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A B S T R A C T

This work presents a simplified method for parameters calibration of the new local approach model (NLAM) for
cleavage fracture in a ferritic steel. Based on the Beremin model, a NLAM was recently proposed by Lei (2016) to
calculate the Weibull parameters. Although the above NLAM proves to be mathematically and physically self-
consistent, yet there are still no reliable and convenient methods to calibrate the model parameters. Considering
the plastic volume is determined by the threshold coefficient of fracture process zone λ, we adopt four different
values of λ in this work to calculate the plastic volume so as to obtain four groups of calibrated Weibull
parameters. The material used in this study is the pressure vessel steel 20MnMoNi55 with some published
strength data under two subzero temperatures. And the finite element analysis FEA) software ABAQUS is em-
ployed to obtain the stress distributions, then the calibration results for four different values of λ are compared
and analyzed. These efforts show that taking =λ 1.5 is a more reasonable and reliable choice.

1. Introduction

Ferritic steels are widely used in lots of pivotal engineering struc-
tures such as reactor pressure vessels (RPVs), which need high re-
quirements in anti-fracture safety [1]. However, there is ductile-to-
brittle transition temperature characteristic of ferritic steels in essence
[2]. At low temperatures, low stress embrittlement occurs [3]. One of
the characteristics of embrittlement is randomness. So it is necessary to
employ statistical fracture mechanics methods to study cleavage frac-
ture in ferritic steels. Some methods had been proposed, such as the
Maser Curve method and the local approach (LA). The Master Curve
method was proposed by Wallin [4] and standardized by ASTM E1921
[5]. This method is used to determine the reference temperature T0 in
ductile-to-brittle transition zone of ferrite steels. The disadvantage of
the Master Curve mentioned in Qian et al. [6] is that in engineering
applications, unlike in experiments, the crack front is constrained,
which will lead to higher toughness and more conservative T0. This
hinders the development of the Master Curve method and promotes the
growth of micromechanical models. The local approach model (LAM)
for cleavage fracture [7,8] is a kind of micromechanical failure model,
which is based on the weakest link theory [9]. One characteristic of
cleavage fracture model used in LA is the adoption of Weibull stress to
replace the conventional fracture mechanics parameters. Some basic

features of the LA are shown below:

(1). Unlike fracture mechanics parameters, it is not constrained by
plastic conditions.

(2). It naturally takes into account the influence of the sample size, and
gives the failure probability under given conditions.

(3). The basic evaluation parameters of the LA model are obtained from
tensile experiments and finite element (FE) calculations.

The Beremin model [10,11] is one of the most widely used local
approaches (LAs) to cleavage fracture, which obeys two-parameter
Weibull distribution:

∫= − ⎡
⎣⎢

−⎛
⎝

⎞
⎠

⎤
⎦⎥

= − −P σ dV V σ σ σ1 exp · / / 1 exp[ ( / ) ]
V

m m
W

m
1 0 0 0

pl (1)

∫= ⎛
⎝

⎞
⎠

σ σ dV V· /W V
m

m

1 0

1/

pl (2)

where P denotes the cumulative failure probability, Vpl denotes the
integral plastic volume, σ1 denotes the maximum tensile principal
stress, m is the Weibull modulus, σ0 is the Weibull scale parameter. V0 is
the mean volume occupied by each microcrack in a solid, and σW de-
notes the Weibull stress. In recent years, Beremin model has been
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widely studied [12–18]. Before the Beremin model is put into any
practical uses, m and σ0 need to be calibrated from a number of fracture
experiments. The calibration procedure was proposed by Minami et al.
[19] and ESIS [20]. The main problem is that the calibrated values of
the Weibull parameters m and σ0 change with temperature and spe-
cimen dimension [21–24]. Long-term ambiguity of calibration seriously
affects the improvement of Beremin model. To address this problem, a
lot of works had been done. For instance, Ruggieri et al. [25] discussed
the non-uniqueness in the calibrated Weibull parameters using a single
set of specimen. They suggested using two sets of specimens with dif-
ferent constraints to determine a unique set of Weibull parameters and
proposed a new parameters calibration scheme. Gao et al. [26], Petti
and Dodds [27] and Hadid-Moud et al. [28] rewrote the formula of P
into a three-parameter Weibull distribution form, but these formulas
lack strict theoretical derivation. Under the assumption that plastic
yield is the prerequisite to cleavage fracture, Lei [29,30] proposed a
new probabilistic model:

∫= − − − = − −{ }P σ σ dV V σ σ σ1 exp [( ) · / ]/ 1 exp[ ( / ) ]
Vpl

m m
W new

m
1 1,0 0 0 , 0

(3)

∫= ⎛
⎝

− ⎞
⎠

σ σ σ dV V( ) · /W new Vpl
m

m

, 1 1,0 0

1/

(4)

where σ1,0 denotes the value of σ1 at initial yield of a differential volume
element dV , and σW new, is the newly defined Weibull stress. Eq. (3) can
be rewritten as follows:

− = −P m σ m σLnLn[1/(1 )] Ln( ) Ln( )W new, 0 (5)

from Eq. (5), we can see that there is a certain linear relationship
between − PLnLn(1/(1 )) and σLn( )W . m can be obtained by the slope
of Eq. (5) and σ0 can be obtained by intercept. To calibrate Eq. (5), the
well-developed linear regression (LR) method was allowed to obtain the
accurate two Weibull parameters m and σ0.

As is mentioned in Lei [29], for ceramics and other brittle materials,
with the increase of load, they can only undergo macroscopic elastic
deformation before fracture. With the increase of external load, steels
always undergo elastic deformation first and then whole or local plastic
deformation. In addition, there is an essential difference between the
cleavage fracture of metals and the fracture mode of brittle material.
Before a brittle material is put into use, there exist some micro-defects,
such as voids and grain boundary cracks. Once elastic stress triggers the
unstable propagation of microdefects, fracture will occur. While in
ferritic steels, there are few geometrical discontinuities in micro-
structure which preexist as metallurgical defects. The cleavage fracture
process of ferritic steel involves two parts, one is the nucleation of
microcracks and the other is the expansion of microcracks. Many mi-
crostructures can nucleate microcracks in a stressed volume, such as
dislocation interaction, carbide cracking and so on. However,

regardless of the mechanism by which microcracks nucleate, cleavage
fracture is always caused by the plastic yield of ferrite grains [30]. In a
word, it is a consensus that the prerequisite of cleavage fracture is
plastic yield. Eq. (3) is desired to surmount the uncertain calibration of
the two Weibull parameters because it strictly insists that the pre-
requisite of cleavage fracture is plastic yield. Compared with the Be-
remin model, improvements in the NLAM are as follows:

(1). Mathematically, under the assumption of uniform distribution of
microcracks, the new model proposes a cumulative failure prob-
ability model. It is based on the hypothesis of the weakest link and
it guarantees that the new model complies with the normality
axiom of probability, a fundamental point of all probabilistic
models. And the probabilistic model is self-consistent [31].

(2). Physically, based on Eq. (3), we can see that for any differential
volume element dV , the probability of cumulative failure P is
calculated only by considering the stress increment −σ σ( )1 1,0 after
initial plastic yield. Therefore, the NLAM pertinently follows the
fundamental physical assumption that the precondition for clea-
vage fracture is plastic yield [32].

Readers can refer to Lei [29,30] to learn more about the char-
acteristics of the NLAM. Here we are committed to finding out a simple
method to calibrate the new model parameters. In Qian et al. [31], it
was proven that the statistical model parameters for cleavage fracture
in ferritic steels are temperature independent by using the NLAM. Al-
though the new model with σ1,0 overcomes the problems of the Beremin
model, there is no mature and convenient method to estimate it at
present. This work aims to find out a simplified method for parameters
calibration of the NLAM by use of some published experimental fracture
data-sets [33–35].

2. Experimental data

The cleavage fracture stress data of low alloy ferritic steel
20MnMoNi55 in Chakraborti et al. [35] are used, which were obtained
from the tested circumferentially notched round tensile specimens
shown in Fig. 1 under four subzero temperatures (123 K, 173 K, 203 K
and 223 K). It should be noted that the circumferential notch in the
Fig. 1 is semi-circular. The chemical composition and material prop-
erties of 20MnMoNi55 are given in Table 1 and 2, respectively.

The true stress-plastic strain curves of 20MnMoNi55 at four subzero
temperatures reported in Manjunath et al. [34] are shown in Fig. 2.
They act as the input data to FEA. In Chakraborti et al. [35], 30 groups
of fracture stress data of 20MnMoNi55 were tested at the above four
different subzero temperatures. Ten circled points of fracture stress in
Qian et al. [31] are used for FE calculation. The fracture stress σN can be
transformed into loading stress ∞σ via the formula =∞σ σ ϕ ϕ( / )N 2 1

2,

Nomenclature

dV differential volume
E Young’s modulus
FE finite element
FEA finite element analysis
i the serial number of the specimen
LA local approach
LAM local approach model
LR linear regression
m Weibull modulus
N the total number of the specimen
NLAM new local approach model
P cumulative probability of failure
Pi prescribed probability for the ith specimen

RPVs reactor pressure vessels
V0 mean volume occupied by each microcrack in a solid
Vpl plastic volume
λ threshold coefficient of fracture process zone
ν Poisson’s ratio
σ0 Weibull scale parameter
σ1 maximum tensile principal stress
σ1,0 value of σ1 at initial yield of a differential volume element

dV
σN fracture stress
σVM von-Mises stress
σW Weibull stress
σW new, newly defined Weibull stress
σys yield stress

∞σ loading stress
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where the values of ϕ1 and ϕ2 are given in Fig. 1 ( =ϕ 14mm1 , and
=ϕ 7.7mm2 ).

3. FE simulations and parameters calibration

3.1. FE simulations

In this study, the 3D elastoplastic stress analysis of the specimen is
carried out by using FEA software ABAQUS. ABAQUS version 6.14 is
used for all simulations and the 20-node brick elements are used for
analysis. Considering the uniform symmetry of the structure and the
loading load, only 1/8 of the sample is modeled and symmetric con-
straints are applied on the symmetrical plane of the specimen to reduce
FE calculation time. The number of elements and nodes are 146,000

and 341707, respectively. The minimum element size is 0.001mm3. It
should be noted that at the edge of the notch the grid should be more
denser. As mentioned in Qian et al. [32], the FEA can be divided into
two steps. The first step is using the elastic-perfectly plastic material
defined by Poisson’s ratio ν, the Young’s modulus E and yield stress σys
to obtain the initial yield stress σ1,0 mentioned in Eq. (3). The second
step is the elastoplastic analysis using the true stress-strain curves of the
material shown in Fig. 2. The true stress- strain curves are used as input
to FEA. When defining properties of material in ABAQUS, we choose
elastic and plastic as the material behaviors. Elastic material is defined
by the Young's modulus E and Poisson’s ratio ν, the plastic part is de-
fined by the true stress-strain data. Partial results of the maximum
principal stress of FEA are presented in the following Fig. 3. The dis-
tributions of σ1,0 in the specimen at two subzero temperatures are
shown in Fig. 4.

3.2. Threshold coefficient of fracture process λ

It should be pointed out that the Beremin research group did not
clearly define the fracture process zone when they established the LAM
of cleavage fracture. When the model was derived, it was considered
that the microcrack in the plastic zone causes cleavage fracture, so the
element contributing to Weibull stress should be the element in the
plastic zone. That is, the maximum principal stress σ1 satisfies the for-
mula: ⩾σ σys1 . Ruggieri and Dodds [36] discussed the fracture zone of
the crack body in detail, and they defined that the fracture process zone
should be the zone satisfying the following condition: ⩾σ λσys1 , where λ
is the threshold coefficient of fracture process and ⩾λ 1. In Ruggieri
and Dodd [36], λ was taken as 2. To investigate the effect of λ on the
calculation results of Weibull stress, Hui [37] took 1 and 2 as the values
of λ in the cracked specimen by using traditional LAM, and found that λ
has little influence on the calculation results. Qian et al. [31] proposed
that the fracture process zone should be replaced by the plastic zone
defined by the von-Mises yield criterion. When determining the integral
volume, they chose the volume under the criterion ⩾σ σ1.5VM ys rather
than the more accurate volume defined by the strict von-Mises yield
criterion ⩾σ σVM ys, where σVM denotes the von-Mises stress. However,
adopting which appropriate value of λ in the NLAM remains a problem.

The main purpose of this work is to find out a suitable value of λ. It
can not only reduce the computational time but also guarantee rela-
tively accurate Weibull parameters. In this study, the integral volume
Vpl is defined by the criterion ⩾σ λσVM ys, λ is taken as 1, 1.25, 1.5, and
1.75 to calculate the plastic volume, respectively. It should be men-
tioned that we don’t take =λ 2 as mentioned in Hui [37] because the
stress concentration factor in the plastic zone of blunt notched specimen
under consideration in this work is usually much smaller than that of
the cracked specimen studied by Hui [37].

3.3. Calibration method

For the true constitutive relationship of the material, the number of
elements, the volume of the elements, the maximum principal stress of
each element and the von-Mises stress can be obtained from the results
of the above FE simulations under ten different loading stresses at 123 K
and 223 K. For elastic-perfectly plastic material, the loading stresses of
380MPa and 280MPa are applied on the specimens to calculate σ1,0 at
123 K and 223 K, respectively. Since the values of σ1,0, σ1 and dV are
known, to calculate σW new, defined in Eq. (4), the mean volume V0 oc-
cupied by each microcrack in a solid and Weibull parameter m should
be constants. This work takes the starting value of the m as 10 and V0 is
taken as 0.001 mm3.

After calculating σW new, in Eq. (4), the two Weibull parameters (m
and σ0) will be determined by the linear method in Eq. (5) by using the
calibration procedure proposed by Qian et al. [38] as illustrated in
Fig. 5.

Fig. 1. Dimensions of circumferentially notched round tensile specimen (All
dimensions are in mm).

Table 1
Chemical composition of low alloy ferritic steel 20MnMoNi55 (wt pct) [35].

C Si Mn P S Ni Gr Mo V Al Fe

0.21 0.21 1.3 0.009 0.001 0.68 0.05 0.494 0.01 0.029 balance

Table 2
Material properties of low alloy ferritic steel 20MnMoNi55 [33–35].

Young’s modulus E(GPa) Poisson’s ratio ν

200 0.3
Temperature (K) Yield stress σys (MPa)
123 685
173 600
203 558
223 537

Fig. 2. True stress-plastic strain curves of 20MnMoNi55 at four subzero tem-
peratures [33,35].
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4. Results and discussion

The results of logarithmic LR in Eq. (5) by using the calibration
procedure shown in Fig. 5 under four different values of λ at 123 K are
presented in Fig. 6, and the results at 223 K are illustrated in Fig. 7. In
order to solve the problem that P is unknown in Eq. (5), Minami et al.
[19] proposed a prescribed probability estimator, which is

= −P i N( 0.5)/i , where i is the number of the specimen,
=i N1, 2. .. ( =N 10). The slope of a straight line in Fig. 6 and Fig. 7 is

the calibration value of m. Then, the calibrated results are summarized
in Table 3. From Table 3, we can see clearly that at 123 K and 223 K,
different values of λ correspond to different m and σ0.

Now we manage to provide the method to determine the appro-
priate value of λ. For the convenience of statement, we might as well
take =λ 1.0A and =λ 1.5B , and the corresponding calibrated values of
m and σ0 are mA and σ A0, , mB and σ B0, respectively. Remembering the
criterion ⩾σ λσVM ys, we have ⩾σ λ σVM A A ys, , and ⩾σ λ σVM B B ys, . Prior to
comparing λA and λB, we shall highlight the following two require-
ments:

(1). The value of m varies within a small range when λ changes from
=λ 1.0A to =λ 1.5B .

(2). The comprehensive effect caused by m and σ0 say
(∫ −( )Vpl

σ σ
σ

m dV
V

1 1,0

0 0
) varies fairly small as λ increases. In other words,

Fig. 3. Maximum tensile principal stress σ1 distributions in the specimen at 123 K: (a) =∞σ 386MPa; (b) =∞σ 556MPa; true elastoplastic hardening model.

Fig. 4. The distributions of σ1,0 in the specimen based on the elastic-perfectly plastic constitutive model: (a) at 123 K; (b) at 223 K.

Fig. 5. Flow chart of the calibration procedure for NLAM.
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It can be clearly seen from Table 3 that the values of m and σ0

change slightly when λ increases from 1.0 to 1.5. At 123 K, the varia-
tion of m is 0.19%, and that of σ0 is only 0.1%. In the case of 223 K, as λ

ranges from 1.0 to 1.5, there is 0.41% change in m and 0.08% increase
in σ0. However, it is not the case when λ grows from 1.0 to 1.75. At
123 K, we see that m decreases by 11.57% and σ0 increases by 6.06%.
Besides, at 223 K, there is a 3.99% reduction in the value of m and a
1.86% increase in the value of σ0. Compared to the case of =λ 1.5, we

Fig. 6. Relationship between − PLnLn(1/(1 )) and σLn( )W of 20MnMoNi55 steel for different values of λ at 123 K: (a) =λ 1.0, (b) =λ 1.25, (c) =λ 1.5, (d) =λ 1.75.

Fig. 7. Relationship between − PLnLn(1/(1 )) and σLn( )W of 20MnMoNi55 steel for different values of λ at 223 K: (a) =λ 1.0, (b) =λ 1.25, (c) =λ 1.5, (d) =λ 1.75.
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can see that the accuracy of the calibration is reduced for =λ 1.75.
Concerning this point, we give the following explanation. As for the
case of =λ 1.75, we adopt the criterion ⩾σ σ1.75VM ys by default.
Probably, that implies there are too many FE volumes ignored when
adopting the above criterion to calculate the plastic volume Vpl. In other
words, considering that the criterion ⩾σ σ1.75VM ys is much more de-
manding than ⩾σ σ1.0VM ys, the integral volume Vpl in Eq. (4) for

=λ 1.75 is much smaller than that for =λ 1.0. This will result in
computational distortion. Fig. 8 displays the variation of plastic volume
Vpl with the fracture stress under four different values of λ at 123 K. It is
clearly seen from the curves in Fig. 8 thatVpl is severely underestimated
in the situation of =λ 1.75.

Next, we turn to the issue of the comprehensive effect induced by m
and σ0. The variation of the comprehensive effect with σN at two sub-
zero temperatures (123 K and 223 K) for different values of λ are

plotted in Fig. 9 and 10.
Observing the curves in the above mentioned two figures, we find

that the three curves corresponding to the three cases of =λ 1.0,
=λ 1.25 and =λ 1.5 almost coincide with one another. This indicates

there is no evident change in the combined effect when the value of λ
ranges from 1 to 1.5. But, when it comes to the case of =λ 1.75, there is
an obvious deviation from the other three curves, especially when it is
123 K.

In order to further distinguish the more delicate difference in the
comprehensive effect under different values of λ, we provide the de-
tailed results as follows. With λ increasing from 1.0 to 1.25, the max-
imum change value of ∫ −( )Vpl

σ σ
σ

m dV
V

1 1,0

0 0
is 0.43% at 123 K and 2.88% at

223 K. As λ increases from 1.0 to 1.5, the maximum change of

∫ −( )Vpl
σ σ

σ

m dV
V

1 1,0

0 0
is 0.44% at 123 K and 3.49% at 223 K. That is, the

Table 3
Calibration results of m and σ0 for different values of λ.

=λ 1.0 =λ 1.25 =λ 1.5 =λ 1.75

T(K) m σ0(MPa) m σ0(MPa) m σ0(MPa) m σ0(MPa)

123 K 11.181 1741.93 11.17 1742.41 11.16 1743.60 9.8877 1847.46
223 K 10.625 1661.43 10.582 1662.51 10.581 1662.73 10.201 1692.36

Fig. 8. Variation of Vpl with σN at 123 K for different values of λ.

Fig. 9. Variation of the comprehensive effect with σN at 123 K for different
values of λ.

Fig. 10. Variation of the comprehensive effect with σN at 223 K for different
values of λ.

Fig. 11. Comparison between the experimental results with the calibrated re-
sults of P .
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relative error is within 4% for =λ 1.25 and =λ 1.5. However, for the
case of λ increasing from 1.0 to 1.75, the maximum change value of

∫ −( )Vpl
σ σ

σ

m dV
V

1 1,0

0 0
becomes 33.17% at 123 K and 14.15% at 223 K.

Obviously, this is much higher than the above 4% and seems to be
unreasonable.

In summary, it comes to the conclusion that when =λ 1.25 and
=λ 1.5, the calibrated results of m and σ0 are both close to the results

with =λ 1.0, and the deviation of the comprehensive effect under the
corresponding λ is small (with error band of 4%) . However, it can be
clearly seen from Fig. 8 that the plastic volume under the criterion

⩾σ σ1.5VM ys is much smaller than that under ⩾σ σ1.25VM ys. This means
that when =λ 1.5, the computational workload and the computation
time will be greatly shortened. Based on the above results, we can see
that taking =λ 1.5 is a good way when calculating the plastic volume.
Once the values of m, σ0 and σW are determined by the supposed value
of λ, we can substitute them into the NLAM to predict the failure
probability.

Fig. 11 compares the experimental results with the calibrated results
of the cumulative failure probability. The empty dots are experimental
results of the cumulative failure probability, the cumulative failure
probability here doesn’t mean the failure probability obtained from the
experiment but calculated by the formula = −P i N( 0.5)/i , where Pi is
the rank probability. σW i, is the Weibull stress corresponding to the ith
fracture load value of N fracture load measurements arranged in an
ascending order. The solid lines are based on Eq. (3), with the cali-
brated values of m and σ0 when taking =λ 1.5 as input. The red line
represents the result of the input of =m 11.16, =σ 1743.60MPa0 at
123 K, while the blue one denotes the result of the input of =m 10.581,

=σ 1662.73MPa0 at 223 K. In both cases, we can see that the two sets of
results agree well, which indicates that taking =λ 1.5 is a reasonable
option.

5. Conclusions

This study uses the tensile test data of axisymmetric notched spe-
cimen 20MnMoNi55 steel under two subzero temperatures for FEA to
obtain the stress distributions, and four groups of Weibull parameters
under different λ are obtained. After investigating and comparing the
above four groups of calibration results, the major conclusions can be
drawn as follows:

(1). When the threshold coefficient λ increases from 1.0 to 1.5, the
calibrated m and σ0 of the NLAM show little change at both 123 K
and 223 K. The comprehensive effect caused by m and σ0 hardly
changes with λ ranging from 1.0 to 1.5 under different tempera-
tures.

(2). The integral volume is greatly reduced by adopting =λ 1.5. The
calibrated result of the cumulative failure probability is close to
that of the experimental result when taking =λ 1.5.

(3). A simple approach to calibrate the NLAM has been proposed. That
is, it is appropriate to take =λ 1.5 as the threshold coefficient of
fracture process zone when calculating the volume of the plastic
deformation zone. This approach is time-saving and is of benefit to
obtain relatively accurate Weibull parameters.

The present work is to find out a simplified calibration method for
the new LA model which proved to be able to overcome the ambiguity
calibration of Weibull parameters. As a preliminary study, the approach
presented in this work is only based on two sets of experimental data
available in the literature. So more pertinent experimental data are
suggested to be supplemented so as to further validate the robustness of
the presented approach. In our future work, we will use more experi-
mental data to further study the new model and further verify the ap-
proach proposed in this work.
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