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A B S T R A C T

The dilatancy signatures associated with the plastic deformation of a typical Zr-based amorphous alloy are
captured by using synchrotron radiation X-ray diffraction (XRD) and small angle X-ray scattering (SAXS)
techniques. XRD demonstrates that the right-subpeak atoms of the second coordination shell accommodate the
local dilatation, which occurs prior to the plastic yielding and during the softening-to-flow transition process.
Mediated by the local dilatation, local atomic rearrangements can operate at the left-subpeak of the second shell
and/or at the fourth shell with a characteristic lengthscale of about 1 nm. The obtained dilatancy signatures of
amorphous plasticity are further confirmed by SAXS in terms of the nano-scale structural heterogeneity.

1. Introduction

The long-range atomic disorder in amorphous alloys poses a great
challenge for understanding their flow mechanism within a consistent
physical framework [1–7]. Defects underpinning plastic flow in their
crystalline cousins, such as dislocations or grain boundaries, are not
present. Instead, amorphous plasticity is attributed to local irreversible
rearrangements of atomic groups, originally defined as “shear trans-
formations (STs)” by Argon [2]. It is well accepted that one of funda-
mental properties of STs is the dilatancy [7–10]. Specifically, the oc-
currence of STs is always accompanied with the generation of local free
volume. In addition to stress and temperature, the local dilatation
provides a configurational driving-force for the activation of STs
[6,8,11,12]. Actually, the inherent competition between shear and di-
latation during STs determines almost all mechanical behaviors, in-
cluding yielding and flow [13,14], shear-banding [10,15] and its-in-
duced cracking [16,17], ductile-brittle transition in fracture [18–20],
ect. Despite of its significance, how to quantitatively detect the dila-
tancy of STs remains a challenge especially from an experimental view.

Synchrotron radiation X-ray diffraction (XRD) provides a feasible
way to probe short-range-order (SRO) to medium-range-order (MRO)
structural evolution during the deformation of materials [21,22].
Atomic level strains can be extracted from the diffraction data or the
pair distribution function (PDF). For amorphous alloys lacking ordered

lattices, the atomic strains are usually lengthscale-dependent in re-
sponse to applied macroscopic deformation [23–25]. This trans-scale
mismatch of deformation stems from the difference of local environ-
ments where atoms reside in, which sheds insight into the structural
responses of amorphous plasticity. For example, by decomposing the
atomic strains at different coordination shells as a function of macro-
scopic stress or strain, the dominated shell accommodating local de-
formation can be determined at MRO [26–28]. Wang et al. [29] pro-
posed a nano-scale concordant region to bridge the bond-exchange at
SRO and the macroscopic yielding. These reports indicate the existence
of nano-scale local soft regions where STs occur preferably. However,
what structure is responsible for STs’ dilatancy is still unknown and
deserves further investigations.

On the other hand, ST operations will in turn redistribute local soft
regions and remaining strongly bonded domains (local hard regions)
[30–32]. Therefore, a direct nano-scale structural probe into amor-
phous deformation is necessary. Synchrotron radiation small angle X-
ray scattering (SAXS) provides such a possibility [33–36], by measuring
the fluctuation of local electronic density to reflect nano-scale packing
heterogeneity. Recently, Sun et al. [37] performed an in situ SAXS
during uniaxial tension of a Vitreloy 1 amorphous alloy, and detected
nano-scale scatterers with a complex spatial distribution. Nevertheless,
they did not focus on the dilatancy of deformation from the SAXS sig-
natures.
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In this paper, we conduct ex situ synchrotron radiation XRD and
SAXS measurements of a typical Zr-based amorphous alloy that is
frozen at different stages of compressive deformation. The dilatancy of
the plastic deformation is clearly detected, and its role during the flow
event (ST) is discussed as well.

2. Experiments

The bulk amorphous alloy (Vitreloy 105), with the nominal com-
position of Zr52.5Ti5Cu17.9Ni14.6Al10 (at. %), was prepared by suck
casting from master alloys ingots to a water-cooled copper mould in an
arc furnace. Uniaxial compressions were performed on rod-shaped
samples (Φ5 mm×10mm) with an Instron 8852 type machine under a
strain rate of 6×10−3 s−1 at a temperature of 643 K (35 K below the
glass transition temperature Tg). Before loading, 1 h heat-preservation
at 643 K was applied on the sample to eliminate the relaxation effects.
Under the chosen conditions, all samples undergo a homogenous de-
formation without shear bands. A series of samples were compressed to
different total strains followed by unload and rapid quenching into iced
water. We then obtained six transient configurations of the deformation
ranging from elastic, plastic yielding to flow stages. The inelastic strain
(total strain minus elastic strain [38]) for each configuration was
measured using a micrometer caliper with an accuracy of± 5 μm. After
that, thin slices perpendicular to the loading axis were cut from each
configuration by diamond saw blade and then carefully polished to
1mm thick for XRD and 0.02mm thick for SAXS. The XRD and SAXS
measurements were carried out respectively at 4B9A and 1W2A beam
lines of the Beijing synchrotron radiation facility (BSRF) [39].

3. Results and discussion

Fig. 1 presents typical stress-strain curves of the samples com-
pressed to total uniaxial stains ranging from 0.015 to 0.090. For the six
transient configurations, their inelastic strains are 0.0018, 0.0082,
0.0218, 0.0327, 0.0545 and 0.0751, respectively. These transient con-
figurations capture typical deformation stages including: (a) and (b)
apparently elastic deformation, (c) macroscopic plastic yielding with a
typical stress overshoot, (d) and (e) strain softening or stress drop, and
(f) onset of homogeneous flow. The observed constitutive behaviors can
be well explained in terms of the interaction of STs and free volume
(local dilatation) dynamics [6]. It is noteworthy that the plastic yielding
occurs at an inelastic strain of 0.0218. This critical strain obeys the T2/3

scaling law reported by Johnson and Samwer [4] based on the

cooperative shear of STs.
Fig. 2(a) gives the XRD intensity curves of the six transient config-

urations and the unstrained as-cast state, and the first diffraction peaks
are enlarged in the inset. The average interatomic distance 〈 〉d can be
calculated by the position of the first peak according to Bragg's law,
which varies with the inelastic strain, as shown in Fig. 2 (b). According
to the work reported by Huang et al. [40], the weakest solvent-solvent
(ZreZr) atomic pair should make a dominated contribution to change of
the 〈 〉d . Under the macroscopic compression, the 〈 〉d decreases mono-
tonically even after the plastic yielding. However, with the occurrence
of strain softening, the decrease of 〈 〉d slows down, and eventually turns
to increase during the softening-to-flow (STF) transition process. It is
also noted that there is a decrease retardance of 〈 〉d at the inelastic
strain of 0.0218 when the plastic yielding occurs. These results clearly
indicate that the dilatation of atomic packing is closely associated with
the plastic yielding or flow, which compensates or even overcomes the
decrease of 〈 〉d induce by the macroscopic compression.

We further study the dilatancy effect of plasticity in real space to
ferret out its structural origin. Fig. 3(a) shows the PDFs by taking the
Fourier transform of the XRD intensity curves in Fig. 2(a). The PDF
describes the average probability for finding atoms at a distance r from
a given atom [25,28]. From the PDF curves, we identify a series of
peaks corresponding to the first six coordination shells that cover the
lengthscale ranging from SRO to MRO. One can notice that all of the
second peaks split into two subpeaks (right and left), which represents a
typical glass structure [41]. Based on these coordination peaks in PDF,
we shall define the local atomic strain as [42,43] = − =ε r r r p( )/ ,l p p p

0 0 1,
2-1, 2-2, 3, 4, 5, and 6, where rp

0 and rp denote the peak positions before
and after compression, respectively. The εl measures the relative change
of average position of atoms in different shells due to the macroscopic
compression. Fig. 3(b) presents the distribution of the local atomic
strains εl along different coordination shells, which evolves with the
macroscopic inelastic strains. Overall, the distribution of εl is spatially
heterogeneous upon the deformation. Compared to other reports
[26–28], an intriguing finding is that the right subpeak −r2 2 of the

Fig. 1. The stress–strain curves of the Vitreloy 105 amorphous alloy at 643 K
compressed to different total strains: (a) 0.015, (b) 0.025, (c) 0.040, (d) 0.050,
(e) 0.070, and (f) 0.090. The corresponding inelastic strains are (a) 0.0018, (b)
0.0082, (c) 0.0218, (d) 0.0327, (e) 0.0545, and (f) 0.0751.

Fig. 2. (a) XRD intensity curves of the Vitreloy 105 amorphous alloy at dif-
ferent inelastic strains; Inset highlights the positions of the first peaks. (b)
Change of the average interatomic distance with the inelastic strain.
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second shell undergoes abnormal tensile strains during certain de-
formation stages. To make this clearer, we plot the local atomic strain εl
as a function of the inelastic strain at different coordination shells, as
shown in Fig. 3(c). Obviously, the abnormal tension at −r2 2 only occurs
before the macroscopic yielding and during the STF transition process.
This is consistent with the dilatation signatures denoted by the 〈 〉d in
Fig. 2(b), demonstrating the structural origin of the plasticity dilatancy.
Importantly, the characteristic lengthscale of the local dilatation is of
about 0.56 nm at −r2 2, not at the usually suggested single-atomic-scale
[1]. This agrees well with the finding reported by Lu et al. [7] who used
a colloidal glass to simulate amorphous plasticity. They found that local
free volume or dilatation that shows the best correction with STs should
be coarse-grained to a lengthscale near the second shell. The agreement
suggests that amorphous alloys and colloidal glasses share the identical
mechanisms of plasticity [5,44], although their constituent particles
have a huge size-difference of at least 4 orders of magnitude.

It is further noted that local compressive strains are accommodated
mainly by the left subpeak at −r2 1 and the fourth shell at r4, leading to
two peaks in Fig. 3(b). Before the macroscopic yielding, the former is

even stronger than the latter. This implies that the plasticity is triggered
by rearrangements of the second-shell atoms. A reasonable reason is
that the second shell simultaneously accommodates the local dilatation
before the plastic yielding. However, the −r2 1 subpeak does not con-
tribute any longer to subsequent strain softening that is mainly domi-
nated by the r4 shell. We find that the fourth shell is at the lengthscale of
about 1 nm, which is the characteristic size of local atomic cluster ac-
commodating the largest local strain. Similar results were also reported
for compression [23,26] or tension [25,27] of other amorphous alloys,
in which local atomic strain shows a peak at the lengthscale around
1 nm. These lenghscales are consistent with the characteristic sizes of
STs [45,46], identifying STs as basic carriers of amorphous plasticity. At
last, it seems that the second shell is responsible again for the homo-
geneous flow where local tensile and compressive strains rebuild at the

−r2 2 and −r2 1 subpeaks, respectively.
The above analyses point to a fundamental flow event for amor-

phous plasticity. When an external deformation is applied, all co-
ordination shells make responses immediately to accommodate local
strains except the first one. Due to inherent fluctuations of coordination
atoms [41], the second shell participates preferentially in deformation
at its left subpeak, and simultaneously accommodates the deformation-
induced dilatation at its right subpeak. The positive interplay between
deformation and dilatation [6] triggers STs at the second shell. In fact,
by simulating the activation processes in a metallic glass model, Fan
et al. [47] also found that thermally activated deformation originates
from subnano-scale rearrangements of a small number of atoms. At the
same time, the ST can spatially extend to the fourth shell at the
lengthscale of about 1 nm. The two-shell cooperative rearrangements
during STs lead to macroscopically perceptible plastic yielding. How-
ever, the subsequent strain softening is mainly attributed to the fourth-
shell rearrangements at larger lengthscales. With the onset of homo-
geneous flow, the second-shell rearrangements at smaller lengthscales
dominate the deformation and dilatation again. It is believed that the
transfer of atomic rearrangements between −r2 1 and r4 is mediated by
the local dilatation at −r2 2. The change of characteristic size of STs
during different deformation stages was also proposed by Shao et al.
[48] based on the high-resolution observations of shear bands and by
Jiang et al. [10] to theoretically predict local dilatation in shear bands.
Our present result confirms their proposal, all showing that the char-
acteristic size of STs at the mature flow stage is relatively smaller than
that at the initial deformation stage.

Finally, we examine the STs' dilatancy by SAXS at the nanoscale
structural level, which is not touched upon previously. Fig. 4(a) pre-
sents the SAXS intensity I q( ) curves for the six deformed configurations
and the unstrained as-cast state, and the inset shows that there is indeed
a slight variation of I q( ) with the inelastic strain. To get a quantitative
result, we calculate the SAXS integral invariant [49] ∫=

∞Q I q q q( ) d0
2 ,

which measures the average fluctuation of nano-scale scatters that are
local soft and hard regions of atoms here [37]. Fig. 4(b) shows the in-
tegral invariant Q as a function of the inelastic strain. Very interest-
ingly, the variation trend of Q is totally identical with that of the
average interatomic distance 〈 〉d in Fig. 2(b), and certainly the direc-
tions are opposite. The consistence implies that the local dilatation at

−r2 2 can be perceived not only in terms of the 〈 〉d at the atomic-scale, but
also by the nano-scale structural heterogeneity. It is well known that an
amorphous structure consists of nano-scale local soft and hard regions
[50–52]. Clearly, the pure elastic compression could strengthen the
interface of two regions, corresponding to an increase of the Q. How-
ever, ST operations with local dilatation in soft regions will lead to the
collapse of surrounding hard regions, which blurs or weakens the in-
terface between hard and soft regions. Therefore, the ST's dilatancy is
responsible for the slowing down of the Q increase at the plastic
yielding, and the decrease of the Q during the STF transition process.

Fig. 3. (a) Pair distribution functions at different inelastic strains. (b)
Distribution of local atomic strains at different coordination shells with in-
creasing inelastic strains. (c) Local atomic strains as a function of inelastic
strains at different coordination shells.
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4. Conclusions

In summary, this study provides compelling evidence for the dila-
tancy of amorphous plasticity. We use the X-ray synchrotron radiation
to probe the atomic-to-nano-scale structural evolution of a typical
amorphous alloy frozen at different deformation stages. It is revealed
that local dilatation is accommodated by the second coordination shell,
which operates before the plastic yielding and during the STF transition
process. The subnano-scale local dilatation can mediate the transfer of
atomic rearrangements between the second and fourth coordination
shells, identifying a nano-scale flow event as ST. Finally, the dilatancy
of amorphous plasticity can be indicated by the nano-scale structural
heterogeneity. These findings shed new insight into the dilatancy of STs
and further improve the ST picture of amorphous plasticity. In the
present work, both macroscopic deformation and atomic strains are
discussed from a sample-averaged perspective. However, once we fur-
ther consider the spatial heterogeneity of ST's dilatancy [7], the loca-
lization of plastic flow into shear bands can be understood [15,53,54].
The picture from ST-mediated dilatation (or local free volume) to
amorphous shear banding has been extensively described in Refs.
[10,55].
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