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Direct numerical simulations of temporally evolving supersonic turbulent channel flows of thermally perfect gas are conducted
at Mach number 3.0 and Reynolds number 4800 for various values of the dimensional wall temperature to study the influence of
the latter on the velocity-temperature correlations. The results show that in a fully developed turbulent channel flow, as the
dimensional wall temperature increases, there is little change in the mean velocity, but the mean temperature decreases. The
mean temperature is found to be a quadratic function of the mean velocity, the curvature of which increases with increasing
dimensional wall temperature. The concept of “recovery enthalpy” provides a connection between the mean velocity and the
mean temperature, and is independent of dimensional wall temperature. The right tails of probability density function of the
streamwise velocity fluctuation grows with increasing dimensional wall temperature. The dimensional wall temperature does not
have a significant influence on the Reynolds analogy factor or strong Reynolds analogy (SRA). The modifications of SRA by
Huang et al. and Zhang et al. provide reasonably good results, which are better than those of the modifications by Cebeci and
Smith and by Rubesin.
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1 Introduction

Supersonic turbulent channel flows are of great importance
in engineering applications and gas dynamics. In the study of
such flows, an important role is played by velocity-tem-
perature correlations (VTC), which are of particular sig-
nificance for investigations of the effect of strong wall
heating on the large-scale structure of the turbulence and its

contribution to heat transfer [1,2]. VTC can be derived at
three different levels: from the Reynolds analogy between
mean wall friction and temperature variations [3-6], from the
Crocco-Busemann relation [7,8] between mean velocity and
temperature, and from the strong Reynolds analogy (SRA)
concerning turbulent stresses and turbulent heat fluxes
[9,10].
There have been many studies focusing on the VTC for

supersonic flows, including wall temperature effects. Most
previous studies have considered calorically perfect gas. For
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example, the Reynolds analogy was first presented by Rey-
nolds [11] in the context of incompressible flow on the basis
of the similarity between the Reynolds-averaged momentum
and energy equations. Busemann [7] and Crocco [8] in-
dependently obtained a relation for compressible laminar
boundary layers by assuming unit Prandtl number. Their
derivations of this Crocco-Busemann relation were then
extended to turbulent boundary layers by van Driest [12],
and it was found that the mean temperature is a quadratic
function of the mean velocity. Subsequently, based on sev-
eral assumptions, including neglect of turbulent dissipation
and pressure-strain terms, Walz [13] derived a modified
Crocco-Busemann relation. Theories analysis [14], experi-
mental measurements [15-19] and direct numerical simula-
tion (DNS) [20-25] have demonstrated the validity of Walz’s
equation for adiabatic boundary layers. Duan et al. [24]
carried out DNS of a supersonic boundary layer with dif-
ferent wall temperature, and found deviations from the
quadratic dependence of mean temperature on mean velocity
as the wall temperature decreased (and thus wall heat flux
increased). Zhang et al. [26] derived a generalized Reynolds
analogy by introducing a general recovery factor, which
overcomes the limitations of Walz’s equation in the presence
of nonadiabatic wall. Moreover, Duan and Martín [27] in-
troduced a nondimensional “recovery enthalpy” to remove
the dependence of Walz’s equation on thermal and chemical
models.
SRA, introduced by Morkovin [9], concerns the relation-

ship between velocity and temperature fluctuations. Three
main relations based on SRAwill be discussed in the present
study. Two of them predict full anticorrelation between
streamwise velocity and temperature R = 1u T and a con-
stant turbulent Prandtl number Pr = 1t . However, these pre-
dictions have been found to be in quite strong disagreement
with experimental results for supersonic adiabatic boundary
layers, which give values of Ru T 0.5-0.6 and Prt 0.7-
0.8 [10,22,28]. Moreover, non-negligible total temperature
fluctuations exist, violating one of Morkovin’s precondi-
tions. These inconsistencies are even more pronounced for
isothermal-wall boundary conditions in developing bound-
ary layer [23,24,29] and in fully developed channel flows
[2,30,31], for which Ru T is not only far from unity but also
positive. To overcome this defect, several modified SRAs
have been proposed to take into account surface heat flux,
such as ESRA of Cebeci and Smith [32], GSRA of Gaviglio
[29], RSRA of Rubesin [33], and HSRA of Huang et al. [30].
HSRA agrees best with the results of DNS for different wall
temperature and flow situations [22,23,34-37]. Duan and
Martín [27] noted that HSRA was derived assuming calori-
cally perfect gas, and proposed a generalized form (GHSRA)
with this assumption removed.
For supersonic flows, the isothermal wall condition is

widely employed. However, for engineering applications, it
is often necessary to take account of the effects of varying
wall temperature. If the temperature near the wall is very
high, and a new thermodynamic environment may be es-
tablished compared with that at lower temperatures. In par-
ticular, when the temperature is above 500 K, specific heats
become a function of temperature, in which is called ther-
mally perfect gas (TPG) [38-40]. Chen et al. [41,42] studied
the effects of TPG on the turbulence statistics and energy
transfer, based on the DNS data for a high-temperature su-
personic turbulent channel flow. They found that the turbu-
lent flow field is significantly related to the dimensional wall
temperature. However, no definitive results have been re-
ported on the influence of the dimensional wall temperature
on the VTC in supersonic turbulent channel flow (STCF) of
TPG. Therefore, the main purpose of the present study is to
investigate the influence of dimensional wall temperature on
the VTC under these conditions.
The remainder of the paper is organized as follows. The

governing equations and details of the DNS are given in
sects. 2 and 3, respectively. Sect. 4 presents the results of the
DNS, together with a discussion. Finally, we summarize our
findings in sect. 5.

2 Governing equations

The governing equations are the time-dependent three di-
mensional Navier-Stokes equations in nondimensional form.
The governing equations for mass, momentum, and energy
conservation, respectively, are as follows:

ut x+ ( ) = 0, (1)
j

j

u u u ft x p Re
( ) + + 1 = , (2)i

j
i j ij ij i

( )u u f uE
t x E p Re q+ ( + ) 1 + = , (3)

j
j i ij j i i

where , p, T and u j are the nondimensionalized density,
pressure, temperature and velocity vector, respectively. The
velocity is nondimensionlized by its free-stream values, and
these thermaldynamic quantities (density, pressure and
temperature) are nondimensionlized by their wall values. f i
is the body force vector and is non-zero only for i=1. Re is the
Reynolds number. The pressure p, total energy E, shear
stress tensor ij and conductive heat flux qj are given by

p T
Ma= , (4)2

uE C T u= + 1
2 , (5)i iV
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where ij is the Kronecker tensor, Ma is the Mach number, Pr
is the Prandtl number, μ is the viscosity (calculated by the
Sutherland’s law, ( ) ( )µ T T T T= 1+110.4 / / + 110.4 /3/2

w
**

w
** ,

double asterisks ** indicates dimensional flow variables). γ
is the specific heat ratio, and CV and Cp are the specific heat
at constant volume and pressure. The gas is assumed to be
the pure air consisting of molecular oxygen (O2) and mole-
cular nitrogen (N2). Its specific heat is the sum of transla-
tional, rotational, and vibrational specific heats

C C C C= + + , (8)V V,tr V,r V,v

C C R= + , (9)p V

C C= / , (10)p V

where R is the nondimensionalized gas constant. The trans-
lational, rotational, and vibrational specific heats at constant
volume can be calculated respectively as [38-42]:

C R T
u= 3

2 , (11)V,tr
* * w
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b
** 2

C R T
u= , (12)V,r

** w
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**2

C T
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b
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where is the characteristic vibrational temperature. Bulk
and wall conditions are indicated by subscript b and w de-
note, respectively.

3 Descriptions of the DNS

Five DNS of temporally evolving STCF, with dimensional
wall temperatures ranging from 149.075 to 1788.90 K, are
conducted at Mach number 3.0 and Reynolds number 4880.
The Mach number, Ma u c= /b w, is based on the bulk ve-

locity and sound speed at the isothermal wall, and the Rey-
nolds number, Re u H µ= /w b w, is based on the bulk density,
bulk velocity, channel half-width, and viscosity at the iso-
thermal wall. The flow and computational parameters are
given in Table 1. The Prandtl number Pr and wall tempera-
ture Tw are 0.7 and 1.0, respectively.
The DNS results are generated using the code developed

by Chen et al. [41,42]. The numerical code has been devel-
oped from code for calorically perfect gas (Li et al. [34,43-
47], OPENCFD). OPENCFD has been proven to be very
useful for a wide range of supersonic and hypersonic tur-
bulent flows, including supersonic turbulent channel flows.
The Navier-Stokes equations, shown in sect. 2, are solved by
Van-Leer flux vector splitting, and the 7th weighted essen-
tially non-oscillatory scheme [48] is used to discrete the
convection terms. The viscous terms are approximated with
an 8th central difference scheme. A 3rd Runge-Kutta method
is used for time integration. Periodic boundary conditions are
adopted in the streamwise and spanwise directions for
computational efficiency. On the wall boundaries, nonslip
conditions are used for the velocity, and the wall temperature
is kept isothermal.
The computational domain and grid parameters are given

in Table 2. The computational domain size is Lx×Ly×Lz=
4πH×2H×4πH/3 in the stream-wise x, wall-normal y and
span-wise z directions, respectively. The number of grid
points is n n n× × = 571 × 261 × 251x y z with a hyperbolic-
tangent-type stretching in the wall-normal direction. The grid
spacings in the three directions are shown in Table 2.
Averages are performed over the homogeneous directions

(x and z) and time (t). This averaging process implies that any
partial derivative of a variable quantity in the wall-normal
direction is equivalent to a total derivative. Let us introduce
the notation used in the equations that follow: and { }
denote ensemble and Favre averages, respectively. Turbulent
fluctuations with respect to the Reynolds and Favre averages
are indicated by single (′) and double (″) primes, respectively.
Isothermal walls lead to mean property variations that are

qualitatively different from those found in adiabatic wall
boundary layers [3], since they allow the heat generated by
dissipation to be transformed out of the channel. Steep near-
wall mean gradients are very important attributes of iso-
thermal wall flow. Some of the quantities, which are specific

Table 1 Flow and computational parameters for different dimensional wall temperature

Cases T w
* (K) Ma Re Pr T w

WT1 149.075 3.0 4880 0.7 1.0

WT2 298.15 3.0 4880 0.7 1.0

WT3 596.30 3.0 4880 0.7 1.0

WT4 1192.6 3.0 4880 0.7 1.0

WT5 1788.9 3.0 4880 0.7 1.0
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to the present non-adiabatic boundary layer, are investigated
here. The friction Mach number, Ma u c= / w, is based on
the wall sound speed and friction velocity (u = /w w ,

( )µ u y= /w w w
). The friction Reynolds number,

Re u H µ= /w w, is based on the channel half-width and the
wall friction velocity. A nondimensional heat flux,
B q C u= /q pw w w (where the wall heat flux is

( )q C µ Pr T y= / /w p w w w
), is another “inner layer”

parameter and, together with Ma is assumed to uniquely
determine the compressible law of the wall [3]. A summary
of the values of these and other time-averaged data for dif-
ferent dimensional wall temperature conditions is given in
Table 3.

4 DNS results and discussions

4.1 Velocity and temperature analysis

To represent the degree of vibrational energy excitation, we
adopt the “vibrational energy excited degree [49],” defined
as the ratio of vibrational specific heat at constant volume to
the sum of the other two specific heats at constant volume:

C
C C

=
+

. (14)C
V,v

V,tr V,r
V

Note that CV
has an strong temperature dependence, in-

creasing significantly with increasing dimensional wall
temperature, as shown in Figure 1. For low dimensional wall
temperature conditionWT1, whose flow field is very close to
that of calorically perfect gas, the contribution of vibrational

energy is very small with a peak value of CV
of just 0.009.

However, for WT3, for which CV
is greater than 0.1 in most

regions of the channel, the vibrational energy becomes im-
portant. When the dimensional wall temperature increases to
1788.30 K (WT5), the peak value of CV

reaches 0.376 in-
dicating that the vibrational energy has become fully excited.
Figure 2(a) and (b) show the mean velocity u{ } and mean

temperature T{ } in the wall-normal direction, respectively. It
can be seen that u{ } is only slightly affected by the dimen-
sional wall temperature, whereas T{ } decreases with in-
creasing dimensional wall temperature. The main reason for
this is that the excited vibrational energy leads to a more
significant transformation of more significant transform of
kinetic energy to internal energy.
Figure 3 shows the van Driest transformed velocity u vd

+

versus wall scaling y+, which are defined as:

Table 3 Time-averaged parameters for different dimensional wall temperature

Cases Maτ Reτ –Bq w c Tc
µ
c w c

WT1 0.115 460.52 0.1455 2.444 0.948 2.550 2.154 1.400 1.396

WT2 0.118 443.59 0.1344 2.317 0.952 2.380 1.829 1.399 1.366

WT3 0.123 428.25 0.1282 2.142 0.955 2.136 1.598 1.378 1.323

WT4 0.127 420.24 0.1193 2.039 0.957 2.069 1.503 1.325 1.296

WT5 0.128 411.74 0.0952 1.984 0.959 2.029 1.437 1.305 1.291

Figure 1 (Color online) Distribution of vibrational energy excited degree
for different dimensional wall temperature.

Table 2 Grid resolution and domain size for different dimensional wall temperature

Cases Lx/H Ly/H Lz/H nx ny nz Δx+ y
w
+ y

max
+ Δz+

WT1 4π 2 4π/3 571 261 251 10.12 0.243 8.97 7.676

WT2 4π 2 4π/3 571 261 251 9.763 0.230 8.65 7.403

WT3 4π 2 4π/3 571 261 251 9.419 0.226 8.35 7.149

WT4 4π 2 4π/3 571 261 251 9.248 0.222 8.19 7.014

WT5 4π 2 4π/3 571 261 251 9.061 0.218 8.03 6.871
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Note that the profiles of the van Driest transformed velo-
city for different dimensional wall temperature conditions
collapses to the incompressible log law

u y C= 1ln + , (17)vd
+ +

with Kármán constant κ similar to the incompressible value
0.41. However, the logarithmic curve coefficient C is greater
than 5.5, which is different from that of incompressible flow
[3].
The root mean square (RMS) velocity fluctuations provide

an appropriate measure of the turbulent intensity. RMS ve-
locity fluctuation, defined as u u u=rms

1/2 (and similarly
for v rms and w rms), is often used to quantify the turbulent
intensity. These fluctuations, normalized by conventional

wall variables (defined in terms of the mean density, visc-
osity, and shear stress at the wall), are shown in Figure 4(a),
from which it can be seen that there are clear variations with
dimensional wall temperature. For example, the peak value
increases with increasing dimensional wall temperature, and
the position of the peak shifts further away from the wall,
especially for u rms. In addition, Figure 4(b) shows the RMS

temperature fluctuation (T T=rms
2 ) versus wall scaling

(y y u µ= /+
w w). Fairly large temperature fluctuations are

found for all cases, especially close to the wall. The mag-
nitude of T T/ { }rms increases with decreasing dimensional
wall temperature, and the maximum values shift further
away from the wall.
Figure 5(a) and (b) show the turbulent Mach number Ma t

and RMSMach number fluctuation Ma rms, respectively. The
turbulent Mach number, defined as the ratio of the RMS
velocity fluctuation to the mean sound speed,

Ma u c= / { }jt
2 (c RT Ma= / is the sound speed), is an

indicator of the significance of compressibility effects. Ac-
cording to ref. [10], Ma t has a threshold of 0.3, above which
compressibility effects become important for turbulent be-
havior. It can be seen from Figure 5(a) that there are some
regions in the flow where Ma t is greater than 0.3. The
magnitudes of Ma t increases with increasing dimensional
wall temperature close to the wall, which is due mainly to the
difference in mean sound speed in this region. The peak
value of Ma t is about 0.410 for WT5, compared with a peak
value of 0.356 for WT1. In addition, it is commonly believed

that RMS Mach number fluctuation, Ma u c= ( / )rms
2 ,

exhibits a similar trend to Ma t . This conclusion has been
confirmed for compressible turbulent channel flows by Co-
leman et al. [35] and hypersonic turbulent boundary layers
by Duan et al. [24,25,27]. Coleman et al. [35] also reported

Figure 2 (Color online) Distributions of mean velocity (a) and mean temperature (b) for different dimensional wall temperature.

Figure 3 (Color online) Distribution of van Driest transformed velocity.
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that the difference between Ma t and Ma rms points to a sig-
nificant non-zero VTC. We have examined the profiles of the
relative deviation between Ma t and Ma rms, and can confirm
that analogous profiles exist for all cases, as shown in Figure
5(a) and (b). Moreover, the magnitude of Ma rms is smaller
than that of Ma t . It can be concluded that a significant VTC
is observed.
Figure 6(a) and (b) show the probability density functions

(PDFs) [19,50,51] of streamwise velocity fluctuation Pu and
temperature fluctuation PT near the wall ( y1 = 0.04), re-
spectively. For comparison, the standard Gaussian distribu-
tion (P = exp( /2) / 22 , where can be velocity,
temperature, or another quantity) is also displayed. It should
be emphasized that these PDFs are normalized to unit area.
Note that the marginal PDFs are remarkably different from
the standard Gaussian shape. Their tails are mostly shorter
than that of a standard Gaussian. Since the left tails of Pu are
shorter than the right tails, as shown in Figure 6(a), the high-
order moments of the streamwise velocity fluctuation are

determined by the right tails. With decreasing dimensional
wall temperature, the left tails of Pu continue to overlap one
another, whereas the right tails move apart. However, both
the left and right tails of PT overlap one another for different
dimensional wall temperature, as shown in Figure 6(b). PT
departs only slightly from an almost symmetric standard
Gaussian shape, and the profiles are shifted only slightly to
the positive side of T for all cases.
Figure 7(a) and (b) show the PDF of streamwise velocity

fluctuation with the associated sign of temperature fluctua-
tion, P T T ( < 0, or > 0)u , and the PDF of temperature
fluctuation with the associated sign of the streamwise velo-
city fluctuation, P u u ( < 0, or > 0)T , respectively. Note
that the effects of the signs of u and T on the corresponding
PDFs are similar. For example, P T ( < 0)u is almost com-
pletely confined to the negative side of T , while the inverse
trend is observed for P T ( > 0)u . Since the right tail of Pu

grows with increasing dimensional wall temperature, the
influence of dimensional wall temperature is concentrated at
P T ( > 0)u .

Figure 4 (Color online) Distributions of RMS velocity (a) and RMS temperature fluctuations (b) for different dimensional wall temperature.

Figure 5 (Color online) Distributions of turbulent Mach number (a) and RMS Mach number fluctuation (b) for different dimensional wall temperature.
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4.2 Skin friction and heat transfer

The Stanton number Ch and skin friction coefficient C f can
be written as:

C Q
u h h

C
u

= ( ),

= 1
2

.
(18)

h
a

w

e e w w

f
w

e e
2

The mean VTC at the wall can be characterized by the
Reynolds analogy (C C Pr= 1 / 2h f

2/ 3), which can be quan-
tified by the Reynolds analogy factor, defined by

R C
C= 2 . (19)h

af
f

Table 4 gives the skin friction C f , Stanton number Ch and
Reynolds analogy factor Raf. Note that C f slightly increases
and Ch slightly decreases with increasing dimensional wall
temperature. Raf remains nearly constant and has a value of

approximately 1.2 for all cases. These values are all within
the range between 0.9 and 1.3, as reviewed by Roy and
Blottner [52]. Therefore, the Reynolds analogy is still ap-
propriate in this condition. In addition, the fluctuations in
both w and Qw are close to 40% for all dimensional wall
temperature cases, as shown in Table 4.

4.3 Walz’s equation

Walz’s equation [13] can be written as:

T
T

T T
T

u
u r Ma T

T
u
u

{ } = 1 + { } 1
2

{ } , (20a)
w

r w

w e e
2 e

w e

2

T T r Ma= 1 + 1
2 , (20b)r e e

2

where Tr is the recovery temperature, r=0.89 is the recovery
factor, and the subscript e indicates properties at the edge of
the wall layer (the channel centerline in internal flow).

Figure 6 (Color online) PDFs of streamwise velocity fluctuation (a) and temperature fluctuation (b) near the wall (1−|y|=0.04) for different dimensional
wall temperature.

Figure 7 (Color online) PDFs of streamwise velocity fluctuation with the associated sign of temperature fluctuation (a) and temperature fluctuation with the
associated sign of streamwise velocity fluctuation (b) near the wall ( y1 = 0.04) for different dimensional wall temperature.
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Walz’s equation improves the Crocco-Busemann relation
and is in close agreement with the results of DNS for adia-
batic compressible turbulent boundary layers, although it
clearly deviates from DNS for isothermal supersonic turbu-
lent boundary layers. Taking into account the wall heat flux
qw, Zhang et al. [26] have overcome the limitations of Walz’s
equation in the presence of nonadiabatic walls by introdu-
cing a general recovery factor,

T
T

T T
T

u
u

T T
T

u
u

{ } = 1 + { } + { } , (21a)
w

rg w

w e

e rg

w e

2

T T r u
C

r T T
C
u

q
u

= + 2 ,

= 2( ) 2Pr .
(21b)p

p

rg e g
e
2

g w e
e
2

w
e w

Modesti and Pirozzoli [53] found that eqs. (20) and (21)
have the same form for external and internal flows. Figure
8(a) provides a comparison between the DNS data and the
predictions of eqs. (20) and (21) for WT5. Note that eq. (21)
gives better results. Similar results have been observed for
calorically perfect gas [53]. The VTC predicted by the
eq. (21) does not differ much from that obtained from DNS
data, as shown in Figure 8(b). Moreover, the curvature of the
quadratic function decreases with increasing dimensional
wall temperature.
To remove the explicit dependence of the velocity-tem-

perature relation on thermal and chemical models, Duan and

Martín [27] introduced a nondimensional “recovery en-
thalpy”,

h h h
h h= { } , (22a)r

* r w

e w

{ }h h r u= { } + { }
2 , (22b)r

2

h
h

h
h

h h
h f u

u r
u
h

u
u

{ } = + { }
1
2 { } , (22c)

e

w

e

e w

e e

e
2

e e

2

where ( )f u u{ } / e is nearly independent of free stream Mach
number, wall temperature, surface catalysis and enthalpy
conditions and can be fitted to a curve of the form

f u
u

u
u

u
u

{ } = 0.1741 { } + 0.08259 { } . (23)
e e

2

e

Figure 9 shows the nondimensional “recovery enthalpy”
h r

*. It can be seen that h r
* collapses the profiles for different

dimensional wall temperature.

4.4 Strong Reynolds analogy

Morkovin [9] proposed a number of SRA relations, three of
which are listed below:

( )
T T
Ma u u

/ { }
( 1) / { }

1, (24)rms
2

rms

Table 4 Skin friction and heat transfer for different dimensional wall temperature

Cases Cf (×10
−3) Ch (×10

−3) 2Ch /Cf Q Q/wrms w
/wrms w

WT1 7.128 4.401 1.234 0.401 0.389

WT2 7.156 4.294 1.200 0.407 0.385

WT3 7.197 4.247 1.180 0.401 0.391

WT4 7.281 4.208 1.156 0.409 0.399

WT5 7.208 4.199 1.165 0.410 0.402

Figure 8 (Color online) Relationship between mean temperature and mean streamwise velocity for WT5 (a) and different dimensional wall temperature (b).
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R u T
u T= 1, (25)u T

rms rms

Pr u v T y
v T u y= ( { } / )

( { } / ) 1, (26)t

where Prt is called the turbulent Prandtl number and is a
measure of the ratio of the turbulent kinematic heat transfer
to the turbulent kinematic momentum transfer.
Several “modified” forms of SRA have been proposed to

account for the heat flux at the wall and remove its wall

temperature dependence. For example, Cebeci and Smith
[32] derived an extended SRA (ESRA) based on eq. (24)

( )
{ }T T

Ma u u
C

T T
u u

/ { }
( 1) / { }

1 +
{ }

{ }{ } , (27)c

c

rms
2

rms
p

w t,

where Tt denotes the total temperature.
Gaviglio [29], Rubesin [33] and Huang et al. [30] have also

proposed modified SRA relations, denoted as GSRA, RSRA
and HSRA, which correspond to c = 1.0, c = 1.34, and
c Pr= t , respectively, in the following equation:

T T
Ma u u c T T

/ { }
( 1) ( / { })

1
[1 { } / { }]. (28)

T

rms
2

rms

More recently, by removing the assumption of calorically
perfect gas, Duan and Martín [27] derived the following
extended form of the HSRA (GHSRA) as below:

T Pr
T
u u= 1 { }

{ } . (29)rms
t

rms

Figure 10 shows the results of SRA and the modified SRAs
for different dimensional wall temperature. As can be seen
from Figure 10(a) and (b), SRA and ESRA give results that
are inconsistent with observations. Similar results for ca-
lorically perfect gas have been reported by Gaviglio [29]. As
explained by Morinishi et al. [37], not only is the total
temperature fluctuation not negligible compared with the

Figure 9 (Color online) Distribution of “Recovery enthalpy” h r
* versus

mean streamwise u u{ } / e for different dimensional wall temperature.

Figure 10 (Color online) Distributions of SRA (a), ESRA (b), GSRA (c), RSRA (d), HSRA (e) and GHSRA (f) for different dimensional wall temperature.
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temperature fluctuation, but also the condition of

( )T T T T T T/ { } 2 / { }T T
2 2 2 2 is not satisfied.

The trend exhibited by the GSRA is the same as that of the
RSRA, and the magnitude of GSRA is closer to 1 than that
for RSRA, as shown in Figure 10(c) and (d). The values of
the HSRA and GHSRA remain close to 1 among the channel,
as shown in Figure 10(e) and (f). Therefore, HSRA and
GHSRA are better than other modified SRAs at predicting
results for STCF of TPG. In addition, both the original SRA
and its modified SRA versions are relatively insensitive to
dimensional wall temperature.
Figure 11(a) shows the correlation coefficient between

streamwise velocity and temperature fluctuation Ru T , as
expressed in eq. (25). Note that Ru T is positive among the
channel, which indicates that u and T are positively cor-
relation, i.e., low streamwise velocities are associated with
low temperatures, and large streamwise velocities are asso-
ciated with high temperatures. This phenomenon, oriented
from quadrants 1 to 3, can also be observed in the in-
stantaneous joint probability density (JPD) of streamwise
velocity fluctuation versus temperature fluctuation near the

wall ( y1 = 0.04) for WT5, as shown in Figure 11(b).
According to the gradient diffusion hypothesis [10], positive
u transports hot gas to a colder region, which results in a
positive T . Ru T near to unity close the wall, but decreases
rapidly moving away from the wall. This behavior is similar
to that found for calorically perfect gas by Coleman et al.
[35] and Morinishi et al. [37]. Moreover, Ru T is insensitive
to the dimensional wall temperature.
Figure 12 shows the turbulent Prandtl number Prt, as ex-

pressed in eq. (26). It can be seen that Prt is relatively in-
sensitive to the dimensional wall temperature, and remains
close to unity among the channel.

5 Conclusions

Based on the assumption of TPG, we have performed DNS
of STCFs with Mach number 3.0 and Reynolds number 4880
to study the influence of dimensional wall temperature on
VTC. The dimensional wall temperature ranges from 298.15
to 1192.60 K. For dimensional wall temperature up to
596.30 K, the vibrational energy is important, since the vi-
brational energy excited degree is greater than 0.1.
The van Driest transferred mean velocity collapse for

different dimensional wall temperature with incompressible
flows. The mean and fluctuating temperature decrease with
increasing dimensional wall temperature. The difference
between turbulent Mach number and RMS Mach number
fluctuation leads to significantly non-zero VTC. The tails of
the PDFs of streamwise velocity and temperature fluctua-
tions are shorter than that of a standard Gaussian. The in-
fluence of dimensional wall temperature is greatest on the
right tails of the PDF of streamwise velocity fluctuation, and
increases with increasing dimensional wall temperature. The
Reynolds analogy factor remains close to 1.2 for all di-
mensional wall temperature cases.

Figure 11 (Color online) (a) Distribution of Ru T for different dimen-
sional wall temperature; (b) joint probability density of instantaneous
streamwise velocity fluctuation versus temperature fluctuation near the wall
( y1 = 0.04) for WT5.

Figure 12 (Color online) Distribution of Prt for different dimensional
wall temperature.
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The mean temperature is a quadratic function of the mean
velocity. The profiles do not collapse and their curvatures
increase with increasing dimensional wall temperature.
Walz’s equation gives poorer results than the modification by
Zhang et al. The introduction of “recovery enthalpy” pro-
vides an explanation of the relation between mean velocity
and mean temperature, which is independent of dimensional
wall temperature.
SRA is relatively insensitive to the dimensional wall

temperature among the channel, although the original SRA
relation breaks down for all dimensional wall temperature
cases. The modifications of SRA by Huang et al. [30] and
Zhang et al. [26] provide reasonably good results and are
better than the modifications by Cebeci and Smith and by
Rubesin. The streamwise velocity and temperature fluctua-
tions are perfectly anticorrelated and the turbulent Prandtl
number is close to unity.
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