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A B S T R A C T

To reveal the void dominated fracture mechanism, cavitation instabilities in metallic glasses are studied through
analytical and numerical approaches, with particular attention on surface energy and thermal effects. The cri-
tical pressure for unbounded growth of voids is determined, which increases apparently as surface energy is
taken into account. A dimensionless number Iγ which is a ratio of the energy required to form new void surface
and the energy dissipated by plastic deformation is proposed. It is found that the surface energy significantly
impedes void growth at the early stage of void growth when Iγ is large. Besides, to address the thermal effects,
another dimensionless number Ith, which reflects the competition of momentum diffusion and thermal diffusion,
is presented. Results of numerical simulations show that the thermal effects first promote and finally impede the
void growth at the late stage of void growth when Ith ≤ 1. Further study on combined influence of inertia,
surface energy and thermal effects reveals the factors which are dominant as the process develops.

1. Introduction

Metallic glasses are amorphous metastable solids fabricated by a fast
quenching process. Different from traditional crystalline materials, they
have atomic structures without translational orders, and lack structural
defects such as vacancies, dislocations and grain boundaries. Due to this
unique atomic structure, metallic glasses, on one hand, have excellent
physical and mechanical properties including high strength, high
hardness, good corrosion and wear resistance. On the other hand,
plastic deformation in metallic glasses is very localized, and the fracture
behavior usually is brittle, which impedes their wide application in
many areas. Previous works have shown that shear bands are prone to
be nucleated in metallic glasses under dynamic or even quasistatic
loading: their fast propagation and interaction leads to macroscopic
failure (Jiang and Dai, 2009). However, metallic glasses can also fail by
cavitation instabilities (Huang et al., 2013,2016; Murali et al., 2011).
This ductile fracture behavior has been confirmed by many experi-
mental observations. Under quasistatic tensile loading, typical dimple
patterns, nanoscale periodic corrugations and honeycomb structures
were observed on the fracture surfaces of tested samples
(Bouchaud et al., 2008), which indicated that the fracture occurs via
cavitation instabilities. In spallation experiments, similar patterns such
as void or dimple structures and equiaxed cellular patterns were found

on the spalled surfaces of recovered samples, which implied that the
spallation also takes place by void nucleation, growth and coalescence
(Huang et al., 2011). Even in a shear instability process, cavities of
different length scales can be found along the shear bands, which are a
signature of a shear-band-to-crack transition (Liu and Maaß, 2018; Liu
et al., 2017; Maaß et al., 2015). These works indicate that besides shear
banding instabilities, cavitation instabilities are also the intrinsic re-
sponse process under external stimuli in metallic glasses, which dom-
inate the ductile fracture process at the microscopic scale.

Cavitation instabilities are the principal mechanism for ductile
fracture in conventional crystalline materials, which have been in-
tensively studied in the past few decades. It seems that Ball (1982) first
recognized the existence of cavitation instabilities. By studying the re-
sponse of a spherical cavity in a nonlinear elastic body under tension, a
crucial concept of cavitation pressure was demonstrated to exist. The
pressure is not only the critical condition for the bifurcation phenom-
enon from a defect-free solid to a solid containing a void, but also the
pressure for continuous and unbounded growth of a pre-existing void
(Horgan and Abeyaratne, 1986). The analysis was then extended to
elastic-plastic materials with different initial void shapes and under
axisymmetric remote stress states. It was found that the criterion for
cavitation instabilities depends on the attainment of a critical value of
the mean stress (Huang et al., 1991), and the initial void shape has little
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influence on cavitation pressure (Tvergaard and Hutchinson, 1993).
Subsequent works from Wu et al. (2003) confirmed that the effects of
thermal softening lower the threshold stress, while the effects of strain
gradient greatly increase the threshold stress for cavitation instabilities.
As the cavitation pressure is attained, it is important to address the
factors which dominate the void growth process. Via investigation on
void growth in a rigid-viscoplastic solid, Ortiz and Molinari (1992)
indicated that the viscous effects are important at the early stage of void
growth, while inertia tends to dominate the long-term response.
Tong and Ravichandran (1995) examined the inertial effects on void
growth in a viscoplastic material, they found that the inertia effects
dominate for larger void size and higher loading rate. Recently,
Wu et al. (2003) made a comprehensive study on dynamic void growth,
their results showed that the effects of rate-hardening are to reduce the
rate of void growth in the early stages of void growth, while the inertial
effects first impede but finally promote the void growth. For the
thermal effects, they are strongly affected by the initial void size. If the
void is large enough, apparent thermal softening results in a higher
growth rate.

Whereas much attention has been given to cavitation instabilities in
conventional crystalline materials, the mechanism in metallic glasses
remains relatively unclear. Bouchbinder et al. (2008) studied the dy-
namics of the boundaries of voids in metallic glasses, with the plasticity
described by an athermal shear transformation zone theory. The ex-
istence of cavitation instabilities was predicted, and the threshold for
unbounded growth was obtained. With the context of free volume
theory, we use the single spherical void model to study cavitation in-
stabilities in metallic glasses in our previous work (Huang et al., 2013).
It is found that higher pressure sensitivity coefficient lowers the critical
pressure for unbounded growth. The competition of inertial effects,
loading rate effects and viscous effects dominates the dynamic void
growth process. Moreover, Singh et al. (2013) investigated cavitation in
metallic glasses with distributed weak zones. Their results showed that
the critical pressure for cavitation instabilities is significantly decreased
by the presence of weak zones, and does not reduce appreciably as the
stress ratio decreases from unity. Although the above works shed lights
into the nature of cavitation instabilities in metallic glasses, there are
still some questions that have not been answered:

• Does surface energy have influence on void growth at the early stage
in metallic glasses? Nanoscale periodic corrugations have been ob-
served on the fracture surfaces, which implies that the growth
process of voids in metallic glasses may occur at very small scales of
10° nm–101 nm. The length scales are close to that of void nuclea-
tion (∼1 nm), which is the creation of a void in defect-free solids
with the size large enough to grow under applied stress field
(Huang et al., 2011). As surface energy contributes much to the free
energy barrier for void nucleation, it is expected that it may con-
tinue to play an important role at the early stage of the void growth
process. However, these effects on void growth have drawn rela-
tively little attention.
• How to address the thermal effects on void growth at the late stage
in metallic glasses? Dimple structures and equiaxed cellular patterns
larger than 102 nm can be also found on the fracture surfaces of
metallic glasses. At those length scales, temperature rise of matrix
material surrounding the voids may become more and more ap-
parent according to the results in conventional crystalline materials.
As both the free volume softening and the thermal softening play
important roles in viscous flow of the metallic glasses, it is worth to
investigate the influence of thermal effects on void growth.

To this end, this paper studies cavitation instabilities in metallic
glasses under remote tensile loading, with particular attention on sur-
face energy and thermal effects. To take these effects into account, a
virtual tensile pressure is assumed to be applied to the internal surface
of the void, and a temperature evolution equation is added to the

governing equations . The critical pressure for cavitation instabilities is
determined theoretically, with the dependence on surface energy ad-
dressed. To examine the effects of surface energy on void growth, a
dimensionless number which is a ratio of the energy required to form
new void surface to the energy dissipated by plastic deformation sur-
rounding the void is presented, and numerical simulations are carried
out to quantify the effects. Besides, to address the thermal effects, an-
other dimensionless number which reflects the competition of mo-
mentum diffusion and thermal diffusion is proposed. The influence of
thermal effects on the evolution of free volume concentration and the
change of material viscosity is studied. Finally, the combined influence
of inertia, surface energy and thermal effects are investigated, and the
roles that they play at different stages of void growth are discussed.

2. General formulation

2.1. The basic model

We consider a spherical void of radius a in an infinite metallic glass
under hydrostatic tensile loading. As shown in Fig. 1, the void grows as
the remote hydrostatic tensile pressure is applied. As the material sur-
rounding the void is homogenous and isotropic, both the void and the
elastic-viscoplastic boundary are assumed to remain spherical
throughout the growth process. Then, according to continuum me-
chanics, the equation of motion is written as:

d
dr r

r2 ( ) ¨r
r+ = (1)

where σr and σθ are the principal stresses along the radial and tangential
directions respectively. The metallic glass material surrounding the
void is assumed to obey an elastic-viscoplastic constitutive law as:
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where ɛij is the strain tensor deviator, sij the stress deviator, μ the shear
modulus, and η the viscosity. To characterize the pressure sensitivity in
plastic flow, the yield criterion of BMGs suggested by Sun et al. (2010)
is used. In this criterion, ( )/2r= is the maximum shear stress,
p ( 2 )/3r= + is the hydrostatic pressure, Q is the pressure sensitivity
coefficient and the term C T T^ ( / )g1

1/2 represents the yield strength (^
is the barrier shear resistance of a shear transformation zone-STZ, C1 is
a coefficient that reflects the dependence of strength on temperature, T

Fig. 1. Schematic diagram of a single void in an infinite body under remote
hydrostatic tensile pressure. a is the void radius, papp the applied tensile pres-
sure, and rC the elastic-viscoplastic boundary which divides the matrix material
into two zones: the inner viscoplastic zone and the outer elastic zone.
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is the temperature, and Tg is the glass transition temperature).
The viscosity of metallic glasses is stress dependent, which is de-

fined as (Steif, 1983):

( )( ) ( )f2 exp sinh exp
e
p

e
G

k T k T2
1m

B

e
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=
(4)

where J s s /2e ij ij2= = is the effective shear stress, p the plastic
strain rate, f the frequency of atomic vibration (∼Debye frequency),
ΔGm the activation energy, kB the Boltzmann constant, Ω the atomic
volume, and ξ the concentration of free volume ( v v/ *f= , here vf, χ
and v* are, respectively, the free volume, a geometric factor and the
effective hard-sphere size of an atom).

The free volume concentration is believed to be controlled by three
processes: diffusion, annihilation and generation. Following
Dai et al. (2005), the free volume obeys a diffusion equation:
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where D is the diffusion coefficient of free volume concentration and
G(ξ, T, τ, p) the net generation rate of free volume, S the effective shear
modulus (S µ2(1 )

3(1 )= + with ν being Poisson's ratio), nD the number of
diffusive jumps necessary to annihilate a free volume equal to v*, and κ
the bulk modulus. Here the generation of free volume is composed of
two parts: the extra free volume created by a shear stress and the vo-
lume dilation of matrix material under negative pressure.

As the volume dilation is so small, the contribution to the dis-
placement field can be neglected. Thus, we assume that the matrix
material is incompressible, namely in terms of the radial and tangential
strains,

2 0r + = (7)

2.2. Surface energy effects

To take the effects of surface energy into account, we assume that
there is a virtual tensile pressure applied to the surface of the void.
During the growth process, the work done by the virtual tensile pres-
sure is equal to the energy required to form new void surface:

P a da a da a4 [4 ( ) 4 ]2 2 2= + (8)

where Pγ is the virtual tensile pressure, γ is the surface energy.
According to previous works (Guan et al., 2013), the surface energy is
curvature dependent at small radii which can be written as

a/(1 2 / )= + . Here γ∞ is the surface energy of the flat surface and
δ is a parameter called the Tolman length. Thus, we have

P a2 /( 2 )r r a = = += (9)

Then the effects of surface energy are converted to a boundary
condition.

2.3. Thermal effects

To take the thermal effects into consideration, the equation of en-
ergy conservation is requested:

c dT
dt r r

r T
r

1 ( )p TQ e e
p

2
2= + (10)

where ρ is the density, cp the specific heat at constant pressure, λ the
thermal conductivity, βTQ the Taylor–Quinney coefficient, and e

p the
effective plastic strain rate.

3. Analytical results of cavitation instabilities

To derive the criterion for unbounded growth of the void, we con-
sider the quasistatic case. As there is enough time for the heat to be
conducted away in this case, the thermal effects can be neglected, and
we focus on the effects of surface energy. In spherical coordinates, the
equation of equilibrium is

d
dr r

2 ( ) 0r
r+ = (11)

with the boundary conditions

a p2 /( 2 ) andr r a r r
app= + == = (12)

If the applied loading is sufficiently high, the matrix material sur-
rounding the void is divided into two zones by the elastic-viscoplastic
boundary at r rC= . In the elastic zone r≥ rC, the stress components and
radial displacement are
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In the viscoplastic zone a≤ r≤ rC, the equilibrium equation be-
comes

d
dr Q
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r
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Using the boundary condition at r a= and the contininuity of radial
stress σr across the elastic-viscoplastic boundary, we can obtain
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Following Hill's analysis (Hill, 1950) and our previous work
(Huang et al., 2013), if the elastic-viscoplastic boundary rC is taken as
the scale of “time”, the velocity v of a particle means that the particle is
displaced by an amount vdrCwhen the elastic–viscoplastic boundary
moves outwards a further distance drC. Thus, we have

v u r
u r
/

1 ( / )
r C

r
=

(18)

and the equation of incompressibility is rewritten as

v
r

v
r

2 0+ = (19)

On the elastic–viscoplastic boundary, v can be calculated from
Eqs. (15) and (18), that is

v
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Solving Eq. (19) with the boundary condition Eq. (20), leads to
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On the void surface, v da dr/ C= , the relation between a and rC is
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Using the initial condition when r aC = yields
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According to the results of previous works (Guan et al., 2013; Huang
et al., 2011), the critical radius of void nucleation (∼1 nm) can be used
to estimate the initial void radius A, and a lies between 1 nm to about
10 μm. The Tolman length is about 1.15 Å for a Zr-based metallic glass
(Guan et al., 2013). As a rough estimate, a a/( 2 ) 1+ , we have
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To simplify Eq. (25), we choose Vitreloy 1 as the model material, the
values of material parameters can be found in Table 1 (Huang et al.,
2013). Then, we can estimate the order of each term on the right hand
side. As A Q µ Q/(3 4 ) 6+ and Q µ C T T(3 4 ) 3[^ ( / ) ]g1

1/2+ ,
Eq. (25) can be rewritten as
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Solving Eq. (22) with the initial condition, there results
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If cavitation instabilities occur, the relative void size goes to infinity,
i.e., a/A→∞ or A→0. Then, in terms of the current void size, the
position of the elastic–viscoplastic boundary is
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Thus, with Eqs. (17) and (27), we have
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It is obvious that papp decreases with the increasing of the current
void radius a. The threshold for cavitation instabilities is determined by
the maximum value of papp when a A= . Using the typical material
parameters and the critical radius of void nucleation ∼1 nm for a, the

change of cavitation pressure as a function of surface energy is shown in
Fig. 2. Higher surface energy is corresponding to higher critical pres-
sure for cavitation instabilities. For Vitreloy 1, the cavitation pressure
increases from about 3.3 GPa–4.0 GPa when the surface energy effects
are considered. Thus, it is expected that cavitation instabilities are
prone to occur at the sites with lower local surface energy in metallic
glasses which is in accordance with the results of molecular dynamics
simulations (Guan et al., 2013).

4. Numerical simulations of void growth

4.1. Details of the numerical simulation

To reveal the influence of surface energy and thermal effects,
growth of voids is studied via numerical simulations. The full set of Eqs.
(1)–(10) are solved with the finite difference method (FDM) for dy-
namic void growth cases, while Eqs. (2)–(11) are solved for quasistatic
cases. Following Bouchbinder et al. (2008), a time-dependent co-
ordinate transformation is applied to avoid dealing with an infinite
time-dependent domain:

x a t
r
( )= (30)

Thus, integration of equations in the time-independent finite do-
main x∈ (0, 1) is allowed. This domain is uniformly discretized with
101 nodes, while the time domain is discretized with sufficiently small
time steps so that the numerical error is acceptable. Each result is
checked to make sure that it will not change if the spatial mesh is re-
fined.

For comparison with our previous work, a similar form of hydro-
static tensile loading applied on the outer boundary (x 0= ) is adopted
as shown in Fig. 3. There are two stages in the loading history: (1) the
rise stage in which the applied loading linearly increases to a desired
amplitude pS after a rise time ta, and (2) the steady stage in which the
loading amplitude is held constant for a time tS. A typical metallic glass
Vitreloy 1 is chosen as a model material with material parameters listed
in Table 1.

To find the critical pressure for cavitation instability via the nu-
merical method, void growth with variation of loading amplitudes is
examined. Consider three cases with the loading amplitude pS ranging
from 2 GPa to 4 GPa. In each case, the inertial effects and thermal ef-
fects which usually play important roles at the late stage of void growth
are not considered, and other parameters remain the same: the initial
void size A is 10 nm, the ambient temperature T 300i = K, initial free
volume concentration 0.05i = , the surface energy 0.83= J/cm2, the
Tolman length 1.15= Å, and the loading rate q 0.1= GPa/ns. The
numerical results are shown in Fig. 4. It is obvious that a critical
pressure pcr

app for unbounded growth exists between 3 GPa and 4 GPa,

Table 1
Material parameters for Vitreloy 1.

Parameters Notation Value

Shear modulus μ 35.3 GPa
Density ρ 6125 kg m−3

Free-volume diffusivity D ∼10−16 m2s−1

Average atomic volume Ω 20 Å3

Activation energy ΔGm 0.2–0.5 eV
Frequency of atomic vibration f ∼1013 s−1

Boltzmann constant kB 13.8× 10−24 J/K
Pressure sensitivity coefficient Q 0.158
Glass transition temperature Tg 638 K
Geometric factor χ 0.105
Effective hard-sphere size of atom v* 20 Å3

Bulk modulus K 112.7 GPa
Effective shear modulus S 50.0 GPa
Jump number for annihilation nD 6
Shear strength at ambient temperature C T T^ ( / )g1 1/2 823.3 MPa

Surface energy γ 0.83 J m−2

Tolman length δ 1.15 Å
Specific heat at constant pressure cp ∼400 J kg−1K−1

Thermal conductivity λ 20 W m−1K−1

Taylor–Quinney coefficient βTQ 0.9

Fig. 2. Cavitation pressure as a function of surface energy.
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which is consistent with the analytic model.

4.2. Influence of surface energy on void growth

In this section, we examine the influence of surface energy on early
growth of voids. As previous works (Huang et al., 2013; Wu et al.,
2003) had shown that thermal effects and inertial effects play more
important roles at the late stage of void growth when the void radii are
large enough, here both thermal effects and inertial effects are not
considered.

As the effects of surface energy are determined by the magnitude of
the virtual tensile pressure, we begin by scaling the Eq. (9) first.
Choosing the initial void radius A as the scale of space and the loading
amplitude pS as the scale of stress, the scaled equation is

P
a A AP

˜ ˜ 2
( ˜ / )r r a

s
= =

+=
(31)

where P˜ /r r S= , P P P˜ / S= and a a A˜ /= . In Eq. (31), ã is typically of
order unity at the very early stage of void growth, and δ/A is less than
1, then the order of P̃ is determined by the following dimensionless
factor:

I
AP
2

S
=

(32)

In fact, during void growth process, the radius of the plastic region
is proportional to the void radius, which is indicated by Eq. (28). Thus,
APS is proportional to the energy (per unit area) dissipated by plastic
deformation under applied loading in the matrix material surrounding
the void. As 2γ∞ represents the energy (per unit area) required to form
new void surface, the dimensionless number Iγ is indeed an energy ratio

which reflects the competition of surface energy effects and plastic
deformation under applied loading. The larger Iγ becomes, the more
influence on void growth the surface energy effects have.

To further characterize the surface energy effects, we consider the
initial void radius A ranging from 10 nm to 100 nm, and the surface
energy γ∞ varying from 0 to 1.23 J/cm2. As there are nanoscale
structural heterogeneities in MGs (Liu et al., 2011; Murali et al., 2011),
here void growth with much smaller void radius is not discussed to
guarantee the continuum model. In each case, the loading amplitude is
4 GPa, the loading rate q 0.1= GPa/ns, the ambient temperature
T 300i = K, the Tolman length 1.15= Å, and the initial free volume
concentration 0.05i = . Here the thermal softening and inertial effects
are not taken into consideration, all cases are quasistatic and in
athermal condition.

The results of numerical simulations on void growth with different
void radii and different surface energies are presented in Fig. 5. As
shown in Fig. 5(a), for voids with the initial radius A=100 nm, the
growth rate of voids is nearly the same, which implies that the effects of
surface energy can be neglected. But for voids with the initial radius
A=10 nm as shown in Fig. 5(b), the growth rate of voids decrease
obviously as the value of surface energy becomes larger. It is expected
that surface energy effects will impede the void growth significantly as
the void radius is smaller. These results also imply that void growth is
dependent on the specific alloy system, as the growth rate is influenced
by surface energy.

The numerical results are in good agreement with our expectations
from the scaling analysis presented in this section. When the initial void
radius is 1 nm, the dimensionless number Iγ is of order unity. This
means that the virtual tensile pressure applied to the inner surface of
voids is comparable with the external tensile loading. As the energy
required to form new void surface is comparable with the energy dis-
sipated by plastic deformation under applied loading, the surface en-
ergy effects will significantly impede the void growth process. But as

Fig. 3. Loading history of applied tensile pressure. The loading history contains
two stages: the rise stage in which the applied pressure increases linearly until
the desired loading pS is achieved after a rise time ta, and the steady stage in
which the loading is held constant at pS during the hold time tS.

Fig. 4. Numerical results on void growth under different loading amplitudes of
2 GPa, 3 GPa and 4 GPa.

Fig. 5. Effects of surface energy on void growth with two initial void radii A.
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the initial void radii increase to 10 nm and 100 nm, the dimensionless
number Iγ decreases by 1–2 orders. Compared with plastic deformation
of matrix material surrounding the voids, the energy required to form
new void surface is much smaller. It is expected that the growth rate of
voids approaches the case with the surface energy γ∞ = 0 gradually.

4.3. Influence of thermal effects on void growth

In this section, we examine the thermal effects on void growth. Both
thermal effects and inertial effects play important roles at the late stage
of void growth. For simplification, the influence of inertial effects is
excluded, and the equation of static equilibrium (Eq. (11)) is used in our
numerical simulations.

To address the thermal effects, we begin scaling the temperature
evolution equation first. Choosing the initial void radius A, the loading
amplitude pS, and the relaxation time t µ/r = as the scales of space,
stress and time, the scaled equation is

d
dt

t
c A r r

r
r

˜
˜

1
˜ ˜

(˜
˜
˜

) ˜ ˜r

p
TQ e

p
2 2

2= +
(33)

where c P˜ /p S= , t t t˜ / r= , r r A˜ /= , and P˜ /e e S= . As shown in
Eq. (33), the temperature of the matrix material is determined by the
heat conduction and the heat generated by plastic deformation. For
void growth process, plastic deformation occurs in very localized region
near the void surface. Thus, plastic deformation induces the heat to
accumulate in the matrix material near the void surface, but the heat
conduction moves the heat from inner hot region towards outer cooler
region. The rates of plastic deformation and heat conduction determine
which factor dominates the temperature evolution process. To char-
acterize the competition of heat diffusion and generation by plastic
deformation, we propose a dimensionless number as follows:

I t
c A

t
tth

r

p

r

d
2= =

(34)

Ith consists of two characteristic time scales: (1) the relaxation time
scale tr, which is the characteristic time for viscous flow, and can also be
interpreted as the time scale for momentum diffusion, in which process
elastic strain energy is released to drive the viscoplastic deformation
around the void, leading to growth of the void and generation of heat;
(2) the thermal diffusion time scale t A /d

2= ( c/= is thermal dif-
fusion coefficient), which can be interpreted as the time scale for heat
moving away from the viscoplastic region near the void surface. If Ith
becomes larger, or the relaxation time scale tr becomes larger than the
thermal diffusion time scale td, thermal diffusion will become faster
than momentum diffusion, which implies that heat is conducted away
faster than its generation. Thus, temperature rise of the matrix material
around the void hardly occurs, and thermal effects have fewer influence
on void growth.

Besides the material parameters of the matrix material, the value of
Ith depends on the initial void radius A. To further characterize the
thermal effects, numerical simulations are carried out. We consider 4
cases with different initial void radii which are 10 nm, 100 nm, 1 μm
and 10 μm respectively, and an athermal case and an adiabatic case are
presented for comparison. In each case, the loading amplitude is 4 GPa,
the loading rate q 0.1= GPa/ns, the ambient temperature T 300i = K,
and the initial free volume concentration 0.05i = . Here the inertial
effects and the surface energy effects are not taken into consideration,
all cases are in quasistatic condition with γ∞ = 0 J/m2.

Fig. 6 illustrates the numerical results of void growth process with
different initial void radii. For the case with the initial void radius
A=10 nm, the growth rate of the void is the lowest. There is no ap-
parent difference from the athermal case. As the initial void radius
increases to 100 nm, the growth rate of voids begins to increase.
However, as the initial void radius reaches 1 μm and larger, the growth
rate slows down apparently. For the case with the initial void radius of

10 μm, the result approaches to the adiabatic case. In fact, these results
are somewhat out of our expectation, especially the decrease of growth
rate as the initial void radii becomes 1 μm and larger. In conventional
crystalline materials, thermal softening which leads to decrease of
material viscosity should be very apparent in the cases approaching the
adiabatic condition. It is believed that the void will grow faster when
the temperature rises higher. However, our results show that extreme
temperature rise will lead to an opposite tendency.

To understand the phenomenon, we examined the evolution of
material viscosity on the void surface during the void growth process as
illustrated in Fig. 7. As other factors such as the inertial effects, the
loading rate effects and the surface energy effects are not taken into
consideration, the growth of voids is dominated by the viscous effects.
For the case with the initial void radius of 10 nm, the material viscosity
first drops to about 57 Pa · s at the rise stage of loading history, and then
keeps nearly constant at the steady stage. As the initial void radius
increases to 100 nm, the variation of viscosity during the growth pro-
cess is similar, but value of viscosity is lower, which leads to a faster
growth of the void. However, as the void radii become 1 μm or larger,
the viscosity first drops to a much lower value, and then increases
significantly at the late stage of the loading history (after ∼ 80 ns). As
the viscosity is much higher, the void growth rate decreases sig-
nificantly.

To address the role that thermal effects play during the void growth
process, we further examined the dimensionless number Ith. For the
cases with the initial void radii of 10 nm, 100 nm, 1 μm, 10 μm, the
minimum values of viscosity of the matrix material are 57 Pa · s, 48
Pa · s, 16 Pa · s and 17 Pa · s. With other material parameters listed in
Table 1, we can calculate the corresponding value of Ith, which is about

Fig. 6. Effects of thermal softening on void growth with 4 initial void radii. Six
cases are considered: (a) an athermal case; (b) A=10 nm; (c) A=100 nm; (d)
A=1μm; (e) A=10 μm; (f) an adiabatic case.

Fig. 7. Evolution of viscosity on the void surface during the growth process.
The cases plotted are: (a) an athermal case; (b) A=10 nm; (c) A=100 nm; (d)
A=1μm; (e) A=10 μm; (f) an adiabatic case.
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1× 102, 1, 4× 10−3, 4× 10−5, respectively. As the initial void radius
increases, Ith decreases by several orders. If Ith is small, it means the
release rate of elastic energy is so fast that there is not enough time for
heat to be conducted away from the inner hot region. The temperature
rise of the matrix material is significant. Fig. 8 shows the history of
material temperature on the void surface during the growth process.
For the case Ith=1×102, the temperature of the matrix material on
the void surface keeps constant at the ambient temperature of 300 K. As
Ith increases to 1, a slight increase of temperature can be observed. For
the cases with Ith=4×10−3 and smaller, the temperature rise is more
than 600 K, gradually approaching the adiabatic case. It seems that
there is a transition boundary lying at Ith=1 (or A=100 nm), where
the rate of momentum diffusion is compatible with the rate of thermal
diffusion. When Ith >> 1 (or A < 100 nm), thermal diffusion is much
faster than momentum diffusion. It is expected that the temperature rise
of the material is not significant. But when Ith≤ 1, heat can accumulate
at the matrix material surrounding the voids, and thermal effects begin
to be effective during the void growth process. The phenomenon of
temperature rise during the fracture process in metallic glasses has been
observed in some recent works (Das et al., 2018).

In metallic glasses, temperature rise can not only induce softening of
the material, but also the annihilation of free volume. The viscosity
depends on both the material temperature and the free volume con-
centration. Fig. 9 presents the evolution of free volume concentration
on the void surface during the growth process. At the early stage of the
loading history (during 0–20 ns), the total amount of free volume in-
creases linearly with the increasing applied loading. After yielding of
matrix material on the void surface, the change of free volume con-
centration exhibits some different features. For the cases with Ith>> 1,
as the matrix material keeps at ambient temperature, the annihilation

of free volume is very slow. Thus, the total amount of free volume
continues to increase at the rest of the rise stage of loading history and
then nearly keeps constant at the steady stage. Here, the decrease of
viscosity is just determined by free volume softening. When the thermal
effects begin to work (Ith = 1), a slight increase of temperature, on one
hand, facilitates the faster creation of free volume during 40–80 ns. On
the other hand, the rise of temperature, in favor of the annihilation of
free volume, results in a slight decrease of the free volume concentra-
tion at the late stage of loading history (after 80 ns). The coupling of
free volume softening and thermal softening leads to a lower viscosity
and a faster void growth rate. But for the cases with Ith << 1, as the
material temperature significantly increases, the annihilation of free
volume is very fast. This results in a drastic decrease of the free volume
concentration, and in a significant increase of material viscosity which
lowers the void growth rate. In metallic glasses, the diameters of dim-
ples and voids observed in quasistatic and dynamic tensile tests are
always less than 10 μm (Bouchaud et al., 2008; Huang et al., 2011). It is
obvious that void growth is impeded as the void size becomes large. The
decrease of void growth rates is attributed either to inertial effects or to
thermal effects.

4.4. Combined influence of inertia, surface energy and thermal effects on
void growth

The inertial effects have not been accounted for in the results so far.
Here, we continue to examine the combined influence of inertia, surface
energy and thermal effects on void growth. According to our previous
work (Huang et al., 2013), if the loading effects are not considered, the
growth of voids is controlled by a dimensionless inertial number:

I t
tinertia

inertia

r
=

(35)

where t A p/ /inertia S= is the inertial time scale, which is a char-
acteristic time of outward flux of matter, t µ/r = is the relaxation time
scale, which is a characteristic time of viscous flow. As larger initial
void radii lead to larger inertial number Iinertia, the inertial effects are
expected to become important at the late stage of void growth.

Fig. 10 shows the void growth with combined influence of inertia,
surface energy and thermal effects (plotted by solid lines). The results of
quasistatic cases in which the inertia effects are excluded are also
provided for comparison. In each case, the loading amplitude is 4 GPa,
the loading rate q 0.1= GPa/ns, the ambient temperature T 300i = K,
the surface energy γ∞ = 0.83 J/m2, the Tolman length 1.15= Å, and
the initial free volume concentration 0.05i = . For the cases with the
initial void radii A < 1 μm, the influence of inertial effects can be ne-
glected. Conversely for initial void radii A≥1 μm, the void growth is

Fig. 8. Evolution of temperature on the void surface during the growth process.
The cases plotted are: (a) an athermal case; (b) A=10 nm; (c) A=100 nm; (d)
A=1μm; (e) A=10 μm; (f) an adiabatic case.

Fig. 9. Evolution of free volume concentration on the void surface during the
growth process. The cases plotted are: (a) an athermal case; (b) A=10 nm; (c)
A=100 nm; (d) A=1μm; (e) A=10 μm; (f) an adiabatic case.

Fig. 10. Combined influence of inertia, surface energy and thermal effects on
void growth with different radii. The cases plotted with solid lines are dynamic:
(a) A=10 nm; (b) A=100 nm; (c) A=1μm; (d) A=10 μm. The cases plotted
with dash lines are quasistatic for comparison: (e) A=10 nm; (f) A=100 nm;
(g) A=1μm; (h) A=10 μm.
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apparently impeded by inertial effects.
Comparing Figs. 5, 6 and 10, it is obvious that the surface energy

effects impede void growth at the early stage when the void radius is
smaller than 100 nm, while the thermal effects and inertial effects can
be neglected. As the void grows larger than 100 nm (smaller than 1 μm),
the surface energy effects are not important, but the thermal effects
should be taken into consideration. Small amount of temperature rise
leads to apparent thermal softening of the matrix material which gra-
dually promotes the void growth. When it comes to the late stage when
the void radii is larger than 1 μm, both thermal effects and inertial ef-
fects become dominant. Different from the inertial effects which merely
impede the void growth, the thermal effects are more intricate. As heat
can easily accumulate in the matrix material, temperature rise is very
high at this stage. It not only contributes to thermal softening of the
material, but also helps annihilation of free volume. Thus, the thermal
effects first promote then impede void growth.

5. Conclusion

To address the void-dominant fracture process in metallic glasses, a
theoretical description for void growth under remote tensile loading is
presented, with particular attention on the influence of the surface
energy and thermal effects. A brief conclusion is listed as follows:

• The effects of surface energy on void growth can be taken into ac-
count via a virtual tensile pressure applied to internal surface of the
void, by which the work done is equal to the energy required to form
new void surface. As the critical radius of void nucleation in metallic
glasses is of order of 1 nm, the critical pressure for cavitation in-
stabilities is apparently increased when surface energy is included.
• A dimensionless number I AP2 /( )S= , which is a ratio of the en-
ergy required to form new void surface and the energy dissipated by
plastic deformation under applied loading, is proposed to char-
acterize the effects of surface energy on void growth. The larger Iγ,
the more dominant role the surface energy will play.
• The results of numerical simulations shows that the effects of surface
energy have much influence on void growth when the void radius is
small. For the void radius less than 10 nm (Iγ ∼ 1), surface energy
can significantly impede the void growth. As the void radii are
larger than 100 nm (Iγ << 1), the influence of surface energy can
be neglected.
• To characterize the thermal effects, another dimensionless number
Ith, which consists of the relaxation time scale tr and the thermal
diffusion time scale td, is proposed. It reflects the competition be-
tween momentum diffusion and thermal diffusion. Ith is smaller, the
thermal effects will play a more dominant role.
• The results of numerical simulations show that the influence of
thermal effects is significant when the void radius is large. For the
void radii larger than 100 nm (Ith≤ 1), thermal effects first promote,
and finally impede the void growth.
• Further study on free volume dynamics indicates that, as the tem-
perature rise is small, the coupling of free volume softening and
thermal softening will significantly lower the material viscosity. But
when the temperature rise is large, the free volume concentration
drastically decreases due to the fast annihilation of free volume, and
then leads to the significant increase of material viscosity and lower
rate of void growth.
• When the inertia, surface energy and thermal effects are all taken
into consideration, it is revealed that the surface energy effects are
important at the early stage when the void radius is smaller than
100 nm, thermal effects begin to work when the void radius is larger

than 100 nm, and both inertial effects and thermal effects are
dominant factors on void growth when void radius is larger than
1 μm.
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