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Abstract
Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochem-
ical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration
using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regu-
lation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected
nodes representing discrete cell–substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal
remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on
our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as
reaction–diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin–ligand binding kinetics
and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major
features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal
regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins
with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform
reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this
model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.

Keywords Chemotaxis · Cytoskeletal remodeling · Mathematical model · Biochemical · Biomechanical

1 Introduction

Understanding the migration mechanism of neutrophils is a
crucial issue in immune responses (Kolaczkowska andKubes
2013). Generally, as a fast moving amoeboid-type cell, a
neutrophil migrates by invoking a complexly controlled and
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integrated sequence of events, protrusion, adhesion, and con-
traction (Bagorda and Parent 2008; Fenteany and Glogauer
2004). Initially, the assembly of cross-linked actin filaments
drives the protrusion of a thin sheet-like structure, called the
lamellipod, at the leading edge (Fenteany andGlogauer 2004;
Ridley et al. 2003). Next, the cell strengthens its adhesion
to the extracellular matrix (ECM) at the leading edge and
weakens its adhesion at the rear edge (Nagano et al. 2012;
Yang et al. 2017). Finally, myosin molecular motors bind
the bundled actin filaments and exert contractile stress to
pull the cell rear forward (Rottner and Stradal 2011; Shin
et al. 2010). Under in vivo conditions, the direction of neu-
trophil migration is largely determined by the gradient of
pathogen-associated biochemical signals (Jin 2013), while
the cell morphology and migration velocity are dramatically
affected by themechanical properties of the substrate (Zaman
et al. 2006).

Interestingly, even in the absence of biochemical guid-
ance, an adhesive neutrophil is not static, as it constantly
extends and retracts protrusions, suggesting that its cytoskele-
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tal remodeling process could be excited by internal signaling
noise (Swaney et al. 2010). Recently, measurements on
endogenous Rac activation (Lin et al. 2012) and exogenous
PIP3 delivery (Weiner et al. 2002) via bypassing upstream
cascades confirmed that the polarity of the cytoskeleton is
largely built upon positive/negative feedback loops mediated
by small Rho GTPases (including Cdc42, Rac, and RhoA)
and membrane lipids (including PIP2 and PIP3, hereafter
defined as PIs) (Weiner 2002). If a neutrophil is stimulated by
a graded biochemical signaling field, the GPCR-controlled,
cytoskeleton-independent pathway (involving the feedback
cycle of PI3K-Ras) is initiated and serves as a compass
mechanism for controlling the directional regulation of Rho
GTPases (Damoulakis et al. 2014), and thus, cytoskeletal
remodeling (Sasaki et al. 2007).

When a neutrophil moves, complex mechano-sensing sig-
naling pathways are activated due to adhesive bond stretch-
ing, thereby generating mechanical–chemical feedback from
the substrate to the cell (Giannone and Sheetz 2006). Among
various molecular bases (i.e., paxillin, FAK, vinculin, talin,
and integrin) (Giannone and Sheetz 2006), integrins are the
most important molecules underlying the adhesivemechano-
sensing phenomenon (Shibata et al. 2013). Integrins serve as
both themolecular hub for localizing adhesivemolecular sig-
naling (Scales and Parsons 2011) and as the cell–substrate
physical connection for detecting mechanical properties of
the substrate (Schaefer and Hordijk 2015). Using multi-
ple techniques, such as atomic force microscopy, magnetic
tweezers, and optical tweezers, the binding kinetics and
forced dissociation of distinct integrin–ligand bonds have
been isolated and identified (Sako et al. 2012; Elosegui-
Artola et al. 2014; Liang et al. 2008). For example, the
binding of β2-integrin member LFA-1 to the intercellular
adhesion molecule 1 (ICAM-1) ligand yields a smaller dis-
sociation rate and a larger association rate than that of another
member, Mac-1, to ICAM-1 (Li et al. 2013).

Numerousmathematical/computationalmodels of eukary-
otic cell mobility have previously been developed (Iglesias
and Devreotes 2008; Karsenti 2008; Danuser et al. 2013).
While these models provide qualitative and/or quantitative
insights into the distinct features of cellmotility based on spe-
cific simplifications, the coupling between biochemical and
biomechanical environments to regulate cytoskeletal remod-
eling and focal adhesion dynamics remains oversimplified.
For example, previousmodels typically treated the cytoskele-
ton as a mechanical framework consisting of a mesh of
discrete nodes connected by elastic springs and viscous dash-
pots (Sarvestani and Jabbari 2009; Dokukina and Gracheva
2010; Bottino et al. 2002). While solving the force-balance
equations at eachnode reasonably agreeswith the experimen-
tallymeasured cellmovingvelocity, thesemodels require that
the cell be polarized (i.e., the cell has a well-defined front
and rear). Meanwhile, the cell boundary alteration induced

by a regulatory signaling network inside the cell is described
by a conceptual polarization mechanism (Wolgemuth et al.
2011). Generally, biomarkers for the cell protrusive front
are elaborately defined, but those for the contractive rear are
unelucidated. Amore recent model on integrative cell migra-
tion (Kim et al. 2012) incorporates focal adhesion dynamics
and cytoskeletal remodeling but does not include the bio-
physical properties of ECM and therefore fails to capture the
spatiotemporally coordinated events of intracellular signal-
ing dynamics.

Here, we developed an integrative neutrophil migration
model that couples the cellular focal adhesion dynam-
ics and intracellular signaling responsible for cytoskeletal
remodeling andmorphological change.We extended our pre-
viously proposed signaling models (Feng and Zhu 2014;
Feng et al. 2018) in two aspects. First, a focal adhesion
dynamics module dominated by force-dependent integrin–
ligand binding kinetics and integrin recycling was incorpo-
rated to describe the mechano-sensing machinery. Second,
a viscoelastic mechanical model was introduced to simu-
late cytoskeleton-mediated cell deformation and movement.
An in-house-developed lattice Boltzmann-particle (LBP)
method was utilized to treat the moving boundary problem
(MBP) efficiently, wherein the particle method was adopted
to reassess the mechanical boundary condition and the lattice
Boltzmann (LB) method for solving the reaction–diffusion
system on the newly born cell domain. Additionally, a sim-
ple Monte Carlo (MC) method was embedded to treat the
stochastic reaction source terms. This model can account for
the spontaneous, directional, and turning dynamics of cell
migration in response to uniform, graded, and reversal bio-
chemical stimuli, respectively. It generates mutant migration
via the modification of effector molecular concentrations.
Moreover, varying integrin–ligand binding kinetics can serve
as an adaptation mechanism to varied substrate stiffness.

2 Materials andmethods

In this section, we summarize the theoretical modeling with
simplified assumptions (for more detailed model assump-
tions, see theSupporting Information). Thismodel consists of
three modules. The first two modules describe the signaling
cascades responsible for cytoskeletal remodeling and focal
adhesion dynamics, respectively, and are governed by cou-
pled reaction–diffusion equations. The third module denotes
cell mechanics andmotility and is governed by force-balance
equations.

2.1 Module for four signaling layers

This module involves four layers (Fig. 1a), (I) signal recep-
tion, (II) initial signaling processing, (III) small Rho GTPase
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a b

c d

Fig. 1 A working computational model for neutrophil chemotaxis. a
Four-layered signaling cascades responsible for cytoskeletal remodel-
ing. (i) Signal reception layer: A cell detects soluble factor fMLP by G
protein-coupled receptors (GPCRs). (ii) Initial signal processing layer:
G protein dissociates into Gα and Gβγ subunits, which triggers a fast
activation and a slow inhibition response. (iii) Small Rho GTPase reg-
ulation layer: Spatial regulation of Rho GTPase members (Rac, Cdc42,
andRhoA) is achieved by the localization ofGEFs (i.e., PAK1 andLsc1)
and antagonistic effects among the members (*denotes their active
forms). (iv) Bidirectional molecular transport layer: Spatial effects gen-
erated from Rho GTPase-PI feedback loops manipulate bidirectional
cytoskeletal remodeling. The curved blue and red arrows indicate the
feedback loops for generating protrusive and contractive forces, respec-
tively. The inserts show the molecular details that are treated implicitly
in our model. The arrows colored blue and red in the inserts repre-
sent the pathways for providing membrane binding sites, indicating the
applicability of the mass conservation law. b Schematic of the focal

adhesion dynamics module. Inactive, unbound active, and bound inte-
grins are indicated by blue, green, and red springs, respectively. The
dense springs represent the stiff matrix. Four steps in integrin regula-
tion are depicted: (i) integrin binding; (ii) once a sufficient stretch force
is exerted on the bond, the bond can serve as a source point for initiating
mechano-sensing signaling cascades; (iii) the local strength of intracel-
lular integrin activation is mediated by the active Rac concentration;
and (iv) ultimate amplification. c LBP method implementation of the
model.Mechanically, the cell ismodeled by a series of spring-connected
nodes (top layer). The entire computational domain is discretized by the
D2Q9 lattice model. Lattices colored red, green, and blue are specified
as the membrane, cytosol, and extracellular environment, respectively.
Molecular translocation described by reaction equations occurs at the
shared lattices. d Simulation procedures. (i) Solving reaction–diffusion
equations. (ii) Specifying nodal forces based upon the lattice concen-
tration. (iii) Movement. (iv) Lattice–particle remapping (see Fig. S1 for
more details)
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regulation, and (IV)bidirectionalmolecular transport.Details
on the overall modeling strategy and justifying the assumed
cross talk among these modules have been previously
described (Herant et al. 2005) and are brieflydiscussedbelow.

(I) Signal receptionDiffusion and diminution of a chemoat-
tractant, i.e., fMLP, are modeled by the reaction–
diffusion equationwith corresponding initial andbound-
ary conditions

∂S

∂t
= D f ∇2S − K S, (1)

S(x, y, t) = S0, for x ∈ [x1, x2], y ∈ [y1, y2],
S(x, y, 0) = 0, for x /∈ [x1, x2], y /∈ [y1, y2],
S(X ,Y , t) = 0. (2)

Here, S, D f , and K are the concentration, diffusion
coefficient, and delay rate of fMLP, respectively. x ∈
[x1, x2] and y ∈ [y1, y2] define the domain of the source
point wherein the concentration of fMLP equals S0.
X and Y represent the boundary of the fMLP field.
The binding kinetics of fMLP molecules (as ligands)
to GPCRs (as receptors) are described by the following
reaction equation:

R + L
k+−−⇀↽−−
k−

RL, (3)

where R, L, RL, k+, and k− represent the receptor,
ligand, bond, association rate, and dissociation rate,
respectively.

(II) Initial signal processing A balance-inactivation mech-
anism is used to mimic the initial signaling process
(Levine et al. 2006). This mechanism involves three
interacting steps: (i) The local receptor occupancy
level ([RL]) drives the production of membrane-bound
species A and cytosolic species I at equal rates, ks; (ii)
the cytosolic species diffuses inside the cell and attaches
itself to the membrane at a rate kI and becomes the
membrane-anchored species Im ; and (iii) both species A
and Im inactivate each other with a rate ki , and A and Im
spontaneously degrade at rates δA and δI, respectively.
The system equations can be written as

∂A

∂t
= Dm∇2A + ks[RL] − δAA − kiAIm, (4)

∂ Im
∂t

= Dm∇2 Im + kI I − δI Im − kiAIm, (5)

∂ I

∂t
= Dc∇2 I , (6)

with the boundary condition

Dc
∂ I

∂n
= ks[RL] − kI I . (7)

The translocating behaviors of PAK1 and Lsc1 from the
cytosol to the membrane (like those of PI3K and PTEN)
are described by the binding reaction equation [Eq. (3)],
where PAK1 and Lsc1 act as ligands, while A and Im
function as receptors. The spatiotemporal evolution of
cytosolic components obeys the following standard dif-
fusion equation:

∂Ec

∂t
= Dc∇2Ec, (8)

with the boundary condition

Dc
∂Ec

∂n
= −k+SmEm + k−Em, (9)

where Ec = EPAK1, ELsc1, EPI3K, and EPTEN repre-
sents the cytosolic concentrations of PAK1, Lsc1, PI3K,
and PTEN, respectively, Sm denotes the corresponding
receptor concentration, and Em represents the corre-
sponding membrane-bound form.

(III) Small Rho GTPase regulation Each Rho GTPase mem-
ber may cycle between active membrane-bound and
inactive cytosolic forms (Lin et al. 2012). The spa-
tiotemporal evolutions of active Rho GTPases are
described as follows:

∂G

∂t
= Dm∇2G + PG(R,C, ρ)

(
G i

G tot

)
− ωGG, (10)

whereG = R,C , andρ represent the active (membrane-
bound) forms of Rac, Cdc42, and RhoA, respectively.
G tot = Rtot, Ctot, and ρtot are the total amounts of Rac,
Cdc42, and RhoA, respectively. G i = Ri,Ci, and ρi are
the total amounts of the respective inactive (cytosol)
forms of Rac, Cdc42, and RhoA that are calculated by
the conservation law. PG is the activation term and is
expressed as

PR = IR+αC, PC = IC+βEC, Pρ = Iρ +τ Eρ. (11)

Here, IR, IC, and Iρ are the baseline activation rates. α
determines the rate of Cdc42-enhanced Rac activation,
and β and τ are the rates of the guanine exchange factor
(GEF)-mediated activation ofCdc42 andRhoA, respec-
tively, ωG is the inactivation term and is expressed as

ωR = δR + γρ, ωC = δC + ερ, ωρ = δρ + εC . (12)

Here, δR, δC, and δρ are the GAP-mediated baseline
inactivation rates. γ is the rate of RhoA-mediated Rac
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inactivation, and ε represents the mutual inactivation
rate of Cdc42 and RhoA.

(IV) Bidirectional molecular transport The spatiotemporal
regulation of PIP3 (P3) and PIP2 (P2) forms the core
of the bidirectional molecular transport mechanism,
which is described by the following equations:

∂P3
∂t

=Dm∇2P3 + kPI3Kcat

(
HmP2R

kPI3KM + P2

)

− kPTENcat

(
TmP3ρ

kPTENM + P3

)
, (13)

∂P2
∂t

=Dm∇2P2 − kPI3Kcat

(
HmP2R

kPI3KM + P2

)

+ kPTENcat

(
TmP3ρ

kPTENM + P3

)
. (14)

where, R̃=min{R/Rmax, 1} and ρ̃ = min{ρ/ρmax, 1}.
In Eq. (13), the first term on the right-hand side
accounts for PIP3 diffusion, the second term accounts
for PIP3 production due to membrane-bound PI3K
(Hm) acting on PIP2, and the third term accounts for
PIP3 diminution due to membrane-bound PTEN act-
ing on PIP3. The parameters kPI3Kcat (kPTENcat ) and kPI3KM
(kPTENM ) are based on the steady state levels of PIs. R̃
(ρ̃) is the normalized factor reflecting the effect of Rac
(Rho) activity on PI3K (PTEN) activation, and Rmax

(ρmax) acts as a constant of Rac (RhoA) activity. If
R̃ (ρ̃) is greater than Rmax (ρmax), the activity of Rac
(RhoA) is no longer a limiting factor for PI3K (PTEN)
activation, and R̃ (ρ̃) then equals unity. Equation (14)
describes PIP2 dynamics. Similarly, the first term on
the right accounts for PIP2 diffusion, the second term
accounts for PIP2 production fromPIP3 viamembrane-
bound PTEN (Tm), and the third term accounts for the
reduction of PIP2 into PIP3 viamembrane-boundPI3K.

2.2 Module for focal adhesion dynamics

Formation of the focal adhesion complex is a stochastic pro-
cess due to the intrinsic features of binding and unbinding
between integrins on the cell membrane and their ligands
on the substrate surface. A general one-step multivalent
reversible reaction can be written as

vrmr + vlml
kon−−⇀↽−−
koff

vbmb, (15)

where mr, ml, and mb denote integrin, ligand, and integrin–
ligand bonds, respectively, and vr, vl and vb denote the
corresponding stoichiometric coefficients (vr = vl = vb = 1
in the current work). koff and kon represent the off and on
rates, respectively, which are updated after each simulation

time interval (ΔtL). koff is commonly described by the Bell
model (Bell 1978), and kon is determined by the site density
of active integrins. Because the timescale of integrin recy-
cling, i.e., endocytosis or self-delay, is much longer than that
of neutrophil polarization, i.e., more than 30 versus 2–3 min
(Böttcher et al. 2012), the total numbers of membrane-bound
active and inactive integrins are assumed tobe conserved.The
total numbers of active and inactive integrins are assumed
to be conserved. The transformation of integrins from the
inactive state to the active state is determined by the stretch
force ( f iq ) applied (see Supporting Information). The evolu-
tion of inactive (w) and active integrins (w∗) is schematically
shown in Fig. 1b and is described by the following reaction–
diffusion equations:

∂w

∂t
= DI∇2w + ςw∗ − ρRac

(
νw

w0 + w

)
, (16)

∂w∗

∂t
= DA∇2w∗ − ςw∗ + ρRac

(
νw

w0 + w

)
, (17)

where DI and DA are the diffusion coefficients for the inac-
tive and active integrins, respectively, ς is the self-delay rate
of active integrins, and w0 is the concentration of inactive
integrins that gives the half maximal conversion rate. ν is the
source term defined as follows:

ν =
{

ν0 + δΨ if f iq ≥ Fr
ν0 if f iq < Fr

(18)

where ν0 is the basal rate of integrin activation, δΨ is the rate
of force-mediated integrin activation, and Fr is the thresh-
old force. The dynamics of focal adhesion are regulated by
chemoattractant concentrations based on the active level of
Rac (ρRac).

2.3 Module for cell mechanics

We use the membrane to model two biological entities, the
plasmamembrane and the underlying cytoskeleton or cortex.
The neutrophil membrane is represented by a discrete spring-
connected particle circle (with N elastic springs connected
at N nodes). The motion of each node i is described by the
following force-balance equation:

mi
dvi
dt

= Felas
i + Fvis

i + Fpro
i + Fcon

i + Fdrag
i , (19)

where vi is the velocity vector, mi is the nodal mass, and
Felas
i ,Fvis

i ,Fpro
i ,Fcon

i , andFdrag
i are the elastic energy, viscous

energy, protrusive, contractive, and drag forces, respectively.
A detailed explanation of each term is given as follows:
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– Passive viscoelastic force The elastic energy stored in the
springs due to stretching or compression is given by

El = 1

2

n∑
i=1

Kl

(
li − l0

l

)2

, (20)

where li is the length of the i th spring that is iterated at
every step, l0 is the relaxed (zero-force) length, and Kl is
the effective stiffness constant of the spring. The elastic
energy stored in the spring due to bending is given by

Eb = 1

2

n∑
i=1

Kb tan
2
(

θi − θ0

2

)
, (21)

where θi is the angle between a pair of consecutive
springs (i , i + 1) that is iterated at every step, θ0 is the
relaxed (zero-force) angle, and Kb is the spring constant
for bending. In addition, an area constraint is also applied
to ensure that the cell area is conserved within 1% dur-
ing the simulation. This is implemented via an energetic
penalty as follows:

Es = 1

2
Ks

(
s − s0

s

)2

(22)

where s and s0 are the instantaneous and equivalent areas
of the cell, respectively, and Ks is the penalty coefficient.
The total elastic energy (Em) of the cell membrane is the
sum of all three types of energy:

Em = El + Eb + Es. (23)

The elastic force acting on themembrane particles is then
calculated using the principle of the virtual work as fol-
lows:

Felas
i = −∂Em

∂Pi
, (24)

where Pi is the position vector of the i th node. The vis-
cous force is given by

Fvis
i = −γ vi j , (25)

where γ is the viscosity coefficient of the cellular
cytoskeleton, and vi j is the relative displacement rate of
the neighboring nodes i and j .

– Active protrusive and contractive forces Physically, the
generation of protrusive and contractive forces can be
described by the Brownian ratchet model (Danuser et al.
2013) and the force–velocity relation of the molecular
motor (Kim et al. 2012), respectively. Here, we simply
assume that the nodal protrusive force (Fpro

i ) is related

to the local concentration of PIP3 (P3), and the nodal
contractive force (Fcon

i ) is correlated with that of PIP2
(P2). The general forms of Fpro

i and Fcon
i are given by

Fpro
i = νproηi P3

2P3s

(
li n̂i + li+1n̂i+1

)
, (26)

Fcon
i = −νconηi P2

2P2s

(
li n̂i + li+1n̂i+1

)
, (27)

where νpro (νcon) is the protrusive (contractive) force-
concentration transfer factor, which is derived from the
maximumactive force generated by a cell, P3s (P2s) is the
saturation concentration of PIP3 (PIP2), and n̂i (n̂i+1) is
the outward unit normal vector. ηi is a normalized factor
that reflects the magnitude dependence of Fpro

i (Fcon
i ) on

the cell–substrate adhesion strength and calculated by the
following Langmuir–Hill equation:

ηi = (N b
i )2

(Nopt)2 + (N b
i )2

. (28)

Here, Nopt is the typical number of closed integrin–ligand
bonds (formed only from active integrins) above which
the adhesion strength is saturated, and N b

i is the number
of closed bonds on the i th node.

– Substrate frictional drag The drag force (Fdrag
i ) comes

from two sources, the viscous drag force and the energy
dissipated by the rupture of bonds under the stretch force,
which is proportional to the cell velocity (vi ). F

drag
i can

be written as

Fdrag
i = (η0 + η)vi , (29)

where η0 is the minimum value of viscosity. Based on the
approach proposed in Dokukina and Gracheva (2010), η
is assumed to be a linearly increasing function of sub-
strate stiffness (ksub), i.e., η = cvisksub, where cvis is its
slope.

2.4 Numerical simulations

To investigate mechanical–chemical coupling in cell shape
and cell motion, suitable models and computational algo-
rithms are required. Here, an LBP method developed in-
house is applied to solve the MBP (Figs. 1c, d, S1). The
solution of the reaction–diffusion system is then coupled to
the mechanical model since it appears in the force terms
(Fpro

i and Fcon
i ), and the solution of the force-balance equa-

tions thus determines the location of the domain edge. Two
time steps, ΔtL and ΔtM, are defined for numerically solv-
ing the coupled system, representing time discretization in
the diffusion–reaction and force-balance equations, respec-
tively. During one simulation cycle (T ), assuming there are
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m LB and MC steps and n particle method steps, mΔtL =
nΔtM = T , and each time step is sufficiently small to accu-
rately capture the underlying physical phenomenon.A spatial
step size of Δx = 0.2 µm is used, and the number of partials
is given by N = 60. All intracellular variables are uniformly
set as the initial condition. Prior to each run, the modeled
cell system is preset to undergo a self-evolution for 30 s
(data not shown) such that artificial bias derived from the
initial condition setting is largely excluded. Tables S1, S2,
and S3 summarize all the parameters used for the simulation.
The detailed numerical method is supplied in the Supporting
Information.

3 Results

3.1 Modeling spontaneousmigration

A neutrophil placed on a flat substrate with a stiffness of 5
kPa and an ICAM-1 site density of 30 µm−2 is considered
to represent a typical physiological condition. As shown in
Fig. 2a, the trajectories of the cell centroid are totally differ-
ent in each run, indicating spontaneous cell migration, and
the spatiotemporal responses of PIs and integrins in a typical
case are presented. Apparently, small Rho GTPase members
undergo only self-evolution and are not spatially regulated
due to the lack of directional biochemical stimuli. However,
their baseline activities appear to provide a limited “driving
force” to evoke cytoskeletal remodeling. In fact, acting as
effectors, PI3K and PTEN, can translocate from the cytosol
to the membrane. After being activated by active Rac and
RhoA, respectively, the catalytic effect of PI3K leads to the
conversion of PIP2 to PIP3 and vice versa for PTEN. Dur-
ing this process, the stochastic noise generated from effector
translocation is amplified locally due to the positive feedback
loop of Rac → PI3K � PIP3, leading to the appearance of
PIP3 patches (Fig. 2b, top). Note that one of the PIP3 patches
grows at t ∼ 160 s and becomes gradually dominant. Mean-
while, as PIP2 has the same diffusivity with PIP3 and their
total amounts are constant, the pattern of PIP2 regulation
mirrors that of PIP3 (Fig. 2b, bottom). Considering that the
concentration fields of PIP3 and PIP2 are correlated with
protrusive and contractive forces, respectively, the resulting
anisotropy force fields (Fig. 2c) drive cell migration, and the
integrin–ligand bonds provided by the basic active integrins
are stretched. The local mechanical–chemical feedback loop
could be initiated if the tensile force bypasses a threshold.
Thus, more active integrins are produced from the pool of
inactive integrins, which, in turn, accelerates cell migration
by strengthening cell–substrate adhesion. Successively, the
spatiotemporal regulation of both inactive and active inte-
grins reaches a steady state (Fig. 2d). Here, active integrins
present biased distributions due to the increased local ampli-

fication from the mechanical–chemical feedback loop and
limited diffusivity (Fig. 2d, bottom), while inactive inte-
grins are distributed uniformly (Fig. 2d, top). By contrast,
no biased distribution is found for bound integrins (Fig. 2e),
suggesting that the accumulation of active integrins is not
strong enough to introduce anisotropic cell–substrate adhe-
sion in the absence of directional Rac activity. Time courses
of cell velocity in this case (red line) and in two other cases
(brown and blue lines) are also presented in Fig. 2f. In these
typical cases, the cell undergoes the transition of an initial
increase (0– 40 s), a linear increase (40–400 s), and a stable
plateau (400– 700 s) along with the spatiotemporal regula-
tion of PIs and active integrins. On the other hand, since the
cell merely develops its motility by amplifying stochastic
noise, these time courses of cell velocity naturally manifest
substantial differences upon each simulation (Fig. 2f).

3.2 Modeling chemotactic migration

To further simulate the chemotactic behaviors of neutrophils,
the substrate stiffness is set as described above, and a
micropipette loaded with an fMLP solution is added close
to the cell, a source point with a constant fMLP concentra-
tion [Eq. (2)]. The system runs for 350 s, and the cellular
responses and spatiotemporal evolutions of key signaling
components are recorded. Five seconds after introducing the
source point, a steady fMLP field with a moderate gradient
(7.65–8 nM) is formed surrounding the cell (Fig. 3a). The
uniform distribution of GPCRs along the membrane allows
the cell to sense the spatial difference in the fMLP concen-
tration. However, the profile of occupied GPCRs at any time
point (i.e., t = 50 s in Fig. 3b) inevitably displays strong
stochastic noise due to the reversible binding/unbinding
events. The stochastic signal received is quickly ampli-
fied by cytoskeleton-independent signaling cascades that are
modeled by the balanced-inactivation mechanism [Eq. (3)].
Consequently, the spatial distributions of membrane com-
ponents, represented by Gβγ (activator) and Gα (inhibitor),
mark visible front and rear zones (Fig. S2a and b), which
further transfer a clear spatial message to the downstream
signaling layer of small Rho GTPase regulation by provid-
ing the binding sites for PAK1 and Lsc1, respectively (Fig.
S2c and d).

The spatial profiles of the three members in the steady
state are illustrated in Fig. 3c for the sake of clarity. These
bipolar distributions of active Rho GTPase members suffi-
ciently evoke the spatial effects of Rho GTPase-PI-mediated
feedback loops to control cytoskeletal remodeling. Particu-
larly, higher Rac activity at the cell front provides a higher
activating rate of membrane-bound PI3K, whereas higher
RhoA activity at the cell rear offers a higher activation
rate of membrane-bound PTEN. As the PIP3 level is eval-
uated by active PI3K at the front and decreased by PTEN
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Fig. 2 Spontaneous neutrophil migration in the absence of a graded
fMLP stimulus. a Cell centroid trajectories from 20 simulation runs
for 700 s each. The cross denotes the starting point. b Spatiotemporal
responses of PIP3 (upper) and PIP2 (lower) from a typical simulation.
c Protrusive (outward) and contractive (inward) force fields calculated
at t = 200 s. Local protrusive (Fpro) and contractive forces (Fcon) are
assumed to be proportional to the concentrations of PIP3 and PIP2,
respectively (see Model assumptions in Supporting Information). d
Spatiotemporal responses of inactive (upper) and active (lower) inte-
grins. As the cellmoves, the stretching of integrin–ligand bonds initiates

mechano-sensing pathways, thus transferringmore active integrins than
inactive integrins. e Profile of bound integrins along the cell periphery
at the end of a typical simulation. Note that no polarized distribution
is observable, suggesting that the extent of active integrin accumula-
tion is not sufficient to mediate anisotropic adhesion. f Time courses
of cell velocities for three randomly selected simulations presented in
blue, red, and brown. In the absence of directional cues, the establish-
ment of cell polarity is triggered by stochastic fluctuations such that the
procedures for developing cell motility differ from each other
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Fig. 3 Directional neutrophil migration upon application of a gradient
fMLP stimulus. a Spatial distribution of the fMLP field in the steady
state. The source point, mimicking a micropipette containing fMLP,
is applied in a spatiotemporally varied manner. b GPCR occupancy
profile along the periphery of a cell at t = 100 s. The cell reads extra-
cellular directional signals by evaluating local GPCR occupancy with a
displayed strong noise. c Concentration profiles of active Rho GTPase
members Rac (blue), Cdc42 (red), and RhoA (brown) in the steady
state. Due to the antagonistic effects among themembers and the spatial
regulation effect of PAK1 and Lsc1, both active Cdc42 and Rac have
higher concentrations at the cell front facing the fMLP source point,
while active RhoA is centered on the opposite side. d Spatiotemporal
responses of PIP3 (left) and PIP2 (right). Bipolar distribution patterns of
Rho GTPase members evoke the spatial effects of Rho GTPase-PI feed-
back loops that drive bidirectional molecular transport, thus resulting
in the all-or-none distributions of PIP3 and PIP2. e Spatial distribu-

tions of membrane-bound and cytosolic PI3K (left) and PTEN (right).
Cytosolic PI3K and PTEN diffuse evenly throughout the inner region of
the cell, while the distributions of their membrane-bound forms are in
accordance with those of PIP3 and PIP2, respectively. f Spatiotemporal
responses of inactive (left) and active integrins (right). Themechanical–
chemical feedback loop initiated by stretching the integrin–ligand bond
is spatially amplified upon activation of the Rac gradient (Block et al.
2016), and active integrins consequently become shapely localized at
the cell front. g Bound integrin profile along the periphery of a cell
at t = 200 s. The strong accumulation of active integrins at the cell
front leads to a polarized distribution of bound integrins, suggesting
that the cell may establish firmer adhesion at the front. h Time courses
of cell velocities for three simulations in which the initially applied
fMLP gradient varies from 0.0055 (blue), to 0.0035 (red) to 0.0015
nM/µm (brown). Increasing the fMLP gradient accelerates the process
of achieving stable movement

123



S. Feng et al.

at the rear, a baseline intracellular PIP3 gradient is formed
in accordance with that of extracellular fMLP. By providing
the binding sites for cytosolic PI3K on the cell membrane,
the gradually sharper PIP3 gradient drives the forward trans-
port of PI3K in the cytosol. Correspondingly, since PIP2 has
been replaced by PIP3 at the cell front, membrane-bound
PTEN tends to enter the cytosol. These PTEN molecules
reach the rear via backward cytosolic diffusion, wherein
they rebind with PIP2. This bidirectional molecular trans-
port process ceases when cytosolic PI3K is significantly
depleted. By then, all-or-nothing PI distributions are formed;
membrane-bound PI3K and PIP3 accumulate at the front,
while membrane-bound PTEN and PIP2 accumulate in the
rear (Fig. 3d and e). Accordingly, the cell generates active
protrusive/contractive forces, becomes elliptical, and moves
along the fMLP field gradient. On the other hand, the biased
distribution of active Rac evokes the spatial effects of the
mechanical–chemical feedback loop responsible for inte-
grin activation. The local difference in Rac activity can be
transferred into that of integrin activity. As a result, active
integrins constantly accumulate at the front of the cell (Fig.
3f, right). This process ceases until the pool of inactive inte-
grins becomes depleted, and a spatially biased distribution of
bound integrins is formed (Fig. 3f and g), suggesting that the
cell tends to establish firmer cell–substrate adhesion at the
front. Time courses of cell velocity in this case (blue line)
and in two other cases (brown and red lines) wherein the
input fMLP gradient is either decreased or increased are also
presented (Fig. 3h). The average migration rate of neutrophil
is reported to be 0.059± 0.005 µm/s (around 30 µm/700 s)
(Weckmann et al. 2017), which is comparable to the rate pro-
vided by our simulations and our verification experiments
(∼ 24.5 µm/700 s) (Fig. S3, Video S1 and S2). Increasing
or decreasing the input fMLP gradient tends to accelerate or
decelerate the process, respectively.

3.3 Impacts of substrate stiffness and
integrin–ligand binding kinetics

In addition to cytoskeletal remodeling, focal adhesiondynam-
ics are another key factor that constrain neutrophil motility,
and both processes typically occur in a coordinated manner.
Despite the complexities of the aforementioned molecular
mechanisms, the strength of focal adhesion is proportional to
the local concentration of active integrins,which is controlled
not only by intracellular biochemical factors, i.e., Rac activ-
ity (Block et al. 2016), but also by extracellular mechanical
factors, i.e., substrate stiffness and integrin–ligand binding
affinity itself (Peng et al. 2012).

In this section, cells expressing different types of inte-
grins are set to undergo directional movement upon the
application of substrates with varying stiffness. In each sim-
ulation, the same graded chemotactic stimuli are applied,

and the displacement and shape of the cells are monitored
at given time intervals. Cell velocity at the steady state is
plotted against substrate stiffness and integrin–ligand bind-
ing kinetics (Fig. 4a). Generally, the estimated cell velocity is
a biphasic function of substrate stiffness, which can be inter-
preted as follows: Cell motility results from balance among
cellular adhesion strength, contractive force, and protrusive
force,which are associatedwith the force built upon integrin–
ligandbonds. Thismolecular-level force should either exceed
a threshold that is required for successful integrin activa-
tion when more integrins become activated or reduce the
dissociation rate of integrin–ligand bonds, based on Bell’s
model (Bell 1978). Upon application of a certain substrate
stiffness (i.e., Esub > 10 kPa), the buildup of the force is
efficient [as explained by a serial two-springmodel (Schwarz
et al. 2006)], yielding a high probability of a bond beyond
the threshold (Fig. S4a). Since a higher level of integrin
activation corresponds to firmer cell–substrate adhesion, the
magnitude of active forces is saturated. Further increasing
the substrate stiffness evaluates the drag force and even-
tually results in diminished cell motility. In contrast, since
the bond force buildup is not sufficient on soft substrates
(i.e., Esub < 2 kPa), the relatively weak cell–substrate adhe-
sion restricts the magnitude of the active force, and the cell
velocity is thus decreased. Unsurprisingly, cells generate
maximal migration velocity only at intermediate substrate
stiffness.

Additionally, the dependence of cell velocity on substrate
stiffness differs based on specific integrin–ligand binding
kinetics, suggesting that the expression of integrin variants
acts as an adaptation mechanism to varied substrate stiff-
ness. sMac-1 (red line), where the highest velocity occurs
at ∼3 kPa, serves as an example comparison. Here, LFA-
1 yields higher dissociation kinetics with ICAM-1, and the
estimated highest velocity shifts left upon the addition of
a softer substrate (at ∼2 kPa, brown line) because the
mechanical–chemical feedback loop is efficiently evoked
upon the inclusion of softer substrates for integrins that
possess lower dissociation kinetics. By contrast, Mac-1 pro-
cesses lower dissociation kinetics with ICAM-1, and the
highest velocity shifts right upon the addition of a stiffer
substrate (at∼5 kPa, blue line), as expected. Since the disso-
ciation kinetics of specific integrins govern the level of active
integrins at distinct substrate stiffness values, the association
kinetics further determine the amount of bound integrins, and
thus, the cell velocity.

The cell morphologies and active integrin distributions at
the steady state are exemplified in Fig. 4b. For three pairs of
two integrins (Mac-1, sMac-1, andLFA-1)with distinct bind-
ing kinetics, increasing substrate stiffness enhances integrin
activation; the global level of active integrins is low (∼ 3µM)
on a soft substrate (1 kPa) and reaches saturation on inter-
mediate (5 kPa) and stiff substrates (20 kPa). The shape of
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Fig. 4 Impacts of substrate stiffness and integrin–ligand binding kinet-
ics on neutrophil migration. The substrate stiffness varies from 1 to 20
kPa. Three sets of binding kinetics (k0off (s), ACkon(10−6 µm4 s−1)),
including Mac-1-sICAM-1 (1.12, 0.90) (blue in a), sMac-1-ICAM-1
(0.43, 0.39) (red in a), and LFA-1-ICAM-1 (0.5, 0.5) (brown in a),
are given in the simulations. a Average migration velocity as a func-
tion of substrate stiffness and binding kinetics. In general, the stiffness
dependence of cell velocity is biphasic. Altering the binding kinet-

ics shifts the location of the peak velocity value, suggesting that the
expression of distinct integrins serves as an adaption strategy upon the
addition of different substrates. bMorphologies and integrin responses
at varying substrate stiffness values and reaction kinetics. As the stiff-
ness increases, the activation of integrins becomes saturated due to the
increased efficiency of triggering mechanical–chemical feedback. The
cell is more asymmetric on intermediate substrates (5 kPa) and less so
on soft (1 kPa) and stiff (20 kPa) substrates

the cell is mainly regulated by the substrate stiffness. Cell
asymmetry is less evident on soft and stiff substrates due to
the lack of adhesion or the formation of over-firm adhesion.
The cell develops asymmetric morphology with a polarized
front and rear on only an intermediate substrate. The spa-
tiotemporal deformation patterns of a model cell expressing
sMac-1 during its migration process on a 5 kPa substrate are
presented in Fig. S4b and c, indicating how the cell develops
its contractive rear.

3.4 Turnability of cell motility

Thismodel canbe further extended to elucidate cell behaviors
in response to reversal stimuli with varying steepness values.
The simulations are started from the non-polarized cell state.
The same initial stimulus is applied at t = 0 s, and a specific
reversal stimulus is applied at t = 350 s for an additional 550
s. The cell centroid trajectories (colored lines) and snapshots
of cell shape (colored by PIP3 concentration) are presented
in Fig. 5. In response to a steep reversal gradient (i.e., 0.095
nM/µm), the cell approaches the new stimulus by reversing
its original motility in a nearly straight trajectory (Fig. 5a and
Video S3). Interestingly, since the cell first loses its original
polarity and then repolarizes correctly in accordance with the
new stimulus direction, a remarkable time lag exists (e.g.,
from 350 to 405 s) during which the cell returns to a non-
polarized, round state, and its netmotility is nearly abolished.
At a moderate reversal gradient (i.e., 0.055 nM/µm), the cell

similarly maintains its original movement direction during
the time lag period, but the polarity of the cell yields a slow
rotation rather than a direct reversal (Fig. 5b and Video S4).
Consequently, the cell makes a U-turn in response to the
change in the gradient direction. When a shallow reversal
gradient is applied (i.e., 0.035 nM/µm), the cell maintains
its migration along its original direction (Fig. 5c and Video
S5).

To elucidate how cell motility can be fundamentally tuned
by the steepness of the reversal stimulus, the spatiotemporal
patterns ofPIP3 and the timecourses of cytosolicPI3K/PTEN
amounts corresponding to various gradients are presented
in Fig. S5. When a cell receives stimuli from the oppo-
site direction, Rho GTPase members effectively redistribute
their activities; the activated Rac and Cdc42 are detected at
the incipient front and reduced at the incipient rear, while
RhoA acts oppositely. Since Rho GTPase members (in their
active forms) yield faster redistributing dynamics than PIs
and steeper reversal stimuli result in sharperRhoGTPase gra-
dients (data not shown), the locationwhere the highestRac→
PI3K � PIP3 positive-feedback loop strength occurs could
be varied by specific reversal stimulus gradients. Accord-
ingly, different spatiotemporal patterns of PIP3 are produced
(Fig. S5a–c). By monitoring the time course of cytosolic
PI3K amounts (Fig. S5d), a quantitative understanding of cell
turnability can be achieved. Once the stimulus is reversed,
the evaluation of RhoA activity at the incipient front reduces
local PIP3 via active PTEN,which induces the dissociation of
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Fig. 5 Influence of reversal gradient steepness on neutrophil turnabil-
ity. The cell originally set in a fMLP gradient and moving to the right
receives the reversal fMLP stimulus at t = 350 s at different reversal
gradient steepness values. Time-lapsed snapshots of the cell trajecto-
ries and shapes are illustrated. The colored bar on the right denotes PIP3
concentrations. a Responses of a cell to a steep reversal stimulus (0.095
nM/µm); the cell reorients itself by first losing its original polarity and
then reestablishing its PIP3 polarity toward the new stimulus. Note that

a time lag period exists (from 350 to 405 s) during which PIP3 accumu-
lation nearly disappears (also see Video S3). b Responses of a cell to a
moderate reversal signal (0.055 nM/µm), where PIP3 redistribution is
achieved in a slow rotation manner such that the cell prefers to make
a U-turn to the new stimulus (also see Video S4). c Response of a cell
to a shallow reversal signal (0.035 nM/µm), where PIP3 accumulation
is frozen such that the cell becomes stuck in its original direction (also
see Video S5)
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membrane-boundPI3Kand thus increases the cytosolic PI3K
profiles (Fig. S5d). Specifically, in response to steeper rever-
sal stimuli, the strong rejection effect of membrane-bound
PI3K, elevated from the increased RhoA activity at the orig-
inal cell front, results in the fast increase in cytosolic PI3K
amounts (blue line, 350–410 s). Accordingly, the original
rear efficiently accesses cytosolic PI3K and forms the newly
born pseudopod corresponding to the decrease in the PI3K
profile (blue line, 410–470 s). When the reversal stimulus
gradient decreases, the increase in cytosolic PI3K becomes
slow (red line, 350–490 s) or completely ceases (brown line).
The previously formed pseudopod still runs such that the cell
displays a “U-turn” or “lock-on” behavior.

3.5 Responses of mutated cells

Thismodel is also applied to test a typical biological scenario
for the responses of cell mutants with distinct PTEN expres-
sions. Using the same time-dependent initial and reversal
fMLP stimuli (cf. Fig. 5a), the corresponding cell trajectories
and the cell shapes are presented at a series of succes-
sive time points (Fig. 6). PTEN-overexpressed cells (i.e.,
[PTEN] = 0.14 µM) require more time to accumulate PIP3
and become fully polarized (Fig. 6a) because the inhibiting
effect of cytoskeletal remodeling in mutated cells is stronger
than that in wild-type cells. In addition, these mutants have
lower migration velocities, exhibiting reductions of ∼70%
compared with those of wild-type cells. By contrast, cells
become easily excited when PTEN is deficient (i.e., [PTEN]
= 0.035 µM). The shortage of the inhibitor allows the cell
to generate a pseudopod along its entire periphery. Here, the
mutated cell is pushed at both the front and the rear, restrict-
ing its migration velocity.Meanwhile, the cell has a defective
contractive rear (Fig. 6b).

Once the reversal stimulus is received, the mutant cells
respond differently. For example, a PTEN-overexpressed
cell tends to return to a non-polarized state (Fig. 6a, 350–
900 s). Although a high PTEN expression level results in a
remarkable inhibiting effect of membrane-bound PI3K at the
original cell front, the relative ratio of [PTEN] to [PI3K] in
the cytosol is sufficiently high enough that the cell fails to
be repolarized. On the other hand, relatively excessive PI3K
expression promotes the cell to establish its new front directly
opposite from where PTEN is deficient (Fig. 6b). Collec-
tively, the above simulations imply that maintaining proper
levels of core signaling molecules in the cell is substantially
important. Since the role of PI3K in mediating PI signaling
is opposite to that of PTEN, cells overexpressing PI3K may
exhibit behaviors similar to those of PTEN-deficient cells
and vice versa.

4 Discussion

To elucidate the migration behaviors of neutrophils in
different physiological environments, we herein proposed
a mechanochemical model with an intermediate level of
molecular details. The model is multi-modularized, con-
taining a four-layered signaling module, a focal adhesion
regulation module for mechano-sensing, and a motility mod-
ule. By exploring the integrative model, we gained the
following insights that help to understand the mechanisms
of neutrophil chemotaxis: First, the four-layered signaling
structure with the strongest feedback at the bottom layer can
properly capture the spatiotemporal regulation of intracellu-
lar molecules during neutrophil migration (Figs. 2 and 3).
Second, the expression of integrin variants is considered an
adaptation strategy for efficient neutrophil migration upon
the application of substrates of varying stiffness (Figs. 4
and S4). Third, rather than treating cytosolic effectors as
homogeneous species, as assumed in earlier modeling stud-
ies (Postma and Haastert 2001; Onsum and Rao 2007), this
model demonstrates that proper cytosolic diffusion gener-
ates dual effects, effective molecular transport and moderate
molecular trapping, both of which are required for appro-
priate cell reorientation (Fig. S6). Finally, the generation
of different neutrophil turning behaviors (i.e., reversal, U-
turn, and lock-on) is attributed to the synergistic effects of
instantaneous intracellular molecular transport and the orig-
inal cellular movement (Figs. 5 and 6). To further explain
the above insights in more detail, three key issues, (i) core
principals for constructing our model, (ii) comparisons to
experimental data and early modeling studies, and (iii) limi-
tations of our model, are discussed below.

4.1 Core principles for constructing our model

One of the most theoretical difficulties in simulating cell
motility is how to adequately describe the complicated sig-
naling cascades responsible for cytoskeletal remodeling.
Generally, these cascades are organized into a network that
describes the relationship among different molecules. Cells
treated with actin polymerization inhibitors become rounded
and lose polarity, yet they continue to sense the direc-
tion of chemotactic gradients (Van Haastert and Devreotes
2004). By contrast, the exogenous activation (Lin et al.
2012) or delivery of signaling molecules (Weiner et al. 2002)
while bypassing upstream cascades may induce chemotactic
behaviors without biochemical stimuli. These experimen-
tal data imply that the signaling cascades responsible for
cytoskeletal remodeling could be multilayered. From this
viewpoint, the signaling process can be deciphered as fol-
lows: First, a neutrophil utilizes the GPCR occupancy to
depict the local concentration of the surrounding biochemical
field (signal reception, Fig. 1a-i). Second, G protein dis-
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Fig. 6 Responses of a PTEN-mutated cell to the same initial and rever-
sal stimuli. Initial and reversal stimuli gradients are set to 0.035 and
0.095 nM/µm, respectively. Cellular responses vary dramatically upon
the alteration of PTEN expression. a Cell centroid trajectory and PIP3
response to a 200% increase in the basal PTEN basal. The cell accu-

mulates a small amount of PIP3, corresponding to the development of
a small pseudopod, and fails to repolarize in response to the secondary
stimulus. b Trajectory of a cell centroid and PIP3 response to a 50%
decrease in the basal PTEN level. The cell establishes a wide range of
PIP3 accumulations and fails to develop a contractive rear

sociates into Gα and Gβγ subunits, which are responsible
for regulating fast activation and slow inhibition responses,
respectively (Levine et al. 2006).Meanwhile, the diffusion of
signaling molecules on the membrane effectively eliminates
the noise from the received signal (initial signal processing,
Fig. 1a-ii). Third, GEF localization along with the antagonis-
tic effects of Rho GTPase members promotes Rho GTPase
bipolar distributionpatterns (RhoGTPase regulation, Fig. 1a-
iii) (Raftopoulou andHall 2004). Fourth, short-range positive
and long-range negative feedback loops are generated from

the depletion of effector molecules in the cytosol and the
interconversion of substrate molecules (i.e., PIP3 and PIP2)
at the membrane (Kölsch et al. 2008), resulting in molec-
ular transport in one direction enhancing the transport in
the opposite direction (bidirectionalmolecular transport, Fig.
1a-iv). Based on our previous studies (Feng and Zhu 2014;
Feng et al. 2018) as well as those from other laboratories
(Marée et al. 2012; Otsuji et al. 2007), the mechanisms that
enable the spatial separation of Rho GTPase members and
PIs (i.e., PIP3 and PIP2) are different. The former is caused by
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mutually exclusive effects between Rho GTPase members,
as modeled by double-negative feedback loops. The latter is
induced by the spatial effects of Rho GTPase-PI-mediated
feedback loops. Physically, it also relies on the translocating
features of the effectors (i.e., PI3K andPTEN) alongwith fast
molecular diffusivity in the cytosol. Our model results veri-
fied that once the clear all-or-nothing PI distribution pattern
is established, the actin network is pushed at the front and
pulled at the rear such that the cell achieves the most efficient
movement upon the guidance of shallow, graded biochem-
ical stimuli. In the absence of directional stimuli, however,
the generation and growth of such PIP3/PIP2 patches rely
on only the amplification of stochastic noise, and achieving
significant cell motility thus requires more time.

This work also proposes a novel numerical method, LBP,
which is helpful for solving MBPs of inherently deformable,
non-stationary domains with redistributed biochemical sig-
naling components. In the past two decades, several compu-
tational frameworks forMBPs have been proposed.Although
these frameworks differ in their computational methodolo-
gies, their procedures are similar (Holmes and Edelstein-
Keshet 2012). In principle, two separate aspects are required.
First, a method of choice, such as the level-set (LS) method
(Neilson et al. 2011; Shi et al. 2013), phase-field (PF)
method (Camley et al. 2013), or cellular Pott (CP) method
(Marée et al. 2012, 2006), is implanted to track the mov-
ing boundary. Second, any conventional numerical method,
such as the finite difference (FD)method, finite element (FE)
method, or finite volume (FV) method, is invoked to solve
the interior reaction–diffusion problem. Comparably, in the
current LBP method, the particle method is applied to spec-
ify the moving boundary conditions via coupled, nonlinear
reaction–diffusion equations, wherein the partial differen-
tial equations in the irregular domains are solved by the
LBM. In a sense, the greatest advantage of the LBP method
derives from implementation of the LB method (Ayodele
et al. 2011).On the one hand, since the computational domain
mesh is achieved using small, regular lattices, the specifica-
tions of spatiotemporally changed domains can be reached by
means of an elementary Boolean operation. These features
provide a simpler description of complicated geometry com-
pared with those of conventional numerical methods. On the
other hand, arithmetic operations in conventional computing
are performed in only the collision process (see Supporting
Information), which is a localized operation, such that the
LB method-based MBP framework is substantially efficient
and suitable for parallel processing.

4.2 Comparison to experimental data and early
modeling works

Our model can quantitatively interpret a group of distinct
but interrelated experimental neutrophil chemotaxis obser-

vations. The first set of our cell chemotaxis simulations (Figs.
2 and 3) aims to compare the integrated model against the
following basic aspects of experimental observations. The
outputs of neutrophil migration experiments come from both
cellular and molecular levels. At the cellular level, the neu-
trophil undergoes directional migration upon the application
of graded stimuli or spontaneous migration upon the applica-
tion of uniform stimuli (Nelson et al. 1975). At the molecular
level, the spatial patterns of signaling molecules at different
time points are presented (Wong et al. 2006; Gardiner et al.
2002). Although cellular observations have been captured
by early modeling works, most rely on a single signaling
mechanism achieved by abstract signaling components (Shi
et al. 2013) or simple GTPase models (Wolgemuth et al.
2011; Vanderlei et al. 2011). Here, by adapting a four-layered
approach to the complicated signaling cascades, we propose
that when perceiving external stimuli in real time, isolation
of the directional signal from strong noise, having two poles
defined for actin self-organization, and effective bidirectional
molecular transport are prerequisites for cytoskeletal remod-
eling in neutrophil chemotaxis. To this end, our model links
experimental observations at the two levels. Models belong-
ing to such multilayered categories do exist (Marée et al.
2012; Dawes and Edelstein-Keshet 2007), but they have dif-
fering dominant mechanisms for the different layers derived
from distinct model cells.

The second set of simulations (Fig. 4) aims to compare
with experimental data showing that the chemotaxis behavior
of neutrophils is substrate dependent. Recent measurements
using neutrophils (Stroka andAranda-Espinoza 2009) aswell
as other eukaryotic motion cells, i.e., fibroblasts (Pelham
and Wang 1997), smooth muscle cells (Peyton and Put-
nam 2005), and endothelial cells (Yeung et al. 2005), have
demonstrated that the optimal cellular migration efficiency
is achieved with the substrate of intermediate stiffness (5–10
kPa) (Janson and Putnam 2015). With stiff substrates (> 20
kPa), the cell develops mature focal adhesions at both the
front and the rear, which is too firm to break and there-
fore cannot effectivelymove.Conversely,with soft substrates
(< 1 kPa), the cell forms a round morphological shape and
presents unstable adhesions, which are unable to support the
appreciable motility. Theoretically, our model is not the first
to address this issue, as experimentally observed biphasic
dependences of cell migration speeds on substrate stiffness
have been previously explained merely by the force bal-
ance (Dokukina and Gracheva 2010; Gracheva and Othmer
2004). By contrast, our model and the related simulations are
more biologically relevant, as they link cell migration speed
and receptor–ligand binding kinetics. Unlike chemoattrac-
tant stimuli, alteration of the mechanical environment is fast
within a short spatial range, and biological tissue stiffness
reflects significant changes over large temporal and spatial
scales in accordancewith healthy or abnormal tissue (Janmey
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and Miller 2011). Correspondingly, as a neutrophil adapts to
chemoattractant stimuli via spatiotemporal regulation with
quick activation and slow inhibition, it also adapts to sub-
strate stiffness via expressing various types of integrins.

The third set of simulations (Fig. 5) focuses on unraveling
the specific features of cell turning. The turning behaviors
of neutrophils in response to a secondary reversal stimu-
lus have been investigated since 1981 (Gerisch and Keller
1981). Accordingly, two distinct turning forms are defined
with similar timescales of 1–2 min, (i) U-turn (neutrophil
follows the existing lamellipodium at the leading edge to
make a stepwise movement toward the source) and (ii) rever-
sal, (cell loses its previous lamellipodium, after which a new
front is induced at the opposite end and points to the new
attractant source). Monitoring the time courses of F-actin
and myosin II fluorescence intensities detected a significant
time delay (approximately 30 s) in F-actin redistribution after
reversing external stimuli (Dalous et al. 2008), providing
signal processing evidence at the molecular level and the
“sequence of reversal” at the cellular level. On the other
hand, theoretically interpreting cellular turning behaviors is
still diverse and not fully understood. For example, in the
divergent pathway model (Postma and Haastert 2001) spe-
cific to neutrophils, the U-turn feature is explained by only
the delayed response of intracellular signaling molecules,
while the effect of the strength of the secondary stimulus
is not considered. In a cellular Potts model (Marée et al.
2012) of steady keratinocyte motility, cell shape changes
may feed back to intracellular signaling dynamics regula-
tion, resulting in a faster U-turn rate. Compared with these
early modeling works, our model replicates both “U-turn”
and “reversal” turning features and reports the latter with the
correct sequence. Such improvements are achieved by two
factors. First, we successfully captured the intracellular sig-
naling responses on a proper spatiotemporal scale (i.e., the
PIs achieved the all-or-none distribution pattern in 2 min)
via the definition of signaling layers specific to neutrophils.
Second, such specific chemotactic features are attributed to
the molecular trapping effect induced by cytosolic diffusion
and the stochastic translocation of effector molecules (Fig.
S6). Overall, by combining with the motility module, the
actual cell fate in chemotaxis is governed by competition
between the mechanical strengths of retaining the existing
lamellipodium and forming a new lamellipodium. Adopting
the competitive strategy enables a neutrophil to choose its
target most efficiently.

The final set of simulations (Fig. 6) aims to predict how a
mutated cell migrates along the chemotactic gradient. Moti-
vated by the prioritized role of PTEN in neutrophilmigration,
PTEN is selectively depleted in neutrophils with a loxP-
Cre system wherein Cre recombinase is expressed under the
control of the granulocyte-elastase promoter (Ela2CrePtenfl)
(Heit et al. 2008). PTEN-deficient neutrophils produce two or

more lamellipodia and anunidentifiable uropod.Correspond-
ingly, Ela2CrePtenfl mice also show less cell recruitment
during infection, which is manifested as a lack of motil-
ity in PTEN-deficient neutrophils. On the other hand, the
behaviors of cells overexpressing PTEN are equivalent to
those with reduced PI3K since the roles PI3K and PTEN
are reciprocal. Blocking PI3K signaling using a wortman-
nin inhibitor shows that the cell exhibits a poorly developed
lamellipodium, crawls much more slowly, and fails to persist
in forward movement, which unlikely enables its migration
all the way to the stimulus source point (Wang et al. 2002).
These observations are consistent with ourmodel predication
in Fig. 6b and a, respectively.

4.3 Limitations of our model

While our predictions are, in principle, consistent with those
of experimental studies, and the proposed LBP method is
suitable for our numerical calculations in MBPs, several
issues remain. First, at least two aspects of the four-layered
signaling module could be improved, one of which is in
the initial signaling processing layer. Although introduction
of the balanced-inactivation mechanism provides our model
great simplicity, such integral treatment relying on abstract
components could also be combined with other mechanisms,
such as the local modulation of chemoattractant (Macken-
zie et al. 2016) or a phase separation mechanism (Gamba
et al. 2005). The other improvement involves the small Rho
GTPase regulation layer, as only one Rho GTPase cross-talk
schemewas selected frommany other candidates for simplic-
ity (Holmes et al. 2012; Jilkine et al. 2007), and this selection
needs to be extended to other related signaling pathways (i.e.,
FilGAP) (Houk et al. 2012).

Second, while the focal adhesion regulation module is
minimized to contain the two essential aspects of inte-
grin regulation, i.e., the inside-out and outside signaling
pathways (Yap and Kamm 2005), more detailed mechano-
sensing mechanisms are required to achieve a broad range
of neutrophil motility. For example, numerical simula-
tion has shown that membrane tension could regulate the
growth of nascent focal adhesion (He and Ji 2016). In an
integrin cluster model, the force-dependent integrin clus-
tering is considered by local chemical potential reduction
(Kong et al. 2010). From a theoretical modeling view-
point, the local activation of an existing integrin has the
same effect as integrin cluster. However, this microscopic
model may provide a physical interpretation of the thresh-
old force (Fr) adopted here. Besides, mechanical factors are
well known to also affect the regulation of Rho GTPases,
especially RhoA (Schaefer and Hordijk 2015). Myosin
II-dependent contraction is activated by RhoA and Rho-
dependent kinase (ROCK) signaling, while the increased
contraction consequently increases Rho/ROCK signaling
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(Rottner and Stradal 2011). Considering that a neutrophil
moves relatively fast on soft substrates and no correlation
between traction force and focal adhesion size is observed
for mature adhesion (Stricker et al. 2011), the effect of
a force-mediated RhoA signaling feedback loop is not a
limiting factor for neutrophil motility in free space. How-
ever, such an effect may increase or even become dominant
when neutrophils are required to enter a confined space
[e.g., via a hepatic sinusoid or the ECM network (Cao
et al. 2016)] whereupon the cell needs to enhance its con-
tractility to override the resistance raised from a stiffer
nucleus.

Additionally, the cytoskeletal remodeling module is quite
simplified in our model. The shortage of earlier mod-
els in combination with previous observations in signaling
cascade disruption experiments led to our proposal of a
mechanochemical model of neutrophil chemotaxis based on
signaling polarity. To a large extent, cytoskeletal remodeling
is likely governed by the polarities of signaling molecule
distributions; however, their intercorrelation is far more
sophisticated. A variety of mechanisms, including G-actin
treadmilling (Danuser et al. 2013), dendritic nucleation at
the leading edge (Mogilner and Edelstein-Keshet 2002), and
hydrodynamic flow (Niwayama et al. 2011), may function
together to regulate the dynamic patterns of actin–myosin
flow. Future models may involve the related molecular com-
ponents in cytoskeletal remodelingbasedon the experimental
results of disrupting actin-binding proteins.

Finally, as an old saying goes, every coin has two sides;
every numerical simulation platform has its advantages and
limitations. In the current framework of the LBP method,
combining the auto-parallelization feature of the LBmethod,
treating the cell edge as a collection of particles, and intro-
ducing a constriction area allow us to treat the signaling
cascades very efficiently and with high numerical stabil-
ity. Accordingly, in the future, the LBP-based system may
be further extended to a multi-cellular system, wherein the
chemical interactions between cells and intracellular dynam-
ics are of great interest. However, application of the LBP
method comes at the price of losing mechanical details. Cur-
rently, problems such as the stochastic features of cell edge
protrusions–contractions, the effects of cell shape feedback
on cell motility, and the interactions of cells with obstacles
have not been included. To these regards, the cellular Potts
method (Marée et al. 2012) is more ideal.
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