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Abstract

In this paper, a general propagation lattice Boltzmann model for variable-coefficient non-

isospectral Korteweg-de Vries (vc-nKdV) equation, which can describe the interfacial waves

in a two layer liquid and Alfvén waves in a collisionless plasma, is proposed by selecting

appropriate equilibrium distribution function and adding the compensate function. The

Chapman-Enskog analysis shows that the vc-nKdV equation can be recovered correctly

from the present model. Numerical simulation for the non-propagating one soliton of this

equation in different situations is conducted as validation. It is found that the numerical

results match well with the analytical solutions, which demonstrates that the current general

propagation lattice Boltzmann model is a satisfactory and efficient method, and could be

more stable and accurate than the standard lattice Bhatnagar-Gross-Krook model.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been used to describe some nonlinear physical

phenomena in several branches of science and engineering, e.g., hydrodynamics, plasma physics,

elastic media and optical communication [1]. Investigation on various kinds of solutions of the

NLEEs plays an important role in nonlinear science fields [1].

The lattice Boltzmann method (LBM) has been used in simulating some fluid flows [2], and

extended to simulate some NLEEs, such as the nonlinear advection-diffusion equation [3], the

generalized nonlinear wave equations [4–7], and the coupled viscous Burgers’ equation[8]. Unlike

traditional numerical methods which discretize the governing equations in time and space, LBM

is based on kinetic theory which tracks the dynamics of microcosmic particle ensembles [2].

Through the particle distribution function and equilibrium distribution function, the macroscopic

variables are educed and the macroscopic equations are restored exactly [5].

Numerical studies for the NLEEs based on the LBM are generally about the constant-

coefficient NLEEs. However, with the inhomogeneities of the media and non-uniformities of the

boundaries considered, the variable-coefficient NLEEs can provide more realistic models than

their constant-coefficient counterparts in modeling diverse phenomena [9]. Hence, in this pa-

per, we focus on the variable-coefficient non-isospectral Korteweg-de Vries (vc-nKdV) equation,

which can model the interfacial waves in a two layer liquid and Alfvén waves in a collisionless

plasma [10],

ut + K0(t)(uxxx + 6uux) + 4K1(t) ux − h(t)(2u + xux) = 0 , (1)

where u is the wave-amplitude function of the scaled space coordinate x and time coordinate t,

K0(t), K1(t) and h(t) are all smooth functions of time t, and the subscripts x and t represent

the spatial and temporal partial derivatives.

The remaining part of this paper will be structured as follows. General propagation lattice

Boltzmann model (GPLB) for Eq. (1) will be derived in Section 2. Detailed numerical simulation

for the non-propagating soliton of Eq. (1) will be performed in order to examine the accuracy

and the stability of our model in Section 3. Finally, conclusions will be summarized in Section 4.

2. General propagation lattice Boltzmann model for Eq. (1)

For the one-dimension NLEE (1), the evolution law of the particle distribution function can

be the corresponding discrete velocity Boltzmann equation [11] by introducing the Bhatnagar-

Gross-Krook (BGK) collision operator [2], which is written as the following form,

∂fi

∂t
+ ξi

∂fi

∂x
= − 1

τ0

[
fi − f

(eq)
i

]
+ Fi , (2)

where fi(x, t) is a scalar function describing the particle distribution at position x and time

t, {ξi, i = 0, 1, . . . , n − 1} is the set of discrete velocities in the one-dimensional space with

n different velocity directions (D1Qn) lattice model, f
(eq)
i is the local equilibrium distribution

function, τ0 is the single relaxation time, and Fi is the source term. In this paper, we use the

D1Q5 velocity model, where the discrete velocities can be defined as
−→
ξ = {0, c, −c, 2c, −2c},
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where c = a∆x/∆t is a scale constant factor, ∆x and ∆t are represented the lattice space and

time step, respectively, and a is a free parameter to adjust the propagation step of our model.

Eq. (2) can be decomposed into the collision and propagation steps [12] by applying the

time-splitting method,

∂fi

∂t
= − 1

τ0

[
fi − f

(eq)
i

]
+ Fi, (3a)

∂fi

∂t
+ ξi

∂fi

∂x
= 0, (3b)

and solved sequentially at each time step. The advantage of this replacement is that the collision

and propagation steps can be treated with different numerical schemes, respectively.

For the collision equation (3a), there is no spatial derivative involved. Hence, the explicit

Euler scheme is used to discretize Eq. (3a) into the following forms,

f+
i (x, t) =

(
1 − 1

τ

)
fi(x, t) +

1

τ
f

(eq)
i (x, t) + ∆tGi(x, t) + ∆tFi, (4)

where τ = τ0/∆t is the dimensionless relaxation time, and the correction term Gi(x, t) is in-

troduced into the collision step to eliminate the effect of the additional term [12]. It should be

noted that the collision process is the same as that in the standard lattice Bhatnagar-Gross-Krook

(SLBGK) models.

For the propagation equation (3b), we adopt an explicit two-level, three-point scheme [12] to

discretize it,

fi(x, t + ∆t) = p0f
+
i (x, t) + p−1f

+
i (x − Li, t) + p1f

+
i (x + Li, t), Li = ∆x · ei, (5)

where p0 + p−1 + p1 = 1 and p−1 − p1 = a = ∆t · ξi/Li. One solution of the above constraint can

be expressed as follows,

p0 = 1 − q, p−1 =
q + a

2
, p1 =

q − a

2
, (6)

where q is also one introduced free parameter. Clearly, the propagation process of our general

model is different with that in the standard LBGK models, which is just a special case, i.e.,

a = q = 1. Based on the stability analysis in the numerical stability condition, these two

parameters should satisfy a2 6 q 6 1.

From the above, the combination of the collision scheme given by Eq. (4) and the propagation

scheme given by Eq. (5) constructs the general propagation lattice Boltzmann model.

In the following, we will apply the multi-scale Chapman-Enskog [13] and Taylor expansions

to obtain the specific expressions of the local equilibrium distribution function f
(eq)
i and the

correction terms Gi, which will be used to complete our GPLB model for Eq. (1).

Firstly, applying the Taylor expansion to f+
i (x + Li, t), f+

i (x − Li, t) and f+
i (x, t), retaining

the terms up to O(∆t4), and substituting them into Eq. (5), one can obtain that

fi(x, t) + ∆t∂tfi(x, t) +
∆t2

2
∂2

t fi(x, t) +
∆t3

6
∂3

t fi(x, t) = f+
i (x, t) − ∆t (ξi · ∂x) f+

i (x, t)

+
∆t2q

2a2
(ξi · ∂x)

2 f+
i (x, t) − ∆t3

6a2
(ξi · ∂x)

3 f+
i (x, t) + O(∆t4).

(7)
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Secondly, applying multi-scale Chapman-Enskog expansion up to the third-order in time t,

the first-order in space x, the local particle distribution function fi, the correction terms Gi and

the source terms Fi can be expressed as,

∂t = ϵ∂t1 + ϵ2∂t2 + ϵ3∂t3 , ∂x = ϵ∂x1 , (8a)

fi =
∞∑

n=0

ϵn f
(n)
i = f

(0)
i + ϵ f

(1)
i + ϵ2 f

(2)
i + ϵ3 f

(3)
i + . . . , (8b)

Fi = ϵ F
(1)
i , Gi = ϵG

(1)
i + ϵ2 G

(2)
i + ϵ3 G

(3)
i . (8c)

where ϵ is a small expansion parameter.

Substituting Eqs. (8a)-(8c) into Eq. (7) and coupling with Eq. (4), we can obtain series of

differential equations for the first three orders of ϵ,

O(ϵ0) : f
(0)
i =

(
1 − 1

τ

)
f

(0)
i +

1

τ
f

(eq)
i , i.e., f

(0)
i = f

(eq)
i , (9a)

O(ϵ1) : f
(1)
i + ∆t ∂t1 f

(0)
i =

(
1 − 1

τ

)
f

(1)
i + ∆t

(
F

(1)
i + G

(1)
i

)
− ∆t (ξi · ∂x1) f

(0)
i , (9b)

O(ϵ2) : f
(2)
i + ∆t

[
∂t1 f

(1)
i + ∂t2 f

(0)
i

]
+

∆t2

2
∂2

t1
f

(0)
i =

(
1 − 1

τ

)
f

(2)
i + ∆tG

(2)
i

− ∆t (ξi · ∂x1)

[(
1 − 1

τ

)
f

(1)
i + ∆t

(
F

(1)
i + G

(1)
i

)]
+

∆t2q

2a2
(ξi · ∂x1)

2 f
(0)
i ,

(9c)

O(ϵ3) : f
(3)
i + ∆t

[
∂t1 f

(2)
i + ∂t2 f

(1)
i + ∂t3 f

(0)
i

]
+

∆t2

2

[
∂2

t1
f

(1)
i + 2∂2

t1,t2
f

(0)
i

]
+

∆t3

6
∂3

t1
f

(0)
i

=

(
1 − 1

τ

)
f

(3)
i + ∆tG

(3)
i − ∆t (ξi · ∂x1)

[(
1 − 1

τ

)
f

(2)
i + ∆tG

(2)
i

]

+
∆t2q

2a2
(ξi · ∂x1)

2

[(
1 − 1

τ

)
f

(1)
i + ∆t

(
F

(1)
i + G

(1)
i

)]
− ∆t3

6a2
(ξi · ∂x1)

3 f
(0)
i ,

(9d)

Similar with the general LBM, and considering the conservation law of local mass, we define

the macroscopic physical quantity u as distribution function

u(x, t) =
∑

i

fi(x, t) =
∑

i

f
(eq)
i (x, t), (10)

From Eq. (9a), one can obtain

∑

i

f
(0)
i (x, t) = u(x, t),

∑

i

f
(n)
i (x, t) = 0, n > 0. (11)

Substituting the lower order equations of ϵ into the higher order equations, we can simplify

Eq. (9) as the following forms,

f
(1)
i = τ∆t

[(
F

(1)
i + G

(1)
i

)
− (∂t1 + ξi · ∂x1) f

(0)
i

]
, (12a)
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− f
(2)
i

τ∆t2
=

[
∂t2 +

(
1

2
− τ

)
∂2

t1
+ (1 − 2τ) (ξi · ∂x1) ∂t1 −

(
τ − 1 +

q

2a2

)
(ξi · ∂x1)

2

]
f

(0)
i

+ τ (∂t1 + ξi · ∂x1)
(
F

(1)
i + G

(1)
i

)
− G

(2)
i ,

(12b)

− f
(3)
i

τ∆t3
=

{[
∂t3 + ∆t (1 − 2τ) ∂2

t1,t2
+ ∆t2

(
τ 2 − τ +

1

6

)]
+ ∆t

[
3∆t

(
τ 2 − τ +

1

6

)
∂2

t1

+ (1 − 2τ) ∂t2

]
(ξi · ∂x1) + ∆t2

[
q

a2
(τ − 1

2
) + 3τ 2 − 4τ + 1

]
∂t1 (ξi · ∂x1)

2 + ∆t2
[
τ 2 +

( q

a2
− 2
)

τ

+ 1 +
1

6a2
− q

a2

]
(ξi · ∂x1)

3

}
f

(0)
i + τ∆t

{[
∆t

(
1

2
− τ

)
∂2

t1
+ ∂t2

]
+ ∆t (1 − 2τ) ∂t1 (ξi · ∂x1)

+ ∆t
(
1 − q

2a2
− τ
)

(ξi · ∂x1)
2

} (
F

(1)
i + G

(1)
i

)
+ τ∆t (∂t1 + ξi · ∂x1) G

(2)
i − G

(3)
i .

(12c)

In order to recover Eq. (1), some constraints on equilibrium distribution function and correc-

tion terms are imposed as follows,

∑

i

(
ξi, ξ2

i , ξ3
i

)T · f
(0)
i =

(
0, 0,

K0(t) u[
τ 2 −

(
2 − q

2a2

)
τ + 1 + 1

6a2 − q
a2

]
∆t2

)T

, (13a)

∑

i

Fi =
∑

i

ϵ F
(1)
i = h(t) u, (13b)

∑

i

Gi = 0 , ⇒
∑

i

G
(1)
i =

∑

i

G
(2)
i =

∑

i

G
(3)
i = 0 , (13c)

∑

i

ξi Gi = ϵ
∑

i

ξi G
(1)
i + ϵ2

∑

i

G
(2)
i =

1

τ∆t

[
3K0(t) u2 + (4K1(t) − h(t)x) u

]
, (13d)

∑

i

ξ2
i Gi = ϵ

∑

i

ξ2
i G

(1)
i = 0. (13e)

It should note that every discrete lattice velocity ξi multiplied in the term of the derivatives

is accompanied with ∂x or ∂x1 , which increases the order of this term to the small expansion

parameter ϵ. While the order of the correction terms Gi to ϵ is fixed at third-order, leading the

equalities in Eqs. (13c)-(13e).

Summing Eq. (12) over i and substituting Eqs. (13a)-(13e) into these equations, one can

obtain the following forms,

∂t1 u =
1

ϵ
h(t) u, (14a)

∂t2 u +
1

ϵ2
τ∆t ∂x

(
ϵ
∑

i

ξi G
(1)
i

)
= 0, (14b)
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∂t3 u +
1

ϵ3
τ∆t ∂x

(
ϵ2
∑

i

G
(2)
i

)
+

1

ϵ3
K0(t) uxxx = 0. (14c)

Hereby, by taking Eq. (14a)×ϵ+Eq. (14b)×ϵ2+Eq. (14c)×ϵ3, we have,

(
ϵ∂t1 + ϵ2∂t2 + ϵ3∂t3

)
u + ∂x

[
τ∆t

∑

i

ξi Gi

]
+ K0(t) uxxx = h(t) u . (15)

Coupling with the definition (8) and Eq. (13d), the above equation (15) can be transformed into

the macroscopic equation (1),

ut + 6K0(t)uux + 4K1(t) ux + K0(t) uxxx − h(t) (u + xux) = h(t) u . (16)

Considering the symmetry of the lattice velocity and regarding velocity-0 as the dominant

term, we assume that the equilibrium distribution function satisfies the following constraints by

a small free parameter σ, i.e., σf
(0)
0 =

∑4
α=1 f

(0)
α = f

(0)
1 + f

(0)
2 + f

(0)
3 + f

(0)
4 . Besides, we can

assume G1 = G2 = −G3, and the source term is the same at each direction, i.e, Fi = h(t) u/5.

Under these additional constraints and coupling with Eqs. (11)-(13e), one can obtain the specific

expressions of the local equilibrium distribution functions f
(0)
i , correction terms Gi and source

terms Fi,

f
(0)
i =





1

1 + σ
u, i=0 ,

[
2σ

3(1 + σ)
− F

6

]
u, i=1,

[
2σ

3(1 + σ)
+

F

6

]
u, i=2 ,

−
[

σ

6(1 + σ)
− F

12

]
u, i=3 ,

−
[

σ

6(1 + σ)
+

F

12

]
u, i=4 ,

Gi =





1

2
G , i=0 ,

− 1

3
G , i=1 ,

− 1

3
G , i=2 ,

1

3
G , i=3 ,

− 1

6
G , i=4 ,

Fi =
h(t) u

5
, (17)

where

F =
K0(t)∆t[

τ 2 −
(
2 − q

2a2

)
τ + 1 + 1

6a2 − q
a2

]
(a∆x)3

, G = − [3K0(t) u2 + (4K1(t) − h(t)x) u]

aτ∆x
.

3. Numerical simulation for the non-propagating soliton

Validation of our work is conducted by comparing the analytical solutions and the numerical

results. The global relative error GRE are used to measure the accuracy of our model [7], whose

specific expressions are omitted here.

A non-propagating one-soliton solutions for the vc-nKdV equation (1) with time varying

nonvanishing boundary condition in Ref. [10] are given by

u(x, t) = L(t) + 2η2sech2(ϑ), ϑ =
f(t)

2
− ηx, L(t) = L(0)exp

[ ∫ t

0

2h(t)dt
]
,

η = η(0)exp
[ ∫ t

0

h(t)dt
]
, f(t) = 8

∫ t

0

η
[
K0(t)η

2 +
3

2
K0(t)L(t) + K1(t)

]
dt,

(18)
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In this simulation, we set K0(t) = 0.1, K1(t) = 0, h(t) = 2t/[3(1 + t2)(2 + t2)], L(0) = 1/30

and η(0) = 0.1. Following the discussion procedures in Ref. [14], we can find that σ > 0 can

be considered as an equilibrium parameter, which can adjust the amplitude in the process of

the evolution, and set σ = 0.05274 in this simulation. The specific discussions are omitted here

due to the limitations of this letter. Some other parameters are a = 0.8, q = 0.64, τ = 1.1686,,

∆x = 0.05, c = 80 (i.e., the corresponding time step is ∆t = 0.0005) and the computation

domain is fixed on I = [−50, 50]. Comparisons between detailed numerical results and analytical

solutions are presented in Fig. 1. It can be found that the numerical results agree with the

analytical solutions well.

Besides, the GRE of the numerical results obtained by SLBGK and GPLB models with

different τ at t = 2.0 are presented in Tab. 1. We can find that the numerical results obtained

by GPLB match with the analytical solutions well, while the SLBGK results get divergency at

τ = 1.145. This phenomenon implies that the present GPLB model is a satisfactory and efficient

method, and could be more stable and accurate than SLBGK.

-50 -40 -30 -20 -10 0 10 20 30 40 50
X

0.03

0.035

0.04

0.045

0.05

0.055

U

Numerical result at t=2.0
Analytical solution at t=2.0
Numerical result at t=4.0
Analytical solution at t=4.0
Numerical result at t=6.0
Analytical solution at t=6.0
Numerical result at t=8.0
Analytical solution at t=8.0

Figs. 1. Numerical result and analytical solution at t = 2.0, 4.0, 6.0, 8.0

GRE τ = 1.145 τ = 1.1686 τ = 1.2

a = 0.8, q = 0.64 1.3567e-003 2.6915e-005 3.1707e-005

SLBGK ⋆ 4.0898e-005 8.1698e-004

Table 1. GRE of the numerical results obtained by SLBGK and GPLB models with different τ at t = 2.0. (⋆ represents the

divergency.)

4. Conclusions

In this paper, a general propagation lattice Boltzmann model for variable-coefficient non-

isospectral Korteweg-de Vries equation (1), has been proposed through selecting equilibrium dis-

tribution function and adding the compensate function, appropriately. The D1Q5 velocity model
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has been used in numerical simulations with different forms of Eq. (1). Through the Chapman-

Enskog analysis, it has been found that Eq. (1) can be recovered correctly from our present

general propagation lattice Boltzmann model. Numerical simulation for the non-propagating

one soliton of this equation in different situations has been conducted as validation. It has been

found that the numerical results match well with the analytical solutions when we take some

appropriate parameters, which demonstrates that the current general propagation lattice Boltz-

mann model is a satisfactory and efficient method, and could be more stable and accurate than

the standard lattice Bhatnagar-Gross-Krook model.
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