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The application of the Kutta–Joukowski (KJ) theorem to estimating the lift of a
flying animal based on wake velocity fields often leads to significant underprediction
of the lift, which is known as the wake momentum paradox. This work attempts
to answer the puzzling question on whether the KJ theorem is legitimate in its use
for complex viscous unsteady wakes generated by flapping wings. The limitations
in applying the KJ theorem to flapping wings are quantitatively examined through
numerical simulations of viscous incompressible flows over three flapping wing
models. The three flapping wing models studied in this work are a flapping wing
with a fixed wingspan, a flapping wing with a dynamically changing wingspan and a
dihedral flapping wing. The KJ theorem fails to give a satisfactory prediction of the
time-averaged lift unless an effective span length is correctly computed. We propose
a wake-sectional Kutta–Joukowski (WS-KJ) model to predict the time-averaged lift,
where the effective span length is computed based on the time-averaged distance
between the streamwise vorticity centroids in the right and left half sides of the
Trefftz plane. The WS-KJ model incorporates the spatial evolutionary effects of the
complex vortex structures in the wake and significantly improves the prediction of
the time-averaged lift. The physical foundation for such improvement is explored. In
addition, the time-dependent amplitude and phase changes of the unsteady lift are
discussed as the fluid acceleration effect.

Key words: swimming/flying

1. Introduction
The wake of a flying animal provides the footprints that contain the physical

information about the spatial–temporal characteristics of the fluid momentum
associated with flapping flight. In principle, the aerodynamic forces acting on the
animal could be inferred from either computed or measured velocity fields in the
wake. The estimation of the aerodynamic forces from the wake velocity fields is
advantageous since this method could circumvent some complex near-wall flow
details related to the wing morphology and kinematics (Zhang 2017). In addition,
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the wake survey method is easier to implement in wind tunnel experiments and
safer in laser flow diagnostics for flying animals. Therefore, considerable efforts
have been made since the 1960s to estimate the aerodynamic forces and power
(lift, drag/thrust and efficiency) from wake measurements (Pennycuick 1968; Rayner
1979a,b; Spedding, Rosen & Hedenstrom 2003; Dabiri 2005; Li & Lu 2012; Lee
et al. 2013; Park et al. 2016).

One of the favourable methods in estimating the lift is the application of the Kutta–
Joukowski (KJ) theorem with the circulation computed in a Trefftz plane in the wake
(Gutierrez et al. 2016). Here the Trefftz plane refers to a plane perpendicularly cutting
through the wake (Gennaretti, Salvatore & Morino 1996). Since the KJ theorem is
a cornerstone of classical aerodynamics for fixed-wing aircraft, it has been naturally
adopted in studies of biological flapping flight due to its mathematical simplicity and
physical clarity. However, it has been widely reported that the KJ theorem applied
to experimental velocity data often underpredicts the time-averaged lift especially in
slow-flying cases, and the estimated lift could be only 30–60 % of the weight of a bird
or bat (Hubel et al. 2009; Henningsson & Hedenstrom 2011; Gutierrez et al. 2016).
This puzzling underpredicted lift from the wake data in biological flapping flight is
described by Spedding et al. (2003) as the wake momentum paradox.

The causes behind this paradox have been explored from different perspectives.
The lower spatial resolutions of velocity measurements could lead to underestimation
of the circulation, since some small vortex structures are not captured (Spedding
et al. 2003; Hubel et al. 2009). Different experimental arrangements (Spedding &
Hedenstrom 2009; Hubel et al. 2010; Waldman & Breuer 2012) have been proposed
for improvements, such as manipulating the seeding particles, laser energy density
and window sizes of particle image velocimetry (PIV), etc. Different data-processing
methods to reduce the effects of measurement errors on the circulation estimation
have also been proposed (Spedding et al. 2003; Tian et al. 2006; Hubel et al. 2009).
Estimation of the wake width is another critical issue in evaluating the lift, especially
for the complex wake structures. The wingspan has been simply used by ignoring the
wake contraction (Spedding et al. 2003; Tian et al. 2006; Hubel et al. 2009). The
spanwise distance between the peaks of the cross-sectional vorticity fields has been
used as the wake width by Henningsson & Hedenstrom (2011), Muijres et al. (2012)
and Gutierrez et al. (2016). Furthermore, Muijres et al. (2008) and Gutierrez et al.
(2016) have tried different ways to correct the incoming velocity by considering the
local higher airspeed relative to the flapping wing due to the forward and vertical
motions. However, although the careful set-ups of measurements and computations
have improved the lift evaluated, the wake momentum paradox has not been fully
resolved (Gutierrez et al. 2016).

Besides the above issues related to measurements, a more fundamental question
is whether the KJ theorem itself is applicable to estimating the lift in highly
unsteady wakes associated with biological flapping flight. The classical form of
the KJ theorem was derived for a steady flow in the inviscid-flow framework. The
KJ theorem has been recast in the viscous-flow framework where the Taylor–Sear
condition with zero total vorticity flux has to be satisfied at the trailing edge. When
the KJ theorem is applied to biological flapping flight, several assumptions are
implicitly imposed. Firstly, it is assumed that the unsteady lift could be estimated as
a quasi-steady vortex-related lift (simply called the KJ lift hereafter) at each moment.
This quasi-steady assumption is not supported when the unsteady history of the lift
is dominated by the inertial force associated with the fluid acceleration (Wang, He
& Zhang 2013a). Secondly, when the KJ theorem is applied to the Trefftz plane
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in the wake, it is assumed that the circulation calculated based on the streamwise
vorticity on the Trefftz plane is equal to the bound-vortex circulation in the spirit
of Kelvin’s total circulation conservation theorem. In general, this is not true for a
complex viscous wake.

The objective of this work is to quantitatively investigate the applicability of the
KJ theorem in estimating the lift for flapping flight. Three different flapping wing
models are used to examine the limitations of the existing lift models based on
the KJ theorem and evaluate the wake-sectional Kutta–Joukowski (WS-KJ) model
proposed by the current work for flapping flight. The existing lift model based on
the KJ theorem widely used in biological flapping flight and the way to evaluate
the effective span length are discussed in § 2. The detailed results of applying the
KJ theorem to three flapping wings are reported in §§ 3–5. Through numerical
simulations of the flapping wings, the differences between the real lift and the KJ
lift are discussed, indicating that the KJ theorem could not be directly used for
estimating the unsteady lift. Then, it is found that the time-averaged KJ lift could
be larger (overpredicted) or smaller (underpredicted) than the real one, depending
sensitively on the locations of the selected Trefftz plane and the computation of the
effective span length. Interestingly, when the WS-KJ model proposed by this work is
used, the time-averaged KJ lift is consistent with the real lift, and the result is almost
independent of the location of the selected Trefftz plane. The rationale behind this
improvement is discussed. Further, the error source in estimating the time-dependent
lift by using the KJ theorem is discussed. Finally, the conclusions are drawn in § 6.

2. Lift models for flapping wings
2.1. The widely used lift models

One of the widely used lift models for flapping wings is based on the KJ theorem
and the quasi-steady assumption (Gutierrez et al. 2016), where the amplitude of the
lift is given by

LKJ(t)= ρUbΓ (t), (2.1)

where ρ is the fluid density, U is the free-stream velocity encountered by the wing,
b is the effective span length, and Γ (t) is the circulation around the airfoil. Here, the
lift is defined as the force normal to the free stream, i.e. parallel to the z-axis shown
in figure 1. The corresponding lift coefficient is computed by

ClKJ =
LKJ

ρU2S/2
= 2Γ ∗b∗G, (2.2)

where S is the wing area, Γ ∗ = Γ /(Uc) is the non-dimensional circulation, c is the
chord length, b∗ = b/c is the non-dimensional effective span length, and G = c2/S
is a geometry parameter of the wing. For a rectangular wing with the effective span
length of b = S/c, equation (2.2) is simply ClKJ = 2Γ ∗, which recovers the relation
between the lift coefficient and the non-dimensional circulation for stationary airfoils.
For a given wing with a fixed G, equation (2.2) indicates that the lift coefficient is
determined by the circulation around the airfoil and the effective span length.

The coordinate system in figure 1 is used to describe the computation of the
circulation in this work, where the x-, y- and z-axes are parallel to the streamwise,
spanwise and vertical directions with respect to the free stream, respectively. The
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FIGURE 1. (Colour online) Schematics of the coordinate system and the integral domains
in the Trefftz planes: (a) the flapping rectangular wing in a uniform upstream flow;
(b) side view of the wake structures coloured by the spanwise vorticity from −2 (blue) to
2 (red); (c) streamwise vorticity fields in the Trefftz plane at x/c=3.0; and (d) streamwise
vorticity fields in the Trefftz plane at x/c= 15.0.

circulation Γ (t) is usually estimated from the streamwise vorticity in the wake
(Hubel et al. 2009), i.e.

Γ (t, X)=
∫

S+(X)
ωx(t′) dS, (2.3)

where S+(X) denotes the right-hand side of the Trefftz plane at the streamwise
location x = X (see figure 1c,d), ωx is the streamwise component of the vorticity
vector, and t′ is the moment when the vorticity is measured in the Trefftz plane at
x = X. The translation between the lift-generating time t and the delayed time t′ is
given by

t= t′ −
X − xt

Uconv
, (2.4)
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where xt is the streamwise position of the trailing edge, and Uconv is the convective
velocity of the vortex structures in the wake. If the flow structures have a dominant
velocity component, the dominant velocity is a reasonable approximation to the
convective velocity. For simplicity, the incoming free-stream velocity is usually used
as Uconv in studies of biological flapping flight where the Strouhal number of the
flapping flight ranges from 0.2 to 0.7 (Hedenstrom et al. 2009; Hubel et al. 2009,
2010; Muijres et al. 2011). The application of the free-stream velocity as Uconv

assumes that the vortex structures are frozen in the flow, which is tenable in the
near and far wakes of a flying bat as reported by Hedenstrom et al. (2009) and
Hubel et al. (2009, 2010). In other words, the time scales of the flow-structure
propagations are faster than those of their changes. However, the application of the
incoming free-stream velocity might not be valid for complex wake structures in
slow forward flight since the strong interactions between adjacent vortices may via
self- and mutual induction alter the mean flow (Hubel et al. 2010). The reduction of
the distance between the Trefftz plane and the trailing edge is helpful to reduce the
effects of the vortex-induced flow (Hubel et al. 2010). For the cases with complex
wake structures, the convective velocity Uconv can be globally determined through
space–time correlations of velocity fluctuations (He, Jin & Yang 2017) or locally
determined by the phase velocities of energetic flow structures (del Alamo & Jimenez
2009). In this work, Uconv is taken as the incoming free-stream velocity, since it has
been widely used in studies of biological flapping flight. Following the suggestion
of Hubel et al. (2010), we use the Trefftz plane near the trailing edge (0.5 chord
length downstream of the trailing edge) to reduce the effects of the vortex-induced
flow when (2.4) is used to analyse the limitations of the widely used lift models. It
is emphasized that the time-averaged (or ensemble-averaged) lift calculated in this
study does not depend on the translation transformation equation (2.4).

The effective span length in (2.1) could be simply the wingspan (Spedding et al.
2003; Tian et al. 2006; Hubel et al. 2009), which is reasonable for a stationary
wing with a large aspect ratio. For a stationary wing with a low aspect ratio, the
wake width could be selected as the effective span length. For the unsteady flows in
flapping flight, the wake width decreases as the vortex structures shedding from the
flapping wing convect downstream, as discussed in § 3.4. Intuitively, for the varying
wake width, a straightforward choice of b is the spanwise distance between the peaks
of the streamwise vorticity (DPV) in the Trefftz plane. The spanwise distance between
the centres of the major vortex tubes could be approximately half of the wingspan,
as shown in figure 1(d). However, as will be discussed in § 3, equation (2.1) based
on the DPV fails to give a good prediction even for the time-averaged lift, and the
estimated lift depends sensitively on the locations of the Trefftz planes. Moreover,
since the wake structures of a flapping wing become complex, it is not easy to
rationally determine the DPV when multiple peaks exist in the Trefftz plane. To
circumvent this problem, we introduce the WS-KJ model.

2.2. Wake-sectional Kutta–Joukowski model

To take into account the distribution of complex vortex structures in the Trefftz plane,
we propose the WS-KJ model as follows to compute the time-averaged lift:

〈LKJ〉 ≈ ρU〈bvor(X)〉〈Γ (t, X)〉. (2.5)
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Here 〈Γ (t, X)〉 is the time-averaged circulation, and 〈bvor(X)〉 is an effective span
length defined by the vorticity-weighted width (VWW). The VWW is computed by

〈bvor〉 = 2

〈∫
S+(X)

yωx(t′) dS
〉

〈∫
S+(X)

ωx(t′) dS
〉 , (2.6)

where 〈•〉 denotes the time-averaging operator, and y is the spanwise position of
the vorticity. When the vorticity-weighted width 〈bvor〉 is substituted for b in the
time-averaged version of (2.1), it will be shown in the following sections that the
predicted time-averaged KJ lift coefficient is in good agreement with the truth. In
fact, equation (2.6) gives a time-averaged spanwise distance between the streamwise
vorticity centroids in the right and left half sides of the Trefftz plane. The vorticity
centroid was introduced by Saffman (1970) for calculating the velocity of viscous
vortex rings. It is somewhat surprising that such a simple scaling based on the
vorticity-centroid distance, 〈bvor〉, leads to the correct prediction of the time-averaged
lift by using the KJ theorem in the highly unsteady separated flow generated by a
flapping wing. In fact, this dramatic improvement is not a fluke since there is a sound
physical foundation for such scaling.

The lift acting on a body in an incompressible viscous flow is given by

L= Lvor + Lacc + res, (2.7)

where the lift associated with the vortex (Lvor), the lift associated with the fluid
acceleration (Lacc), and the residual term (res) are expressed, respectively, as

Lvor = ρk ·
∫

Vf

(u×ω) dV, (2.8)

Lacc =−ρk ·
∫

Vf

∂u
∂t

dV − ρk ·
∮
∂B

u · u
2

n dS, (2.9)

res=−k ·
∮
Σ

(
p+ ρ

u · u
2

)
n dS+ k ·

∮
Σ

(τ · n) dS. (2.10)

In (2.8)–(2.10) u and ω are the velocity and vorticity, respectively, Vf is the control
volume of the fluid, ∂B is the surface of the solid body, Σ is the outer surface of
the control volume enclosed by the solid body, k is the unit vector normal to the
free-stream velocity, and res is contributed by the total pressure and viscosity in the
far field (Wang et al. 2013b). For an inviscid flow, Saffman (1992) has given the same
expression with res= 0. For the thin rigid wing considered in the present work, the
contribution of the residual term to the lift is relatively small (as shown in § 3). The
lift acting on the wing is dominated by the vortex lift and the local fluid acceleration
around the wing.

Equation (2.8) can be written in the following form (see the details in appendix A):

Lvor ≈ ρU
∫

S(X)
yωx dS. (2.11)

The time-averaged vortex lift in the far wake can be expressed as the time-averaged
KJ lift, i.e. 〈Lvor〉 = 〈LKJ〉 as X → ∞, while the time-averaged contribution 〈Lacc〉
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from the acceleration term is small as X→∞ or as the spatial integral and temporal
average are taken (see more details in Wu, Ma & Zhou (2006), Wang et al. (2013b)
and Wu, Liu & Liu (2018)). Therefore, the asymptotic time-averaged KJ lift based on
the flow in the Trefftz plane is

〈LKJ〉 ≈ ρU
〈∫

S(X)
yωx(t′) dS

〉
= ρU〈bvor(X)〉〈Γ (t, X)〉, (2.12)

where S = S+ + S− is the entire Trefftz plane consisting of the right and left sides
denoted by S+ and S−, respectively, as shown in figure 1. The first equality of (2.12)
indicates that the time-averaged KJ lift is proportional to the integrated streamwise
vorticity moment in the Trefftz plane. The second equality of (2.12) is in the classical
form of the KJ theorem when the vorticity field is symmetrical in S+ and S−. It is
noted that, for the Trefftz plane at a finite distance, the contribution of the correlation
term of the velocity fluctuations to the time-averaged vortex lift, 〈Lvor〉 (see the
details in appendix A), is small and is neglected in this work, because both the
spatial integral and temporal average suppress the contributions of the fluctuations to
the time-averaged lift.

Since 〈LKJ〉 should be independent of the location of X, it is inferred that the
quantity 〈bvor〉〈Γ 〉 is conserved as the vortex structures travel downstream. For
the steady flows over wings with a pair of parallel straight vortex lines or tubes,
equation (2.6) results in a constant 〈bvor〉. In this limiting situation, the conservation
of 〈bvor〉〈Γ 〉 is equivalent to the conservation of 〈Γ 〉, and (2.12) reduces to the lift
formula used in classical aerodynamics. However, 〈Γ 〉 based on (2.3) is not conserved
for a general distribution of the streamwise vorticity in Trefftz planes. In other words,
the time-averaged total vorticity moment in the Trefftz plane is conserved in the
wake instead of the conservation of the time-averaged circulation 〈Γ 〉 which does
not characterize the geometrical features of the vortex structures. The evolutionary
effects of the vortex structures on both their strength and spanwise scale are explicitly
incorporated in (2.12). This explains why the WS-KJ model improves the prediction
for the time-averaged lift.

The underlying assumption behind the proposed WS-KJ model is that the incoming
free-stream velocity is sufficiently large in forward flight (hovering flight and very
slow flight are excluded here). Further, this implies that the vorticities generated
by flapping wings travel downstream at a significant convective velocity. The
difficulties of the proposed model applied to the cases with low free-stream velocity
(high Strouhal number) are discussed in appendix C. The proposed WS-KJ model
provides a tool to compute the time-averaged lift based on the wake velocity
data only on a Trefftz plane. There are several different methods to compute the
aerodynamic forces based on the wake or near-wall flow fields (Wu 1981; Chang
1992; Noca, Shiels & Jeon 1997; Dabiri 2005; Wu et al. 2006). Different methods
have different requirements on the time and space resolution of the velocity data.
Detailed comparisons between several lift formulae are given by Wang et al. (2015b).

2.3. Unsteady effect
Based on the above analysis, the WS-KJ model with the vorticity-weighted width can
give a good prediction of the time-averaged vortex lift, i.e. 〈LKJ〉 ≈ 〈Lvor〉, in which
the effect of the fluid acceleration induced by a flapping wing is not incorporated. In
the limiting case where a wing is in an inviscid flow, the lift associated with the fluid
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KJ lift, x/c = 1
KJ lift, x/c = 5
KJ lift, x/c = 10

FIGURE 2. (Colour online) The time-dependent lift coefficients predicted by using the
KJ theorem in different Trefftz planes for the flapping wing with a fixed wingspan. The
wingspan is taken as the effective span length in computing the KJ lift.

acceleration, Lacc, can be interpreted as the added-mass lift, La (Wang et al. 2013b).
Therefore, equation (2.7) is approximately expressed as the superposition of the KJ
lift and the added-mass lift, i.e. L≈ LKJ + La, which was derived by Liu et al. (2015)
in the unsteady viscous thin-airfoil theory.

The superposition L≈LKJ+La provides a simple approximate method for estimating
the unsteady lift of a flying animal from unsteady wake velocity data. Based on the
classical unsteady thin-airfoil theory of Theodorsen (1935), the added-mass lift
coefficient of a heaving and pitching wing is modelled by Cla = Ck∗, where C is
the scale factor associated with the added-mass coefficient, k∗ = dα/dt∗ + d2z∗c/dt∗2 is
the non-dimensional kinematical parameter, and t∗ and z∗c are the time and position
of the wing normalized by the time scale c/U and the wing chord c, respectively.
As will be shown in § 3, the added-mass lift has the same phase as the local fluid
acceleration term. Indeed, L≈LKJ +La can approximately recover the main phase and
magnitude features of the real unsteady lift coefficient, when the KJ lift is estimated
in the near wake.

3. Flapping wing with a fixed wingspan
3.1. Wing geometry and kinematics

Direct numerical simulations (DNS) of the flows over three flapping wing models with
different wing geometry and kinematics are conducted (see appendix B for the details
of the computational method and set-ups). We first investigate the application of the
KJ theorem to a flapping rectangular wing. The flow structures (such as leading-edge
vortex, trailing-edge vortex, tip vortices, etc.) and features of the aerodynamic forces
in biological flapping flight can be generated by using a simplified flapping rectangular
wing (Shyy et al. 2009; Li & Lu 2012; Guan & Yu 2014; Yu et al. 2018). The
rectangular wing used in this work is a zero-thickness plate with a fixed wingspan
b and a chord length c. The aspect ratio of the wing is 4.0. The wing flaps in a
uniform free-stream flow. Figure 1 shows the schematic of the model and coordinate
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system. The flapping kinematics of the model is described by

α(t)= α0 + αm cos(2πft), (3.1)
zc(t)= zc0 + A sin(2πft), (3.2)

where α(t) and α0 are the instantaneous and time-averaged angles of attack,
respectively, αm is the pitching amplitude, zc(t) and zc0 are the instantaneous and
time-averaged vertical position of the wing centre, respectively, A is the heaving
amplitude, and f is the pitching and heaving frequency. According to the set-ups
of Wang et al. (2014), the parameters used in the simulation are set at α0 = 10◦,
αm = 30◦, zc0 = 0, A = 0.25c and f = 0.6U/c, where U is the free-stream velocity
magnitude. The Strouhal number is St = 2fA/U = 0.3, which is within the optimal
Strouhal-number range for highly efficient swimming and flying animals (Taylor,
Nudds & Thomas 2003). The Reynolds number is Re= cU/ν = 300.

3.2. The Kutta–Joukowski lift
The KJ lift coefficients are calculated by using (2.2) with the circulation evaluated
in different Trefftz planes. We first chose the wingspan as the effective span length,
which is widely used in experimental investigations of biological flapping flight.
The time-dependent lift coefficients estimated in three Trefftz planes are shown
in figure 2 in comparison with the lift history obtained by integrating the surface
pressure and skin-friction fields (hereinafter referred to as the DNS lift or DNS
value). The KJ theorem with the circulations estimated in these Trefftz planes cannot
correctly predict the time history of the unsteady lift. The estimated KJ lift is out
of phase with respect to the DNS lift. The positive and negative peaks of the KJ
lift are smaller (underpredicted), and the peak magnitudes decrease as the Trefftz
plane moves downstream. It is clear that the KJ theorem cannot be used directly for
estimating the unsteady lift from the wake data under the quasi-steady assumption.
As will be pointed out in the following subsections, the differences in the phase and
amplitude are caused by the fluid acceleration effect and the integral effect of the
unsteady vortex evolution.

It has been found that the vortex lift mainly contributes the time-averaged lift of a
flapping wing, while the fluid acceleration largely contributes the time variation of the
lift (Wang et al. 2013b). An interesting question is whether the KJ lift as a special
form of the vortex lift could give the time-averaging lift. The time-averaged KJ lift
coefficient is evaluated as a function of the location of the Trefftz plane, as shown
in figure 3(a). When the wingspan is selected for b in (2.2), the time-averaged KJ
lift coefficient 〈ClKJ〉 tends to be increasingly larger as the location of the Trefftz
plane moves downstream. The predicted lift coefficient in the far wake (x/c = 15.0)
is approximately twice as large as the real one. This overpredicted lift in this case is
considered as another type of the wake momentum paradox. Then we chose DPV in
the Trefftz plane for b in (2.2). As shown in figure 3(a), 〈ClKJ〉 based on the DPV is
underpredicted in most parts of the wake (x/c> 2.0), depending considerably on the
location of the Trefftz plane. In contrast to the above cases, when the VWW, 〈bvor〉,
is substituted for b in (2.2), 〈ClKJ〉 is in good agreement with the DNS lift (i.e. the
WS-KJ model is used), and the relative error is within 3 % in the middle and far wake
and within 6 % in the near wake, even though the grid resolution is relatively low in
the far wake (as listed in table 1).

For a stationary wing, the underlying assumption of using (2.2) for computing
the lift coefficient is that the estimated circulation is independent of the location
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FIGURE 3. (Colour online) (a) Time-averaged lift coefficients predicted by using the KJ
theorem with different effective span lengths; (b) time-averaged circulation and moment
of the vorticity in different Trefftz planes; and (c) time-averaged wake widths computed
by different methods for a flapping rectangular wing with a fixed wingspan.

of the Trefftz plane. However, this is not true for a flapping wing. The circulation
estimated based on (2.3) in the wake of a flapping wing depends on the location of
the Trefftz plane, especially in the near-wake region. The time-averaged circulation
as a function of the streamwise location of the Trefftz plane is shown in figure 3(b).
The circulation slightly decreases in the near-wake region, increases steeply in the
middle-wake region and approaches a constant in the far-wake region. The variation
of the circulation reflects the evolution of the vortex structures in the wake, as
discussed in detail in § 3.4. Figure 3(c) shows the variations of the time-averaged
VWW and DPV in the wake. The time-averaged VWW defined in (2.6) gives a
correct wake width to compensate the variation of the circulation in the wake. The
product of the time-averaged VWW and circulation gives an estimated lift that is
almost independent of the location of the Trefftz plane, as shown in figure 3(b).
Although the time-averaged DPV varies with the location of the Trefftz plane, it
cannot correctly represent the wake narrowing and does not vary inversely with the
circulation (see the discussion in § 3.4).
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FIGURE 4. (Colour online) (a) The decomposition of the lift coefficient by using the (2.7);
and (b) the KJ lift, added-mass lift and their comparisons with the decomposed lift for
the flapping rectangular wing with a fixed wingspan.

3.3. Fluid acceleration and added-mass lift
The KJ lift based on (2.1) is almost out of phase with the DNS lift, in addition to its
decreasing magnitude as the Trefftz plane moves downstream, as shown in figure 2.
We use the general lift formula, equation (2.7), to investigate the amplitude and phase
of the unsteady lift. The lift is contributed by the vortex lift, local fluid acceleration
and the residual term associated with the viscosity on the outer boundary of a control
volume. For the thin rigid wing studied in this work, the contribution of the residual
term to the lift is small when a sufficiently large rectangular control surface is selected
to include all the vorticity structures around the wing and the accelerated fluid by the
wing motions. The lift acting on the wing is dominated by the vortex force and the
local fluid acceleration term (see figure 4a), where the control volume is set to be
[−2.0c, xt] × [−6.0c, 6.0c] × [−12.0c, 12.0c], with xt the streamwise position of the
trailing edge.

The decomposition of the lift based on (2.7) is shown in figure 4(a). It is found
that the vortex lift is almost out of phase with the total lift and the maximum
vortex lift is less than the maximum total lift. The lift associated with the local fluid
acceleration term has approximately the same phase as the total lift. Nevertheless,
the combination of the vortex lift and the local fluid acceleration term can recover
more than 90 % of the total lift. As indicated before, the KJ lift is a reasonable
approximation of the vortex lift for a thin wing. This is indicated in figure 4(b),
where the KJ lift estimated in the Trefftz plane at x/c = 1.0 is plotted along with
the vortex lift. Note that the Trefftz plane at x/c= 1.0 in the near wake is selected
since the deformation and interaction of the wake vortex structures have a relatively
small effect on the computation of the circulation (Hubel et al. 2010). Clearly, the
quasi-steady assumption is not valid for the current flapping wing. The peaks of
the KJ lift tend to decrease as a result of the integral effect of the deformation and
interaction of the wake vortex structures in the wake.

The local fluid acceleration term in (2.7) can be reduced to the added-mass lift
in the viscous thin-airfoil theory (Liu et al. 2015). We have tried to use a simple
added-mass model given by Theodorsen (1935) with the added-mass coefficient
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C = −2.5 (Korotkin 2009) to approximate the local acceleration term. As shown in
figure 4(b), the added-mass lift approximately recovers the local fluid acceleration
term, and they have almost the same phase and amplitude. The superposition of the KJ
lift and the added-mass lift, L≈ LKJ + La, is indeed able to recover approximately the
main phase and magnitude features of the DNS unsteady lift coefficient. This result
confirms that the KJ lift model with the quasi-steady assumption is not applicable to
the current flapping wing. The added-mass effect should be considered to correctly
estimate the instantaneous lift. It is emphasized that the KJ lift is evaluated in the
near wake where the circulation is relatively less affected by the vortex deformation
and interaction. However, when the KJ lift is evaluated in the middle and far wake,
since the integrated (historic) effect of the vortex evolution is involved, L≈ LKJ + La

is not able to recover the time-dependent lift. The integrated effect of vortex evolution
is another reason that causes the differences between the KJ lift and the DNS lift.
For the simple geometry and kinematics of this rectangular wing, the added-mass
lift model is a good approximation of the local fluid acceleration term. For a wing
with the complex planform and kinematics, modelling of the added-mass force is
non-trivial, which is beyond the scope of this paper.

The KJ theorem was originally derived for a steady inviscid flow and then recast in
the viscous-flow framework (Wu et al. 2018). When the KJ theorem is applied to the
flapping flight of birds or bats, it usually gives errors in the phase and magnitude due
to the quasi-steady assumption (Sun 2014; Gutierrez et al. 2016). To explicitly account
for the unsteady effect, Sane & Dickinson (2002) proposed a revised quasi-steady
model with several free parameters to be determined based on experimental and/or
numerical data for a specific wing with known kinematics. The classical Theodorsen
theory and Karman–Sear theory incorporate the unsteady added-mass force into the KJ
model, which are useful in studies of biolocomotion without massive flow separation
(Chopra 1976; Liu et al. 2015). Some semi-analytical models are able to account for
the separated flow at the leading edge (Yu, Tong & Ma 2003). More discussions on
the lift models can be found in the reviews of Sane (2003) and Sun (2014). The
mathematical and physical connections between different lift models are detailed by
Wu et al. (2018). Compared to the existing models, the distinct feature of the present
model is that an effective span length is introduced to account for the effects of
the complex vorticity structures in the wake. The effective span length is defined as
the time-averaged distance between the streamwise vorticity centroids. Therefore, the
proposed model can correctly compute the time-averaged lift based on the vorticity
field in a Trefftz plane.

3.4. Wake vortex structures
The selection of the effective span length in lift estimation directly depends on the
development of the wake vortex structures. It is necessary to discuss the geometrical
and dynamical features of these structures. The flapping rectangular wing generates
the leading-edge vortex (LEV), tip vortices (TVs) and trailing-edge vortex (TEV)
in downstrokes and upstrokes, as shown in figure 5(a). These vortices deform and
interact with each other as they convect downstream. The details of the evolving
vortex structures are described in our previous work (Wang et al. 2014). Here, we
focus on the main wake features which are closely related to the lift estimation. The
wake can be approximately divided into three regions, as shown in figure 5(b). The
near wake is from the trailing edge to x/c ≈ 3.0, where the LEV, TVs and TEV
interact with each other to form vortex rings. The middle wake ranges from x/c≈ 3.0
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Vortex ring, upstroke
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FIGURE 5. (Colour online) Wake structures of the flapping rectangular wing with a
fixed wingspan: (a) perspective view with Q= 0.5, coloured by the normalized spanwise
vorticity from −10 (blue) to 10 (red); and (b) top view with Q= 0.02, coloured by the
normalized spanwise vorticity from −1 (blue) to 1 (red).

to x/c ≈ 10.0, where the vortex rings deform considerably due to the mutual and
self-induction and the wake is gradually separated into two branches (as shown in
figures 1b and 5b). In particular, the wake narrows in the spanwise direction in
the near- and middle-wake regions. The far wake starts from x/c ≈ 10.0, where the
initial vortex rings generated in the downstroke and upstroke finally merge into two
streamwise vortex tubes.

The vortex deformation revealed in figure 5 can be quantitatively described by
the vortex stretching integrated in the wake plane, and thus the vortex deformation
parameter for the streamwise vorticity (VD) is introduced as

VD=
∫

S+(X)

(
ωx
∂ux

∂x
+ωy

∂ux

∂y
+ωz

∂ux

∂z

)
dS, (3.3)

which measures the interaction between the vorticity and the gradient of the
streamwise velocity in the Trefftz plane. The subscripts in (3.3) indicate the vector
components in x-, y- and z-directions, respectively. The first, second and third terms of
the integral in (3.3) represent the increase of the streamwise vorticity contributed by
the stretching of the streamwise vortex, tilting of the spanwise vorticity, and the tilting
of the vertical vorticity, respectively. The time-averaged values of the three terms are
shown in figure 6. Clearly, the tilting of the spanwise vorticity mainly contributes
to the increase of the streamwise vorticity, while the tilting of the vertical vorticity
causes the decrease of the streamwise vorticity. The stretching of the streamwise
vorticity contributes to the increase of the streamwise vorticity in the near wake
and the decrease of the streamwise vorticity in the middle wake. Similar parameters
can be defined for the convection term and diffusion term of the vorticity dynamic
equations. The superposition of all the terms does not result in a zero change rate,
which indicates that the circulation estimated in the Trefftz plane is not conserved.
Thus, the constant wingspan cannot be used for the flapping wing model as the
effective span length in (2.1). To obtain the correct time-averaged lift independent
of the location of the Trefftz plane, the correct effective span length should change
inversely with the circulation.

The DPV in the Trefftz plane has been used to take into account the three-
dimensional effect (Muijres et al. 2012; Gutierrez et al. 2016). However, this approach
usually gives a puzzling result because the distribution of the streamwise vorticity
in the Trefftz plane is not fully taken into account. The wake vortex structures at
the middle of the downstroke and the DPV at different Trefftz planes are shown in
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FIGURE 6. (Colour online) Time-averaged vortex deformation parameter for the flapping
rectangular wing with a fixed wingspan.

figure 7. The DPV varies with the streamwise position of the Trefftz plane, especially
in the middle wake (from x/c ≈ 3.0 to x/c ≈ 10.0), where the vortex rings deform
and interact with each other. The complex interactions between the vortex structures
generated by the flapping wing may lead to abrupt positional changes of the vorticity
peaks. The deformation of the vortex rings might cause very close peaks of the
streamwise vorticity, as shown in figure 7(d), where the peak streamwise vorticity
corresponding to the highly curved vortex rings causes a near-zero wake width
(DPV= 0.27) at x/c= 4.5. While, at a short distance in the downstream (x/c= 6.0),
the DPV is approximately 2.7, which is 10 times as large as that at x/c = 4.5.
Besides the poor performance in the middle-wake region, the DPV also does not
give the correct prediction of the time-averaged lift coefficient even in the near- and
far-wake regions where the wake width changes gently. This is because the DPV just
reflects the positions of the streamwise vorticity peaks and cannot take into account
the various distributions of the streamwise vorticity in different Trefftz planes. For
example, the DPV cannot tell the difference between figure 7(c) and 7(e), where the
DPVs are almost the same in the two Trefftz planes while the distributions of the
vorticity are very different.

The distinct feature of the wake of this flapping wing is that the wake width
decreases to an asymptotic value. The decrease of wake width has also been reported
in other flapping wing models for bio-inspired swimming (Blondeaux et al. 2005;
Buchholz & Smits 2005; Dong, Mittal & Najjar 2006). The narrowing wake width
is caused by the mutually induced motion of the TVs (Dong et al. 2006), as shown
in figure 8(a). In addition, the self-induced motion of the deformed vortex rings also
tends to reduce the wake width, as shown in figure 8(b) where the vorticity in the
plane x/c = 2.75 comes from the same vortex ring. The self- and mutually induced
motions could be combined at certain locations, as shown in figure 8(c). The VWW
of the wake gives a good prediction of the spanwise narrowing process, as shown in
figure 3(c). Although the time-averaged DPV varies with the locations of the Trefftz
planes, as shown in figure 3(c), it cannot correctly represent the wake narrowing and
does not vary inversely with the circulation. In contrast, the VWW defined in (2.6)
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FIGURE 7. (Colour online) Flow structures and wake width of the flapping rectangular
wing with a fixed wingspan: (a) top view of the isosurfaces of Q= 0.2, coloured by the
normalized spanwise vorticity from −1 (blue) to 1 (red); (b) the DPV in 31 different
Trefftz planes; and (c–f ) streamwise vorticity fields at x/c= 3.5, x/c= 4.5, x/c= 6.0 and
x/c= 14.0, respectively.

gives a correct wake width to compensate the variation of the circulation in the wake,
as shown in figure 3(b).

4. Flapping wing with a dynamically changing wingspan
4.1. The Kutta–Joukowski lift

We further investigate the applicability of the KJ theorem to the flapping wing
with a dynamically changing wingspan, where the spanwise stretching and retracting
motion is superimposed onto the flapping kinematics described by (3.1) and (3.2).
The flapping wing with a dynamically changing wingspan has been employed by
Wang et al. (2014) to simulate the changing of the wingspan in the flapping flight
of a bird and bat, where the wing stretches outwards in the downstroke and retracts
towards the body in the upstroke. A similar model was used by Guan & Yu (2015)
to investigate the mechanisms of morphing wings in forward flight of a bat. The
dynamically changing wingspan in this case is described by the aspect ratio (AR) as

AR= b/c= AR0(a1 − a2 sin(2πft+ φ)), (4.1)

where AR0 = b0/c is the characteristic aspect ratio, b0 = 4c is the characteristic
wingspan, a1 = 0.75 and a2 = 0.25 are the coefficients that specify the stretching and
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(a) (b)

(c) (d)

S1 S2
S3

FIGURE 8. (Colour online) The induced motion of vortices in the wake at different
streamwise positions, where the (purple) solid arrows show the direction of induced
motion: (a) the mutually induced motion caused by the tip vortices, x/c= 1.65; (b) the
self-induced motion caused by the deformation of vortex ring, x/c = 2.75; (c) the
combination of the mutually and self-induced motions, x/c= 4.0; and (d) the positions of
the slices interacting with the vortex structures at x/c= 1.65, 2.75 and 4.0, respectively.

11.0 11.5 12.0
t/T

Cl

12.5 13.0
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2

0

-2

DNS
KJ lift, x/c = 1
KJ lift, x/c = 5
KJ lift, x/c = 10

FIGURE 9. (Colour online) The time-dependent lift coefficients predicted by using the
KJ theorem in different Trefftz planes for the flapping wing with a dynamically changing
wingspan. The wingspan is taken as the effective span length in computing the KJ lift.

retracting amplitude, and φ = π/2 is the phase difference between the flapping and
stretching/retracting motion. The time-averaged wingspan is 3.0. The other geometrical
and kinematical parameters in the simulation are the same as those in § 3.

When the dynamic wingspan is used for the effective span length in (2.2), as
shown in figure 9, the time-dependent lift coefficients obtained in three different
locations of the Trefftz plane are similar to those in the fixed wingspan case. The
KJ lift underpredicts both the positive and negative peaks of the lift coefficient, and
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FIGURE 10. (Colour online) (a) Time-averaged lift coefficients based on the KJ theorem
with different effective span lengths; (b) time-averaged circulation and moment of the
vorticity in different Trefftz planes; and (c) time-averaged wake width computed by
different methods for the flapping wing with a dynamically changing wingspan.

the peaks of the lift coefficient decrease as the Trefftz plane moves downstream.
Therefore, the KJ theorem with the wingspan as the effective span length cannot give
the correct prediction of the unsteady lift of this flapping wing. Furthermore, the
selection of the DPV as the effective span length fails to predict the unsteady lift
coefficient.

Figure 10(a) shows the time-averaged lift coefficient evaluated as a function of
the locations of the Trefftz plane. When the wingspan is selected as the effective
span length in (2.2), the time-averaged lift is slightly underpredicted in the near wake
and considerably overpredicted in the middle and far wake, which depends strongly
on the location of the Trefftz plane. The maximum time-averaged lift coefficient is
approximately 190 % of the DNS value. In contrast, when the DPV is selected as the
effective span length, the result is much improved. The maximum time-averaged lift
coefficient is approximately 130 % of the DNS value. The relatively good performance
of DPV is related to the stronger lower branch of the wake, as discussed in § 4.2.
Despite the fortunate improvement in this case, the result still depends on the location
of the Trefftz plane. In contrast, the WS-KJ model with the VWW can resolve this
problem, as shown in figure 10(a).
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FIGURE 11. (Colour online) Time-averaged vortex deformation parameter computed by
different methods for the flapping rectangular wing with a dynamically changing wingspan.

The time-averaged circulation varies with the location of the Trefftz plane, as
shown in figure 10(b). The variation of the time-averaged circulation is related to the
evolution of the vortex rings originated from the LEVs, TVs and TEVs. In contrast to
the time-averaged circulation, the time-averaged vorticity moment in the Trefftz plane
remains largely constant. Figure 10(c) shows the effective span lengths as a function
of the location of the Trefftz plane. Interestingly, the DPV exhibits almost the same
behaviour as the VWW. This explains why the selection of the DPV luckily leads
to the improved result in this special case. The relatively simple vortex deformation
and interactions can be quantitatively measured by the vortex deformation parameter
shown in figure 11, which are smoother than that for the fixed wing case in figure 6
in the middle-wake region.

To examine the applicability of the KJ theorem to estimation of the unsteady lift,
the lift is decomposed into the vortex force and the local fluid acceleration term
according to (2.7). As shown in figure 12(a), the vortex force mainly contributes the
time-averaged value of the lift, while the local fluid acceleration term dominates the
phase and amplitude of the lift. Comparison of the KJ lift estimated in the Trefftz
plane at x/c = 1.0 with the vortex lift is shown in figure 12(b), indicating that the
KJ lift in the near wake approximately recovers the vortex lift. However, the KJ
theorem cannot fully incorporate the phase information associated with the local
fluid acceleration. Similar to the procedure discussed in § 3, the added-mass force
model can be used to approximately evaluate the local fluid acceleration term in this
case. The results support the conclusion that the KJ lift model with the quasi-steady
assumption is not applicable to the current flapping wing. The added-mass effect
should be considered to correctly estimate the instantaneous lift.

4.2. Wake vortex structures
The typical wake structures of the flapping wing with a dynamically changing
wingspan are shown in figure 13. The flapping wing generates a pair of vortex rings
in each flapping period, which originate from the LEV, TVs and TEV. The vortex
rings deform and interact with each other as they convect downstream. The topology
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FIGURE 12. (Colour online) (a) The decomposition of the lift coefficient by using (2.7);
and (b) the KJ lift, added-mass lift and their comparisons with the decomposed lift in the
flow over the flapping rectangular wing with a dynamically changing wingspan.

TV

LEV TEV

(a) (b)

FIGURE 13. (Colour online) Wake structures of the flapping rectangular wing with a
dynamically changing wingspan at the middle of the upstroke: (a) top view and (b) side
view. The vortex structures are identified by using the isosurfaces of Q= 0.2 and coloured
by the normalized spanwise vorticity from −5 (blue) to 5 (red).

and evolution of the wake vortex structures are similar to those reported in § 3.
The main difference between the fixed wingspan case and the dynamically changing
wingspan case is that the dynamically changing wingspan case generates asymmetric
wakes, where the vortex ring generated in the downstroke is much stronger than the
one generated in the upstroke due to the spanwise stretching/retracting motion. The
generation of the asymmetric vortex rings results in the lower branch of the vortices
in the middle wake that is much stronger than the upper branch. The stronger lower
branch of the vortices leads to a pair of dominant vortex structures in the Trefftz
planes, as shown in figure 14(c–f ). More details of the generation and evolution of
the vortex structures generated by this flapping wing can be found in our previous
work (Wang et al. 2014).

5. Dihedral flapping wing
5.1. The Kutta–Joukowski lift

Compared to the relatively well-organized TVs generated by the flapping wing models
in §§ 3 and 4, a dihedral flapping wing model can generate more complex wake vortex
structures. The dihedral flapping wing model consists of a pair of rectangular wings
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x/c = 2 x/c = 5 x/c = 6.5 x/c = 14
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-1.5 -0.5 -0.2 0.2 0.5 1.5

FIGURE 14. (Colour online) Flow structures and wake width of the flapping rectangular
wing with a dynamically changing wingspan at the middle of the downstroke: (a) top view
of the isosurfaces of Q = 0.2 coloured by the streamwise vorticity from −1 (blue) to 1
(red); (b) the DPV in 31 different Trefftz planes; and (c–f ) streamwise vorticity fields at
x/c= 2.0, x/c= 5.0, x/c= 6.5 and x/c= 14.0, respectively.

x

y

z

ı

FIGURE 15. (Colour online) Schematic of the dihedral flapping wing.

that rotate dynamically around the symmetry axis. Here, the term ‘dihedral wing’ is
extended to describe this flapping wing with periodically changing dihedral angle
(the rotational angle) between a positive value and a negative value. The schematic
of this dihedral flapping wing is shown in figure 15. A dihedral flapping wing
was employed by Kim, Hussain & Gharib (2013) and Suzuki, Minami & Inamuro
(2015) to investigate the aerodynamics of a butterfly. Hu, Clemons & Igarashi (2011)
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FIGURE 16. (Colour online) The time-dependent lift coefficients predicted by using the KJ
theorem in different Trefftz planes for the dihedral flapping wing. The maximum wingspan
is taken as the effective span length in computing the KJ lift.

used a dihedral flapping wing as a bio-inspired micro-air vehicle (MAV) model to
investigate unsteady vortex structures. In this case, the heaving motion described in
(3.2) is replaced by the rotational angle around the wing symmetry axis, which is
given by

β(t)= β0 + βm cos(2πft), (5.1)

where β is the angle between the semi-wingspan and the horizontal plane, and
β0 = 0◦ and βm = 20◦ are the time-averaged rotational angle and the rotational angle
amplitude, respectively. In this simulation, the pitching motion is turned off by setting
the pitching amplitude αm = 0 in (3.1). The maximum wingspan is 4.0 and the other
geometrical and kinematical parameters are the same as those in § 3.

Figure 16 presents the time-dependent lift coefficients evaluated in three different
Trefftz planes with the maximum wingspan as the effective span length. The KJ lift
coefficient has a phase difference from the DNS lift, which is similar to the results
reported in §§ 3 and 4. In particular, the lift peaks predicted by the KJ theorem are
much smaller than the DNS lift. The peaks of the DNS lift are almost three times
as large as those in §§ 3 and 4. This is because the kinematics given by (5.1) gives
the maximum flapping amplitude of 0.68c, which is approximately three times (2.72
times) as large as the heaving amplitude of the models in §§ 3 and 4. The large
flapping amplitude of the dihedral flapping wing causes a large acceleration of the
fluid around it. The contribution of the local acceleration of fluid to the lift can be
clearly seen in figure 17(a), where the peaks of the lift are dominated by Lacc. Note
that geometry and kinematics of the current dihedral flapping wing model are designed
to generate complex wake structures other than the optimal aerodynamic performance.
The peaks of the KJ lift are much smaller than the vortex lift even in the near wake,
as shown in figure 17(b), which is different from the cases in §§ 3 and 4.

The time-averaged lift coefficients are shown in figure 18(a). When the maximum
wingspan is used as the effective span length, the KJ lift overpredicts the time-
averaged lift coefficient. The time-averaged KJ lift coefficient increases with the
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FIGURE 17. (Colour online) (a) The decomposition of the lift coefficients by using (2.7);
and (b) the KJ lift at different Trefftz planes and their comparisons with the vortex lift
in the flow over the dihedral flapping wing.

location of the Trefftz plane. The maximum time-averaged KJ lift coefficient is
approximately 150 % of the DNS lift. In contrast, when the DPV is selected as the
effective span length, the time-averaged KJ lift gives an underprediction in the near
wake (x/c< 6.0) and an overprediction in the middle and far wake (x/c> 6.0). The
minimum and maximum time-averaged KJ lift coefficients are approximately 70 %
and 120 % of the DNS values. The time-averaged DPV does not vary inversely with
the circulation, as shown in figure 18(b). When the WS-KJ model with the VWW
is used, the time-averaged KJ lift agrees well with the DNS lift. The difference
between the KJ lift and the truth is within 7 % in most Trefftz planes. As as shown
in figure 18(b), the time-averaged VWW effectively compensates the variation of the
circulation in the wake. The variations of the effective span lengths are shown in
figure 18(c). The complex interaction of the vortex structures in the near wake can
be reflected by the vortex deformation parameter shown in figure 19, where both the
stretching and tilting terms are much larger than those for other wings.

5.2. Wake vortex structures
Compared to the flapping rectangular wings with fixed and dynamically changing
wingspans discussed in §§ 3 and 4, the wake vortex structures of the dihedral flapping
wing are much more complex, as shown in figure 20. The TVs deform immediately
after they are shed from the wingtips, interacting with the LEV and TEV. Then, the
highly deformed TVs tangle with different structures. Neither apparent vortex rings
nor distinct wake regions can be identified. The spanwise narrowing of the wake
width is also not apparent. As shown in figure 21, the distributions of the streamwise
vorticity in the Trefftz planes are much more complex than those in figures 7 and 14.
There is no dominant vortex structure in the Trefftz planes. In this case, the VWW
is the only rational choice for the effective wake length.

6. Conclusions
The applicability of the KJ theorem in lift estimation based on the wake velocity

fields at the Trefftz planes is examined for flapping wings with fixed and dynamically
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FIGURE 18. (Colour online) (a) Time-averaged lift coefficient based on the KJ theorem
with different effective span lengths; (b) time-averaged circulation and moment of the
vorticity in different Trefftz planes; and (c) time-averaged wake width computed by
different methods for the dihedral flapping wing.

changing wingspans and the dihedral flapping wing through numerical simulations of
viscous incompressible flows. It is found that the KJ theorem under the quasi-steady
assumption cannot predict the unsteady lift in both the magnitude and phase from
the wake velocity fields. The KJ theorem recovers approximately the vortex lift, but
does not incorporate the fluid acceleration effect that dominates the unsteady lift.
In principle, the time-averaged KJ theorem can predict the time-averaged lift when
the effective span length of the wake is rationally selected. We propose a WS-KJ
model where the effective span length is computed by a vorticity-weighted width.
The vorticity-weighted width represents the spanwise distance between the streamwise
vorticity centroids in the right and left half sides of the Trefftz plane. The WS-KJ
model naturally incorporates the effects of the evolving vortex structures in the Trefftz
planes. For the steady flows over wings with a pair of parallel straight vortex lines
or tubes, the WS-KJ model reduces to the classical aerodynamic model. Indeed, the
WS-KJ model is able to give a good prediction of the time-averaged lift despite the
complex wake vortex structures in flapping flight. The circulation estimated in the
Trefftz plane is highly related to the interactions of the complex vortex structures in
the wake. Interestingly, this spatial evolutionary effect of the estimated circulation can
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FIGURE 19. (Colour online) Time-averaged vortex deformation parameter for the dihedral
flapping wing.

TV

TVLEV

TEV

(a) (b)

FIGURE 20. (Colour online) Typical vortex structures generated by the dihedral flapping
wing at the middle of the downstroke: (a) top view and (b) side view, where the
isosurfaces of Q= 1.0 are shown. The colour shows the spanwise vorticity from −5 (blue)
to 5 (red).

be compensated by using the vorticity-weighted width such that the time-averaged
total vorticity moment is formally conserved in the wake. In contrast, the heuristic
selections of the effective span length such as the wingspan and the distance between
the peaks of the DPV cannot give the correct time-averaged lift, and the results are
highly dependent on the locations of the Trefftz planes. Furthermore, for a flapping
wing with relatively simple geometry and kinematics, the fluid acceleration effect
can be modelled by an added-mass force model. In this case, superposition of the
instantaneous KJ lift and the added-mass lift gives a reasonable approximation of the
unsteady lift.
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FIGURE 21. (Colour online) Flow structures and wake width of the dihedral flapping wing:
(a) top view of the isosurfaces of Q= 0.2 coloured by the streamwise vorticity from −1
(blue) to 1 (red); (b) the DPV in 31 different Trefftz planes; and (c–f ) streamwise vorticity
fields at x/c= 2.0, x/c= 6.0, x/c= 8.5 and x/c= 14.0, respectively.
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Appendix A. Vortex lift and vorticity moment in the Trefftz plane
The vortex lift can be expressed as the total vorticity moment in the Trefftz plane

receding to infinity downstream (as X→∞). The derivation of this result is given as
follows. The vortex lift is given by

Lvor = ρk ·
∫

Vf

u×ω dV, (A 1)

where k is the unit vector normal to the free-stream velocity, u and ω=∇×u are the
velocity and vorticity, respectively, ρ is the fluid density, and Vf is the fluid control
volume. The velocity can be decomposed as

u≡U+ u′, (A 2)
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Integral domain
Vf

Boundary of the integral domain

Trefftz plane
x = X

FIGURE 22. (Colour online) Schematic of the integral domain for the vortex force.

where U= (U, 0, 0) is the background flow, U is the free-stream velocity magnitude,
and u′ is the perturbation velocity induced by the vortex structures and added-mass
effect. We have ∇× u=∇× u′ since U is uniform in the domain.

The integral of the Lamb vector term in (A 1) can be expressed as follows:∫
Vf

u×ω dV =
∫

Vf

U×ω dV +
∫

Vf

u′ ×ω dV. (A 3)

The first term on the right-hand side of (A 3) is given by∫
Vf

U×ω dV =U×
∫

Vf

ω dV =U×
∫
∂Vf

x(n ·ω) dS, (A 4)

where ∂Vf denotes the boundary of the integral volume. The derivative–moment
transformation (Wu et al. 2006)∫

V
ω dV =−

∫
V

x(∇ ·ω) dV +
∫
∂V

x(n ·ω) dS, (A 5)

and the identity ∇ ·ω= 0 are used in the derivation of (A 4). For the integral volume
shown in figure 22 with the right boundary being at the Trefftz plane (x = X), the
contribution of (A 4) to lift is

k ·
∫

Vf

U×ω dV = k ·

(
U×

∫
∂Vf

x(n ·ω) dS

)
=U

∫
x=X

yωx dS. (A 6)

The second term on the right-hand side of (A 3) is written as∫
Vf

u′ ×ω dV =
∫

Vf

(
∇

(
u′ · u′

2

)
−∇ · (u′u′)

)
dV

=

∫
∂Vf

n
(

u′ · u′

2

)
dS−

∫
∂Vf

n · (u′u′) dS, (A 7)

where n is the unit vector normal to the boundary ∂Vf . The Gaussian theorem is used
in (A 7) with the incompressibility constraint ∇ · u′ = 0 and the vector identity

u′ ×ω=∇
(

u′ · u′

2

)
−∇ · (u′u′). (A 8)
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FIGURE 23. (Colour online) Contributions from (A 6) to (A 10), denoted by L1 and L2,
respectively, for the flapping rectangular wing with a fixed wingspan in different Trefftz
planes: (a–c) time-dependent lift at x/c= 3.0, x/c= 5.0 and x/c= 10.0, respectively; and
(d) time-averaged lift. The L1 and L2 are normalized by ρU2c2.

The contribution of (A 7) to the lift is given as

k ·
∫

Vf

u′ ×ω dV = k ·
∫
∂Vf

n
(

u′ · u′

2

)
dS− k ·

∫
∂Vf

n · (u′u′) dS

=

∫
∂Vf

q2n · k dS−
∫
∂Vf

unuk dS, (A 9)

where q2
= u′ · u′/2 is the dynamic pressure contributed by the velocity fluctuations,

and un and uk are the velocity components along the normal direction of the boundary
and the vertical direction to the incoming flow, respectively. For a sufficiently large but
finite rectangular control volume with a Trefftz plane in the wake shown in figure 22,
the lifts contributed by the velocity fluctuations on the top and bottom (or front
and back in three-dimensional flows) surfaces cancel with each other because of the
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opposite sign of the normal vectors. Therefore, equation (A 9) can be approximated
by the term in the Trefftz plane in the wake, i.e.

k ·
∫

Vf

u′ ×ω dV ≈−
∫

x=X
unuk dS. (A 10)

Equation (A 10) approaches zero as |X|→∞, since the integral of (A 10) is taken over
a finite rectangular domain on the Trefftz plane and the velocity fluctuations decay to
zero as |X| →∞. The asymptotic form of the vortex lift as |X| →∞ (or (2.11) in
§ 2) can be approximated by:

Lvor ≈U
∫

x=X
yωx ds. (A 11)

Thus, the time-averaged vortex lift is

〈Lvor〉 ≈ ρU
〈∫

S+(X)
yωx dS

〉
= ρU〈bvor(t, X)〉〈Γ (t, X)〉, (A 12)

where 〈•〉= (1/T)
∫ t0+T

t0
• dt is the time-averaged operator and T is the flapping period.

The terms 〈bvor(t, X)〉 and 〈Γ (t, X)〉 are defined as

〈bvor〉 = 2

〈∫
S+(X)

yωx(t′) dS
〉

〈∫
S+(X)

ωx(t′) dS
〉 =

〈∫
S(X)

yωx(t′) dS
〉

〈∫
S+(X)

ωx(t′) dS
〉 , (A 13)

〈Γ (t, X)〉 =
〈∫

S+(X)
ωx(t′) dS

〉
, (A 14)

where S+(X) is the right-hand side of the Trefftz plane at x=X, S(X)=S+(X)+S−(X)
is the entire Trefftz plane, ωx is the streamwise component of the vorticity, and t′ is
the time when the vorticity is measured in the Trefftz plane at x = X. The relation
between the time when the force acts on the wing and the delayed time is

t= t′ −
X − xt

Uconv
. (A 15)

It is noted that there are different ways to derive (A 11), such as the work of
Wu (1981), Wu et al. (2006) and Wu et al. (2018). For the Trefftz plane at a finite
distance (x=X), the correlation term 〈unuk〉 of the velocity fluctuations in (A 10) may
contribute to 〈Lvor〉. Figure 23 shows that the effect of 〈unuk〉 on the vortex lift can
be negligible in the flapping wing with a fixed wingspan. This contribution is also
small in the other cases studied in this work.

Appendix B. Numerical method and set-ups
Three different flapping wing models are considered to investigate the applicability

of the KJ theorem in estimating the lift of flapping wings. The flows around
the models are obtained by numerically solving the incompressible Navier–Stokes
equations. The exact projection method is used to numerically decouple the velocity
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FIGURE 24. (Colour online) The computational domain with local mesh refinement:
(a) boundaries of the six levels of refinement, top view; and (b) unstructured Cartesian
mesh with hanging node, top view.
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t/T
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dh = 0.04

FIGURE 25. (Colour online) The time-dependent lift coefficients computed on different
meshes in the case of the flapping wing with a fixed wingspan.

and pressure fields. A second-order finite volume method is used for the spatial
discretization, and the three-step second-order Runge–Kutta method is used for the
time integration. The moving boundary is dealt with by using an immersed boundary
method. The details of the numerical method and the validations for different kinds
of flows can be found in our previous work (Wang & Zhang 2011; Wang et al.
2013a,b; Wang, He & Zhang 2015a).

The simulations are conducted in a computational domain of [−12.8c, 32.0c] ×
[−12.8c, 12.8c] × [−19.2c, 19.2c]. The uniform upstream flow and free convection
boundary conditions are specified at the inlet and outlet, respectively. The non-slip
boundary condition is used on the wing surface. The slip boundary condition is set at
other boundaries. The computational domain is discretized by using the unstructured
Cartesian grid with up to seven levels of refinement. The schematic of the local
refinement is shown in figure 24. The details of each level of refinement are listed
in table 1. We simulated the case of flapping wing with a fixed wingspan on
three different meshes. The three different meshes have seven, six and five levels
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(a)

(b)

(c)

FIGURE 26. (Colour online) Typical wake structures of the flapping rectangular wing with
a dynamically changing wingspan at three Strouhal numbers, (a) St = 0.3, (b) St = 0.6
and (c) St = 0.9. The left and right columns show top and side views, respectively. The
isosurfaces of Q = 0.2 are shown. The colour shows the normalized spanwise vorticity
from −1 (blue) to 1 (red).

of refinement, respectively. The minimum grid sizes of the three different meshes
are dh = 0.01c, dh = 0.02c and dh = 0.04c, respectively. The time-dependent lift
coefficients on the different meshes are shown in figure 25. The differences between
the lift coefficients calculated at different levels decreases as the grid is refined. The
simulation on a mesh with six levels of refinement (dh = 0.02c) gives almost the
same lift coefficient as that on a finer mesh (dh= 0.01c). The maximum error of the
lift coefficient on the mesh with six levels of refinement (dh= 0.02c) is within 1 % of
the time-averaged lift coefficient (at t/T = 13.97 as shown in figure 25). We simulate
and present the results on the mesh with six levels of local refinement to balance the
spatial resolution and computational cost. The total number of discretized cells on the
mesh with six levels of local refinement is 5.18 million. The local refinement is also
consistent with our previous simulations with the same or similar models (Wang et al.
2013b, 2015b). The time step in the simulations is 0.005U/c, which corresponds to
the maximum Courant–Friedrichs–Lewy number of approximately 0.5.

The time-averaged lift coefficient is denoted as 〈Cl(t)〉, where 〈•〉 = (1/T)
∫ T

0 • dt
is the time-averaged operator and T is the flapping period. All the time-averaged
variables in this work are computed based on equally sampled 20 datasets in one
flapping period.

Appendix C. Parametric effects
The WS-KJ model is further evaluated in a parametric space consisting of the

flapping frequency, span ratio (SR), aspect ratio, flapping amplitude and angle of
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Level Domain size Grid size

1 [−12.8, 32.0] × [−12.8, 12.8] × [−19.2, 19.2] 0.64
2 [−6.4, 22.4] × [−7.68, 7.68] × [−6.4, 6.4] 0.32
3 [−4.8, 16.0] × [−6.4, 6.4] × [−4.8, 4.8] 0.16
4 [−2.4, 11.2] × [−4.0, 4.0] × [−3.2, 3.2] 0.08
5 [−1.6, 1.6] × [−3.2, 3.2] × [−1.6, 1.6] 0.04
6 [−1.0, 1.0] × [−2.4, 2.4] × [−1.0, 1.0] 0.02
7 [−0.8, 0.8] × [−2.2, 2.2] × [−0.8, 0.8] 0.01

TABLE 1. Boundaries and grid size of each level of refinement, normalized by using the
chord length of the wing, c.
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FIGURE 27. (Colour online) The time-averaged lift coefficients at three Strouhal numbers,
(a) St= 0.3, (b) St= 0.6 and (c) St= 0.9 based on simulations over 10 flapping periods,
and (d) St= 0.9 based on simulation simulations over 18 flapping periods.

attack for the flapping wing with a dynamically changing wingspan. The parameters in
the simulations are given in table 2. We first investigated the flows at seven different
Strouhal numbers ranging from 0.3 to 0.9 by adjusting the flapping frequency in (3.1)
and (3.2), as the cases A1–A7 in table 2. The typical flow structures at St = 0.3,
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FIGURE 28. (Colour online) The time-averaged lift coefficients estimated by using
different models with different (a) Strouhal numbers, (b) time-averaged aspect ratios,
(c) flapping amplitudes and (d) mean angles of attack. The solid symbols show the values
estimated at three different Trefftz planes at x/c= 1.0, x/c= 1.5 and x/c= 2.0.

0.6 and 0.9 are shown in figure 26. Similar to the observations reported in §§ 3–5,
the LEV, TEV and TVs are generated by the flapping wing, which are advected
downstream as they shed from the wing to form the complex wake structures. The
advecting length scale of the flow structures in the near wake is given by the wake
wavelength (Spedding et al. 2003) λ=U/f , where U is the free-stream velocity and
f is the flapping frequency. As the Strouhal number increases, this wake wavelength
describing the distance between the vortex rings decreases, resulting in increasingly
complex wake structures due to the self- and mutually induced interactions of these
structures, as shown in figure 26.

The time-averaged lift coefficients estimated by using different effective span
lengths are shown in figure 27, which are consistent with those reported in §§ 3–5.
The time-averaged lift coefficients computed based on the wingspan and DPV depend
sensitively on the location of the Trefftz plane and deviate from the correct values.
In contrast, the WS-KJ lift model is able to give the correct time-averaged lift
coefficients for x/λ< 10.
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FIGURE 29. (Colour online) The time-averaged vorticity-weighted wake width (VWW)
as a function of the time-averaged circulation for the flapping wing with a dynamically
changing wingspan at different parameters: (a) Strouhal numbers, (b) time-averaged aspect
ratios, (c) flapping amplitudes, and (d) time-averaged angles of attack.

In the case of St = 0.9, the WS-KJ model gives the correct time-averaged lift
coefficient as long as the Trefftz plane is located at x/λ< 8. However, the estimated
time-averaged lift coefficient starts to deviate from the correct value after x/λ = 8.
This deviation is caused by the vortex structures generated during the first two
flapping periods where the effects of initial condition cannot be neglected, since the
results in figure 27(a–c) are obtained in simulations conducted up to 10 flapping
periods. To examine the initial effect, the flow is simulated up to 18 flapping periods,
and as shown in figure 27(d). It is found that the WS-KJ model gives an improved
time-averaged lift coefficient as long as the Trefftz plane is located at x/λ< 10. The
above results indicate that the WS-KJ model is applicable to the flapping flight at high
Strouhal numbers up to 0.9 when the Trefftz plane is located in the near wake. For
high Strouhal numbers, an alternative is to conduct simulations or measurements in a
sufficiently long time span to minimize the effects of the vortex structures generated
during the initial period. In the limiting case of very slow flight and hovering flight,
the Strouhal number is very high, and the wake wavelength is very small. In this
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Case St SR 〈AR〉/c α0 (deg.) αm (deg.) A

A1 0.3 0.5 3.0 10 30 0.25
A2 0.4 0.5 3.0 10 30 0.25
A3 0.5 0.5 3.0 10 30 0.25
A4 0.6 0.5 3.0 10 30 0.25
A5 0.7 0.5 3.0 10 30 0.25
A6 0.8 0.5 3.0 10 30 0.25
A7 0.9 0.5 3.0 10 30 0.25

B1 0.3 0.6 3.2 10 30 0.25
B2 0.3 0.7 3.4 10 30 0.25
B3 0.3 0.8 3.6 10 30 0.25
B4 0.3 0.9 3.8 10 30 0.25
B5 0.3 1.0 4.0 10 30 0.25

C1 0.15 0.5 3.0 10 30 0.125
C2 0.45 0.5 3.0 10 30 0.375
C3 0.6 0.5 3.0 10 30 0.5

D1 0.3 0.5 3.0 0 0 0.25
D2 0.3 0.5 3.0 10 0 0.25
D3 0.3 0.5 3.0 20 0 0.25
D4 0.3 0.5 3.0 30 0 0.25

TABLE 2. Dimensionless parameters of the flapping wing with a dynamically changing
wingspan.

case, the Trefftz plane should be set to be very close to the wing trailing edge, and
thus application of the WS-KJ model is difficult.

The time-averaged lift coefficients computed by using different effective span
lengths are presented in figure 28. In all the cases in table 2, the WS-KJ model gives
correct estimation of the time-averaged lift coefficients, while the results given by
other models depend sensitively on the location of the Trefftz plane.

The VWW is evaluated based on the vorticity field in the Trefftz plane, and
in general it is a complicated function of the location and time depending on the
development of the wake vortex structures. Nevertheless, our numerical simulations
indicate that the product of the time-averaged VWW and the time-averaged circulation
(〈bvor〉〈Γ 〉) remains constant at different locations for a given set of Strouhal number,
aspect ratio, flapping amplitude and angle of attack (AoA). This finding is consistent
with our theoretical argument, i.e. the quantity 〈bvor〉〈Γ 〉 is proportional to the lift
of a wing according to (2.5). In this sense, this quantity is conserved for the given
flapping parameters. Therefore, 〈bvor〉〈Γ 〉 can be expressed as a function of the
flapping parameters, i.e. 〈bvor〉〈Γ 〉 = f (St,AR,A, α0), where St is the Strouhal number,
AR is the aspect ratio, A is the heaving amplitude and α0 is the mean AoA. Figure 29
shows the time-averaged VWW as a function of the time-averaged circulation in
log–log plots at different Strouhal numbers, time-averaged aspect ratios, flapping
amplitudes and time-averaged angles of attack. The log–log plots indeed indicate
the inversely proportional relationship between the time-averaged VWW and the
time-averaged circulation at the different flapping parameters. These results further
confirm the applicability of the WS-KJ model in a range of flapping parameters,
providing a useful tool to understand the physics of unsteady lift generation.
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