €20, + €30,,, 0, = €0y, 8a
1 2 3 1
n=0

F,=¢ Fi(l), Gi=c¢ Ggl) + ¢ GZ(»Q) + € GEP’). (8¢c)

where € is a small expansion parameter.
Substituting Egs. (8a)-(8c) into Eq. (7) and coupling 7it'. Ec. (4), we can obtain series of
differential equations for the first three orders of ¢,

o) : = (1 - 1) FO 4 g0 e @2 e, (9a)
T T
1 ”
O): £+ Aty [0 = (1 ) F) f0- M (B +G0) At (60 00) 10, (9b)
2
O(®): 1+ 8t [0, £V + 0, 7] + 502 10 = (1 - 1) 12+ atG
* T
1 W, ~m)] , At’g 2 4(0) (8)
— At (fz ’ aml) |:(1 — :) fiﬁl’ - At <Fl + GZ )} + W (fl . 33;1) fl R
At? At3
W) s 117+ 8t 00 2+ 81 f17 = 2 0|+ 5 08 110 20, 10] + 00 110
1 ‘2 1
= (1 - ;> FO LA — A (&0, [(1 - ;> o AtGZ(.Q)} (9d)

At? 1 At?
#2000 o ;) £+ o (B + GE”)} — 5 (& 0n)" £,

2a? L\ 6a?
Similar with the generai 7 ">M, and considering the conservation law of local mass, we define
the macroscopic physice  quntity u as distribution function

u(w ) =Y filut) = [, 1), (10)
From Eq. (9a), c.ie can obtain

Sty ), Y M@ty =0, n>o0. (11)

Substituting vhe lower order equations of € into the higher order equations, we can simplify
Eq. (9) as the following forms,

fi(l) = TAt [(ﬂ(l) + Ggl)) o (atl + gl ' a’m) fi(O) ) (12&)



e 1 , ©

v = |0, + 5T Oy, +(1=27) (& - 0p,) Oy — <7’ -1+ ﬁ) (€, - (92:1) fi
T (atl + fz : a$1> (E(l) + G§1)> - G§2)7

£

2 2 2 1 )
_TAtSZ{ |:at3+At(1_2T)at1,t2+At (T _T+6 +At’r AV) (\T —T—|—6 8t1

+<1—27)at2} (& - Du,) + AL {%(T—%HM—MH} O &0 ) —|—At2[7' +(ai—2)

Lt g o] (6007 }fﬁmﬁf{ ae(5-r) e o+ an =200, 6 0n)

2a2 '

FAr (1= 5y —7) (6 0. } (B +6") 4 ran@, +¢ -0,) 6P - 6P,
(12¢)

In order to recover Eq. (1), some constraints ~» equinbrium distribution function and correc-
tion terms are imposed as follows,

Z(gl’ 51753) f (0 0, [7_2_ oy ol 1 _i} At2> ’ (13a)

- (2 2z)T+1+ 55
ZF Z = h(t)u, (13b)
ZG =0, = ZG B = ZG (13c)
Z& ;= EZ@ e L G = g BEo(t) u? + (4K () — h(t)z) u] , (13d)
D EGi=ed G50 (13¢)

It should note that every tic rete lattice velocity & multiplied in the term of the derivatives
is accompanied wit! 0, o. 0,,, which increases the order of this term to the small expansion
parameter €. While 122 or cer of the correction terms G; to € is fixed at third-order, leading the
equalities in Eqs. (13c, -(13e).

Summing Eq. (12) over i and substituting Eqgs. (13a)-(13e) into these equations, one can
obtain the fc -v. =< forms,

3t1 u = % h(b) u, (14&)

Oyt L Ato, ({:gi@g”) =0, (14D)



1 2 @) 1
Hereby, by taking Eq. (14a)xe+Eq. (14b)xe?+Eq. (14c)x e, we have,

Coupling with the definition (8) and Eq. (13d), the above equatior (17 ca. be transformed into
the macroscopic equation (1),

up + 6Ko(t)uu, + 4K, (t) uy + Ko(t) Uggr — h(t) (u + zuy) = h(t) u. (16)

(€0r, + €20y, + €20y,) u+ 0, + Ko(t) Ugee = h(t) - (15)

Considering the symmetry of the lattice velocity and r:garding velocity-0 as the dominant
term, we assume that the equilibrium distribution function - .cisfis the following constraints by
a small free parameter o, i.e., O’féo) = Zizl 0) _ fl(0 Yy F,S\? + f?EO) + fio). Besides, we can
assume G; = Go = —(3, and the source term is the s. me at 2ach direction, i.e, F; = h(t)u/5.
Under these additional constraints and coupling with r.:s. (11)-(13e), one can obtain the specific
expressions of the local equilibrium distribution f1 .Ciious fi(o), correction terms (; and source
terms F;,

¢ 1 .
u, 1=0, (1
l+o -9, i=0,
20 F 2
R — u’ 1= ].
3(140) 6 - 5%, i=1,
20 F 1 h(t)u
(0) _ _ — 9 — _ ) — —
fz = [3(1 n O') + 6 :| u, 9 Gz = g, 1=2 s E 5 5 (17)
zZ 1
_ g _ i-‘ i, 1= , _g, 223 ,
6(1+0) 12 3 )
o f-‘ . — -9, =4
— y A :4 ) )
L |:6(1 _|_ 0_) + lA._. u) 1 bl \ 6
where
7 Kol ) At @ _ [BKo(t) u? + (4K (t) — h(t)x) u]
[P == )+t g ] @b A |

3. Numerice 1 siinulation for the non-propagating soliton

Validation of our v ork is conducted by comparing the analytical solutions and the numerical
results. The glob~l rele ive error GRE are used to measure the accuracy of our model [7], whose
specific expre ..*~ns are omitted here.

A non-prop ~ jating one-soliton solutions for the ve-nKdV equation (1) with time varying
nonvanishing bouadary condition in Ref. [10] are given by

u(x,t) = L(t) + 2n’*sech®(Y), o /() nx, L(t) = L(O)exp[/ 2h(t)dt],
" (18)

o= nO)espl [ o] 560 =8 [ nlKotn? + SR+ a0t
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In this simulation, we set Ky(t) = 0.1, K1(t) = 0, h(t) = 2t/[3(1 + *)(2 - t?)], L(0) = 1/30
and 7(0) = 0.1. Following the discussion procedures in Ref. [14], we can .nd that ¢ > 0 can
be considered as an equilibrium parameter, which can adjust the amplitude i1, the process of
the evolution, and set ¢ = 0.05274 in this simulation. The specific disc .ssic ns are omitted here
due to the limitations of this letter. Some other parameters are a = N.&, |, = 0.64, 7 = 1.1686,,
Az = 0.05, ¢ = 80 (i.e., the corresponding time step is At = 0.0005, ~nd the computation
domain is fixed on I = [—50, 50]. Comparisons between detailed nv.ner ' results and analytical
solutions are presented in Fig. 1. It can be found that the nume. ~al results agree with the
analytical solutions well.

Besides, the GRE of the numerical results obtained by " BGF. and GPLB models with
different 7 at t = 2.0 are presented in Tab. 1. We can find tha* *he numerical results obtained
by GPLB match with the analytical solutions well, while t... SLT,GK results get divergency at
7 = 1.145. This phenomenon implies that the present GPLL model is a satisfactory and efficient
method, and could be more stable and accurate than > BGK

0.055 T T T
Numerical result at t=2.0
O Analytical solution at t=2.0
& - - - Numerical result at t=4.0
0.05 - Iﬁ,ll A O Analytical solution at t=4.0 |7
kN - Numerical result at t=6.0
P Ek‘ Analytical solution at t=6.0
* - - - Numerical result at t=8.0
A Analytical solution at t=8.0 |

4
0.045 - i/

4
> f
0.04 s, f

0.035

~
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B85 84+ 3 040

0031 gosesee~e©

Figs. 1. Nu ierical result and analytical solution at ¢ = 2.0, 4.0, 6.0, 8.0

GRE T =1.145 T =1.1686 T=12
a=038,—0.64 1.3567e-003 2.6915e-005 3.1707e-005
SLE 5K * 4.0898e-005 8.1698e-004

Table 1. GRE of tb : numer: al results obtained by SLBGK and GPLB models with different 7 at ¢ = 2.0. (% represents the
divergency.)

4. Conclusions

In this paper, a general propagation lattice Boltzmann model for variable-coefficient non-
isospectral Korteweg-de Vries equation (1), has been proposed through selecting equilibrium dis-
tribution function and adding the compensate function, appropriately. The D1Q5 velocity model



has been used in numerical simulations with different forms of Eq. (1). Throngh the Chapman-
Enskog analysis, it has been found that Eq. (1) can be recovered correc' 7 from our present
general propagation lattice Boltzmann model. Numerical simulation for the 1n.n-propagating
one soliton of this equation in different situations has been conducted a- va dation. It has been
found that the numerical results match well with the analytical solvtion. when we take some
appropriate parameters, which demonstrates that the current general pro, agation lattice Boltz-
mann model is a satisfactory and efficient method, and could be r.ore -v.ble and accurate than
the standard lattice Bhatnagar-Gross-Krook model.
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