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Abstract
A chaos ant colony optimization algorithm for continuous domain is proposed based on chaos optimization theory and
ant colony optimization algorithm. The searching abilities of optimization algorithms with different coding methods are
compared, and the results indicate that the proposed algorithm has better performance than genetic algorithm and particle
swarm optimization algorithm. Based on the non-dominated sorting concept and niching method, a multi-objective chaos
ant colony optimization algorithm is also constructed and numerical results show that the improved algorithm performs well
at solving multi-objective optimization problems. An optimal support vector regression model based on radial basis kernel
function is developed for the small sample size and nonlinear characteristics of streamlined head optimization. On the basis of
the above work, a multi-objective optimization design for the aerodynamic head shape of high-speed train is developed using
a modified vehicle modeling function parametric approach. The optimization results demonstrate that the new optimization
design method has exceptional searching abilities and high prediction accuracy. After optimization, the aerodynamic drag of
the simplified train with three carriages is reduced by 10.52% and the aerodynamic lift of the tail car is reduced by 35.70%.
The optimization approach proposed in the present paper is simple yet efficient and sheds light on the engineering design of
aerodynamic shape of high-speed trains.

Keywords Chaos ant colony optimization · Support vector machine · Multi-objective optimization · Vehicle modeling
function · High-speed trains

1 Introduction

In recent years, metaheuristics have been improved rapidly
and have been applied to numerous problems in fields of
engineering design, pattern recognition, scientific computa-
tion, economics, and so on. Different kinds of biological-
inspired algorithms have been proposed to solve optimization
problems with single objective or multiple objectives. For
single-objective optimization problems, genetic algorithm
(GA) (Holland 1975), particle swarm optimization (PSO)
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(Kennedy and Eberhart 1995) and ant colony optimization
(ACO) algorithm (Dorigo 1992) are some of the competi-
tive algorithms that attract a lot of attention. The above basic
algorithms have good performance over many optimization
problems; however, these algorithms have deficiencies of
low searching efficiency and local optimum in optimizing
some problems. Therefore, a number of variations have been
developed to improve performance of the basic algorithms.
Prominent examples of the variations include AGA (Srinivas
and Patnaik 1994), HGA (Gonçalves et al. 2005), CLPSO
(Liang et al. 2006), APSO (Zhan et al. 2009) and ACOR

(Socha andDorigo 2008).However,when devising optimiza-
tionmodels for a problem, it is frequently the case that there is
not one but several objectives that we would like to optimize.
These problems with two or more objective functions are
called multi-objective optimization problems (MOP). There
are two general approaches to multiple-objective optimiza-
tion.One is to combine the individual objective functions into
a single composite function or move all but one objective to
the constraint set. The second general approach is to deter-
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mine an entire Pareto optimal solution set or a representative
subset (Coello 2006;Konak et al. 2006). Themost representa-
tive multi-objective optimization algorithms include NPGA
(Horn et al. 1994), NSGA-II (Deb et al. 2002) and NSPSO
(Li 2003).

In the field of engineering optimization design, algorithms
are usually combined with surrogate models to reduce the
design cost (so-called surrogate-based optimization, SBO).
In surrogate-based optimization, direct evaluations of the
expensive high-fidelity simulation models are replaced by
function approximation surrogate models which can be cre-
ated by approximating sampled high-fidelity model data.
Therefore, the design cost can be greatly reduced. SBOmeth-
ods differ mostly in the optimization algorithm it adopted
and how the surrogate model is created. The most popular
surrogate modeling techniques include polynomial approxi-
mation, neural networks (Lee et al. 2011), Kriging (Simpson
et al. 2001), radial basis function (RBF) interpolation (For-
rester and Keane 2009) and support vector regression (SVR)
(Smola and Schölkopf 2004; Bourinet 2016). During the
modeling process, a certain number of simulation data train-
ing samples are required to ensure the reasonable accuracy.
Currently, SBOmethods have received more and more atten-
tion for the reason that it has shorter design cycle and lower
investment than traditional design method (Koziel and Leif-
sson 2012; Koziel et al. 2014; Datta and Regis 2016). In
the past decades, various engineering optimization design
basedon surrogatemodels has beenperformed.Bellman et al.
(2009) employed a GA-ANN optimization technique for
shape optimization of low Reynolds number airfoils to gen-
erate maximum lift. Muñoz-Paniagua et al. (2014) extracted
three design variables and conducted the shape optimization
of a high-speed train entering a tunnel with the unconstrained
single-objective genetic algorithm. Lee and Geem (2005)
proposed a new meta-heuristic algorithm and applied it into
pressure vessel design and welded beam design.

In the present paper, on the basis of the above literature,
a chaos ant colony optimization algorithm for continuous
domain (CACOR) is proposed based on chaos optimization
theory and ACOR. Meanwhile, an optimal SVR model is
established for the reason that it performs well at response
accuracy when the number of training samples is limited.
Combined with CACOR and SVR surrogate model, a multi-
objective efficient optimization method CACOR-SVR is
developed. In order to verify the efficiency of the CACOR-
SVR approach in engineering design problems, aerodynamic
shape optimization for high-speed trains is performed using
CACOR-SVR. The aerodynamic drag and aerodynamic lift
are treated as optimization objectives and a modified vehi-
cle modeling function (VMF) (Ku et al. 2010) is devised to
generate 3-D nose shapes of high-speed trains. After opti-
mization, the Pareto optimal solutions are obtained and the
aerodynamic performance of the optimized shape and the

original shape of high-speed trainwith three carriages is com-
paratively analyzed.

2 Chaos ant colony optimization algorithm

2.1 General ant colony optimization algorithm

The ant colony optimization algorithm is a probabilistic tech-
nique for solving computational problems which can be
reduced to finding good paths through graphs. It was initially
proposed by Dorigo in 1992, and it has become a promis-
ing approach in solving a wider class of numerical issues.
The first algorithm was used to solve the traveling sales-
man problem (TSP), a well-known NP-Hard problem.While
searching for food, the ants deposit a chemical substance
called pheromone in the ground and they will return and
reinforce the pheromone trail if they eventually find food.
Meanwhile, the pheromones evaporate over time and the
more time it takes for the ant to travel from the nest to the
food source, themore time the pheromones have to evaporate.
As a result, a short path gets marched over more frequently,
and thus the pheromone density becomes higher on shorter
paths than the longer ones. If the path has a large concentra-
tion of pheromone, this is probably due to its shorter length
that allowed ants to travel faster, resulting in a larger number
of ants depositing pheromone on it. Ants are more likely to
follow the path that contains more pheromones, and this pos-
itive feedback mechanism will lead to all the ants following
a single path eventually. The mathematical model of ACO is
given by:

Pk
i j (t) =

⎧
⎪⎨

⎪⎩

τα
i j (t)η

β
i j (t)

∑

s∈allowedk
τα
is (t)η

β
is (t)

, j ∈ allowedk

0 , otherwise,

(1)

where Pk
i j (t) is the probability of ant k, positioned at city i ,

traveling to city j at the moment t . The pheromone quantity
is given by τi j , ηi j is the heuristic information of the prob-
lem and is given by the inverse of the distance between city
i and city j : ηi j = 1/di j .allowedk is the set of cities not yet
visited by ant k while at city i , α > 0 and β > 0 are parame-
ters weighting the relative importance of the pheromone and
of the heuristic information, respectively. The pheromone
evaporation is performed according to the following update
function:

{
τi j (t + �t) = ρ · τi j (t) + �τi j
�τi j = ∑m

k=1 �τ ki j ,
(2)

where ρ ∈ [0, 1] is the persistence parameter for the
pheromone. �τ ki j represents the pheromone quantity to be
deposited by ant k, and it is given by:
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�τ ki j =
{

Q
Fk(t)

if arc (i, j) used by ant k,

0 otherwise,
(3)

where Q is a positive proportionality parameter and Fk (t)
is the length of the tour constructed by ant k at iteration t .

According to the existing references (Socha and Dorigo
2008; Liu et al. 2014), general ant colony algorithm can be
applied to continuous domain by either discretizing the con-
tinuous domain into several regions or shifting from using
a discrete probability distribution to using a continuous one
such as a Gaussian probability density function (PDF). The
research results show that probability density function could
improve searching efficiency significantly compared with
basic ACO. As a result, in the present paper, the ACOR

approach is adopted for continuous optimization.
For a D-dimensional real-valued minimization problem,

ACOR initializes k solutions at random firstly: Sij
(
i = 1, 2,

3, . . . , D ; j = 1, 2, 3, . . . , k
)
and the k solutions are kept

sorted according to their objective values (from minimum to
maximum) and each solution S j has a weight ω j which is
defined by Gaussian function:

ω j = 1

qk
√
2π

e
−

(
rank( j)−1

)2

2q2k2 , (4)

where rank( j) is the rank of S j in the sorted archive and q is
a positive parameter of the algorithm. Obviously,ω1 ≥ ω2 ≥
· · · ω j ≥ · · · ωk . The probability of choosing solution S j as
guiding solution is given by:

Pj = ω j
∑k

r=1 ωr
. (5)

Therefore, the better solution has higher chances to be chosen
as the guiding solution. Population updating is accomplished
by generating a certain number of new solutions near Sguide
and adding them to the solution set; meanwhile, remove the
same number of worst solutions so that the size of solution
set does not change. However, the mechanism of pheromone
updating tends to induce a potential problem of trapping into
local optimum in case that Sguide is near the local minimum
point. In the present paper, a chaotic disturbance is introduced
into the algorithm to avoid this problem.

2.2 Construction of CACOR algorithm

Chaos is a kind of universal nonlinear phenomena in many
areas of science. It is highly sensitive to the changes in ini-
tial conditions that small differences in initial conditions
yield widely diverging outcomes for the system. Chaos the-
ory studies the behavior of systems that follow deterministic
laws but appear random and unpredictable (May 1976; Cong

et al. 2010). There are three main properties of the chaotic
map: randomness, ergodicity and regularity. The ergodicity
property of chaos can ensure chaotic variables to go through
every state in certain scale. As a result, it could be introduced
into the optimization strategy to avoid falling into local min-
imum solution. Meanwhile, the randomness and ergodicity
can accelerate the optimum seeking operation (Ikeguchi et al.
2011).

Chaotic behavior can arise from very simple nonlinear
dynamical models. The logistic map is generally used in
chaos optimization algorithm, and it was popularized by the
biologist Robert May in 1976. The map is written by:

Xn+1 = L (μ, Xn) = μXn(1 − Xn), n = 0, 1, 2 . . . (6)

Here the initial value of X is chosen between 0 and 1, and
μ ∈ [0, 4] is the control parameter. In theory, Xn will traverse
all values non-repeatedly in [0, 1] in condition that n is large
enough. When n = 1000, the initial value of X is 0.6, the
randomness and ergodicity for logistic map are shown in
Fig. 1. By varying the parameter μ, different behavior of the
dynamic model can be observed, and when μ = 4.0, the
system is in the state of complete chaos. Figure 2 illustrates
the amplitude and frequency content of some logistic map
iterates in phase space.

The CACOR is proposed based on the problem that tra-
ditional ACO is easy to fall in local best, and its searching
speed is slow in some special optimization problems. The
main idea of CACOR is to generate the initial ant colony
by the logistic map and update the population with chaotic
disturbance. For a D-dimensional real-valued minimization
problem, the initial colony is given by:

Ant j :
{
Xi = μ1Xi−1(1 − Xi−1), i = 1, 2, . . . , D
Sij = (bi − ai ) Xi + ai , j = 1, 2, . . . , k,

(7)

Fig. 1 Randomness and ergodicity for logistic map
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Fig. 2 a Logistic map for different parameter μ in phase space. b Logistic map with 4 iterations (μ = 4.0) in phase space

where Sij is the component of S j , the i-th component defi-
nitional domain of S j is [ai , bi ]. Xi is the logistic map with
μ1 = 4.0 and X0 = 0.6, and k is the population number of
ant colony. Hence, a randomly generated initial population
is obtained. When updating the population at each iteration,
sort all the individuals according to their quality (from best
to worst) and calculate the weight ω j for each solution S j .
Choose the individual with highest ω j as the guiding solu-
tion Sguide, and then, remove m (m < k) worst solutions and
generate the same number of new solutions by introducing
the chaos perturbation to the current population:

{
Sil = ρ · Siguide + λ

(
Siguide − ai

)
Yl , i = 1, 2, . . . D

Yl = μ2Yl−1 (1 − Yl−1) , l = 1, 2, . . .m,
(8)

where ρ ∈ [0, 1] represents how much the new individual
inherited from the guiding solution, λ ∈ [0, 1] is the coeffi-
cient related to the chaos perturbation quantity, and Yl is the
logistic map with μ2 = 4.0 and Y0 = 0.5. In general, the
CACOR is described as follows:

Step 1 Initialize the ant colony: generate a certain number
of ants with logistic map and compute objective values of
every ant. Initialize the parameters of the program, set the
value of stop iteration number N and weighting coefficients
ρ and λ.

Step 2 Sort the solutions by objective values, calculateω j ,
Pj and choose the guiding solution Sguide. Save Sguide and
the corresponding best value Jbest of the current generation.

Step 3 Generate m new solutions using chaotic theory
according to equation (8) and remove the same number of
worst solutions. Calculate the current objective values of
every solution.

Step 4 Compute the difference of best values between
neighboring generations and check the current iteration num-
ber n, if the precision or iteration number is not be satisfied,
then loop Step 2–Step 4.

Step 5 If the termination conditions are satisfied, stop iter-
ation and put out the best solution.

2.3 Single-objective optimization test

To examine the performance of the proposed CACOR algo-
rithm, 5 test functions are adopted in this paper; meanwhile,
the CACOR algorithm is compared with the standard GA
and PSO, the original ACOR and the CLPSO algorithms. All
the test functions are minimization problems, as shown in
Table 1.

Perform three optimizing searches to find out the mini-
mum solution of the functions in Table 1 and each algorithm
was run by 30 times. Besides, the mean, max and min (best)
value of the solution are calculated. In GA algorithm, the
population size is set to 100, crossover rate is set to 0.75,
and mutation rate is set to 0.2. For PSO algorithm, 100 par-
ticles are generated and the acceleration coefficients c1 and
c2 are both set to 2.0. Meanwhile, linearly decreasing inertia
weightω is adopted and the maximal and minimal weights
are set to 0.9 and 0.4. For CLPSO, algorithm, we adopt the

learning probability Pci = 0.05 + 0.45 × exp
(
5(i−1)
S−1

)
−1

exp(5)−1 . In
the proposedCACOR algorithm and the original ACOR algo-
rithm, ant colony population is set to 30, parameter ρ is set to
0.9. The default number of generation N of all algorithms is
set to 200. The numerical results and the comparison of per-
formance differences between traditional GA, PSO, ACOR,
CLPSO and CACOR are summarized in Table 2.
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Table 1 Test functions

Function Mathematical representation Range Modality Optimum

De Jong F1 f1 (x) =
n∑

i=1
x2i xi ∈ (− 5.12, 5.12) Unimodal 0

Rosenbrock f2 (x) =
n−1∑

i=1

(
100

(
x2i − xi+1

)2 + (xi − 1)2
)

xi ∈ (− 10, 10) Unimodal 0

Shubert f3 (x, y) =
{

n∑

i=1
i cos [(i + 1) x + 1]

}{
n∑

i=1
i cos [(i + 1) y + 1]

}

x, y ∈ (− 10, 10) Multimodal − 186.730909

Humpback f4 (x) = (
4 − 2.1x2 + x4/3

)
x2 + xy + (−4 + 4y2

)
y2 x ∈ (−3, 3) , y ∈ (− 2, 2) Multimodal − 1.031628

Rastrigin f5 (x) =
n∑

i=1

(
x2i − 10 cos 2πxi + 10

)
xi ∈ (− 5.12, 5.12) Multimodal 0

Table 2 Numerical results Function Criterion GA PSO ACOR CLPSO CACOR

f1 (x) Mean 0.000013 0.000000 0.000000 0.000000 0.000000

Min 0.000003 0.000000 0.000000 0.000000 0.000000

Max 0.000028 0.000000 0.000000 0.000000 0.000000

f2 (x) Mean 0.000411 0.000134 0.000000 0.000000 0.000000

Min 0.000027 0.000007 0.000000 0.000000 0.000000

Max 0.000962 0.000415 0.000000 0.000000 0.000000

f3 (x) Mean − 186.730812 − 186.730894 −186.730881 − 186.730907 −186.730909

Min − 186.730900 −186.730909 − 186.730909 −186.730909 − 186.730909

Max − 186.730761 −186.730888 − 186.730797 −186.730900 − 186.730909

f4 (x) Mean − 1.031614 −1.031628 − 1.031628 −1.031628 − 1.031628

Min − 1.031623 −1.031628 − 1.031628 −1.031628 − 1.031628

Max − 1.031600 −1.031628 − 1.031628 −1.031628 − 1.031628

f5 (x) Mean 0.000123 0.000005 0.000344 0.000000 0.000000

Min 0.000008 0.000000 0.000109 0.000000 0.000000

Max 0.000634 0.000028 0.000795 0.000001 0.000000

It can be concluded that the CACOR algorithm gets a
better performance at optimization precision and reliability
compared to GA, PSO, original ACOR and CLPSO algo-
rithms. Furthermore, the original ACOR was trapped into the
local optimumwhen solving the Rastrigin function while the
CACOR algorithm could get the correct minimum. Figure 3
gives two examples of convergence curves ( f1(x), f2(x)) for
different algorithms in logarithmic coordinate. Obviously,
the convergence rate of the CACOR is faster than the other
algorithms.

2.4 Non-dominated sorting technique and niching
method

When applied to multi-objective optimization problems, the
main difficulties come from how to obtain a set of non-
dominated solutions as closely as possible to the true Pareto
front and to maintain a well-distributed solution set along
the Pareto front. The non-dominated sorting concept which
originated from NSGA-II (Deb et al. 2002) is widely used in

multi-objective optimization algorithms. It solves the prob-
lem of selecting the better individuals by sorting the entire
population into different non-domination levels. Hence, it is
introduced into the CACOR algorithm to obtain a series of
solutions on the Pareto front. Besides, to preserve diversity
in the final group of solutions, the niching method (Li 2003)
is adopted in the present paper. Niching methods have been
successfully used in GA and PSO algorithms, Goldberg and
Richardson (1987) proposed a sharing function model for
GA and Li (2003) introduced the σshare distance into NSPSO.
Figure 4 shows the non-dominated sorting concept and niche
counts method.

The dynamically updated σshare is defined as follows:

σshare =

m∑

i=1
(ui − li )

n − 1
, (9)

where ui and li are the upper and lower bounds for every
objective value, n is the size of the ant population, and
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Fig. 3 a Convergence curves for f1 (x), b convergence curves for f2 (x)

Fig. 4 a Non-dominated fronts of different levels, b niche counts for two-objective optimization

m is the number of objectives. Calculate the niche count
of each candidate solution within the σshare distance, and
select the one with smaller niche count as a new front solu-
tion. Obviously, A will be preferred over B in Fig. 4b.
In addition, to illustrate the key steps of the algorithm,
Fig. 5 shows the construction process of the multi-objective
CACOR.

2.5 Multi-objective optimization test

In order to verify the multi-objective optimization efficiency
of the algorithm, two test functions are used. Test1 function
was proposed by Kursawe (1991), and Test2 function was
proposed by Zitzler et al. (2000), these functions have been
widely used in algorithm testing because of disconnectedness
of Pareto front and multiple local fronts.

Test1:

{
f1(x) = ∑2

i=1 [−10 exp(−0.2
√

x2i + x2i+1)]
f2(x) = ∑3

i=1 (|xi |0.8 + 5 sin(x3
i
))

(10)

where −5 ≤ xi ≤ 5, i = 1, 2, 3.

Test2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(x) = x1
f2(x) = g (x) h ( f1 (x) , g (x))

g (x) = 1 + 9
29

∑30
i=2 xi

h ( f1 (x) , g (x)) = 1 −
√

f1(x)
g(x)

−
(

f1(x)
g(x)

)
sin (10π f1(x))

(11)

where 0 ≤ x1, x2 ≤ 1, 1 ≤ i ≤ 30.
For all test functions, the initial ant population is 150 and

the number of iterations is 500. Figure 6 shows comparison
between the true Pareto front and CACOR front for each
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Fig. 5 Flowchart of the
multi-objective CACOR
algorithm

Fig. 6 a Pareto solution of Test 1, b Pareto solution of Test 2

Fig. 7 Soft margin loss setting for a nonlinear SVR

test function, and both results illustrate good multi-objective
search ability of the improved algorithm.

3 Support vector regression

Support vector machine (SVM), which is based on statistical
learning theory and characterized by usage of kernel tricks
and support vectors, is a standard classification technique that
has been widely used in many classification problems. It was

developed byVapnik in 1995 and has been extensively devel-
oped during the past twodecades (Vladimir andVapnik 1995;
Iosifidis and Gabbouj 2016). The main idea of the SVM is
to minimize classification errors by maximizing the margin
between the separating hyperplane and the data sets. Smola
and Vapnik (1997) developed the SVR method to solve non-
linear regression problems by introducing an ε-insensitive
loss function into SVM. A number of studies have indicated
that SVR has advantages of high-dimensional input space,
few irrelevant features and good accuracy. As a result, SVR
has been successfully applied to various problems: regres-
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sion estimation (Bourinet 2016), signal processing, pattern
recognition, medical diagnosis, forecasting problems, etc.

3.1 Construction of SVRmodel

The training set is defined as {(xi , yi ) , i = 1, 2, . . . , l},
where l is the number of samples, xi

(
xi ∈ Rd

)
is the i th

input, xi = [
x1i , x

2
i , . . . x

d
i

]T
, d is the dimension of input

space and yi ∈ R is the i th output, correspondingly. Ker-
nel trick uses a classifier algorithm to solve a nonlinear
problem by mapping data from the input space into a higher-
dimensional space. Define the linear discriminant function

f (x) = w(x) + b, (12)

where (x) is the nonlinear mapping function and (w, b) is
the functional margin. Define the ε-insensitive loss function

L ( f (x) , y, ε) =
{
0, |y − f (x)| ≤ ε

|y − f (x)| − ε, |y − f (x)| > ε
(13)

where y is the true value and f (x) is the corresponding pre-
diction. Analogously to the soft margin loss function which
was adapted to SVM, positive-valued slack variables ξi , ξ

∗
i

can be introduced and the problem of searching (w, b) can
be written as an optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min 1
2 ‖w‖2 + C

∑l
i=1

(
ξi + ξ∗

i

)
, C > 0

s. t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yi − w(xi ) − b ≤ ε + ξi , i = 1, 2, . . . , l

−yi + w(xi ) + b ≤ ε + ξ∗
i

ξi ≥ 0, ξ∗
i ≥ 0.

(14)

Parameter C determines the trade-off between the model
complexity (flatness) and the amount to which deviations
larger than ε are tolerated in optimization formulation. If C
is too large, then the objective is to minimize the empirical
risk only, without regard tomodel complexity part in the opti-
mization formulation. Parameter ε controls the width of the
ε-insensitive zone, used to fit the training data, as shown in
Fig. 7.

The main idea to solve the above optimization problem is
to construct a Lagrange function from the objective function
and the corresponding constraints, by introducing a dual set
of variables:

L : = 1

2
‖w‖2 + C

l∑

i=1

(
ξi + ξ∗

i

) −
l∑

i=1

(
ηiξi + η∗

i ξ
∗
i

)

−
l∑

i=1

αi (ε + ξi − yi + w(xi ) + b)

−
l∑

i=1

α∗
i

(
ε + ξ∗

i + yi − w(xi ) − b
)

(15)

where αi , ηi , α
∗
i , η

∗
i ≥ 0 are Lagrange multipliers. The sad-

dle point condition is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂bL =
l∑

i=1

(
α∗
i − αi

) = 0

∂wL = w −
l∑

i=1

(
αi − α∗

i

)
(xi ) = 0

∂ξi L = C − αi − ηi = 0
∂ξ∗

i
L = C − α∗

i − η∗
i = 0.

(16)

Eliminate the dual variables ηi , η
∗
i and we can get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
α,α∗

[

− 1
2

l∑

i=1

l∑

j=1

(
αi − α∗

i

) (
α j − α∗

j

)
K

(
xi , x j

)

−
l∑

i=1

(
αi + α∗

i

)
ε +

l∑

i=1

(
αi − α∗

i

)
yi

]

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

l∑

i=1

(
αi − α∗

i

) = 0

0 ≤ αi ≤ C
0 ≤ α∗

i ≤ C,

(17)

where K
(
xi , x j

) = (xi )
(
x j

)
is the kernel function.

DefineNnsv as the number of support vectors and the solution
can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w∗ =
l∑

i=1

(
αi − α∗

i

)
 (xi )

b∗ = 1
Nnsv

×
{

∑

0<αi<C
yi −

[
∑

xi∈SV
(
αi − α∗

i

)
K

(
xi , x j

) − ε

]

+ ∑

0<αi<C
yi −

[
∑

x j∈SV
(
αi − α∗

i

)
K

(
xi , x j

) + ε

]}

.

(18)

Finally, we get the regression function

f (x) = w∗(x) + b∗ =
l∑

i=1

(
αi − α∗

i

)
K

(
xi , x j

)+b∗.

(19)

It is well known that SVR performance (estimation accu-
racy) depends on a good setting of parameters C, ε and the
kernel parameters. Selecting a particular kernel type and ker-
nel function parameters is usually based on characteristics of
the training data. Common kernel functions include:
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D-th-order polynomial function:

K
(
xi , x j

) = (
xi · x j

)d (20)

Gaussian radial basis function (RBF):

K
(
xi , x j

) = exp
(
−γ

∥
∥xi − x j

∥
∥2

)
(21)

Hyperbolic tangent function (Sigmoid):

K
(
xi , x j

) = tanh
(
γ xi · x j + c

)
. (22)

3.2 Regression accuracy analysis

According to existing studies, RBF kernel function is widely
used in SVM classification and regression for the reason
that it has better generalization performance. As a result,
RBF kernel function is adopted in the present paper. Mean-
while, SVR model is sensitive to the input parameters and
only obtain suitable parameters can the model perform well
enough. Hence, the input parameters are optimized with
CACOR before use. Figure 8 shows the regression and pre-
diction test results of SVRmode, and Table 3 gives the mean
squared error (mse) and squared correlation coefficient (R2)

for different cases. Here f1 (x) is an exponential function,
f2 (x) is a polynomial function, f3 (x) is a two-dimensional
projection transform of Ackley function:

f3 (x) = −20 exp
(
−0.2

√
0.5x2

)

− exp (0.5 cos (2πx)) + e + 20. (23)

And f4 (x) is Schwefel function:

f4 (x) = 418.9829 − x sin
(√|x |.

)
(24)

It can be concluded from Fig. 8 and Table 3 that SVR model
constructed with RBF kernel is sufficiently accurate.

4 Optimization of high-speed train nose
shape

Optimizationdesignof aerodynamic shape is a research focus
in the field of fluid mechanics, especially in the design of air-
craft. In recent years, optimization of the streamlined head
of high-speed trains has attracted more and more attention
as the aerodynamic problems become more serious with the
increasing running speed. The aerodynamic drag of high-
speed trains can be up to 80% of the total drag (Yang et al.
2012) at the speed of 300 km/h. Resistance characteristics
of the trains are directly related to the ability of energy sav-
ing and environmental protection (Raghunathan et al. 2002;

Baker 2010; Tian 2009). In aerodynamic lift research, the
wheel-track force is significantly reduced while excessive
positive lift act on the train,which affects the operation safety.
Meanwhile, negative aerodynamic lift increases the dynamic
axle load and aggravates rail abrasion. For high-speedmaglev
trains, the time difference between the change in electromag-
netic suspension force and aerodynamic lift causes server
vibration and affects the amenity of the train. Therefore, to
reduce aerodynamic drag and lift of the train becomes the
key issue of optimization design of head shape of high-speed
trains (Tian 2007).

In the initial stage of optimization design, the parametric
method to efficiently represent the shape with significantly
less data should be developed. It plays an important role
in aerodynamic optimal design for the reason that an effi-
cient parametric method can not only describe the changes
of shape completely, but also reduce the optimization cycle
and improve optimization efficiency. For airfoil optimiza-
tion, various parametric approaches have been investigated
since the 1970s. Free form deformation (FFD), class function
transformation (CST), Hicks-Henne approach and B-spline
representation method are widely used in airfoil design. The
head shape of a high-speed train is much more complicated
than the airfoil, and there are much fewer references on
parametric methods for high-speed trains. Rho et al. (2009)
proposed a vehicle modeling function in the form of an expo-
nential function to smoothly express the complex shapes of
an automobile. Ku et al. (2010) applied the VMF method in
the optimization design of high-speed trains to reduce the
micro-pressure wave and aerodynamic drag. In the present
paper, a modified VMF parametric approach for high-speed
train nose shape is adopted.

4.1 Vehicle modeling function parametric approach

The basic VMF proposed by Rho and Ku is given by:

F
( x

c

)
=

( x

c

)A1
(
1 − x

c

)A2
S

( x

c

)
+

(
1 − x

c

)
Y1+

( x

c

)
Y2,

(25)

where Y1 and Y2 are the heights of the starting and finishing
points and x and c are the dimension and length of each sec-
tion box. S(x/c) can be defined by the simple polynomial
functions. In order to generate outline curves of the stream-
lined nose shape, the equation is modified by:

F
( x

c

)
=

( x

c

)A1
(
1 − x

c

)A2
ak + g

( x

c

)
, (26)

where S(x/c) and g(x/c) are given by:

g
( x

c

)
= 2 (Y2 − Y1)

x

c
− (Y2 − Y1)

( x

c

)2
(27)

123



Y. Zhang et al.

Fig. 8 Test results of SVR model

Table 3 Regression accuracy of SVR

Function Number of points Mse R2

f1 (x) 20 6.0347 × 10−4 0.9990

f2 (x) 20 2.3552 × 10−4 0.9995

f3 (x) 20 8.2278 × 10−5 0.9992

f4 (x) 20 9.4670 × 10−5 0.9992

A1, A2 and ak are design variables. A1 and A2 control the
basic curve shapes, and ak affects the amplitude of F(x/c).
Using themodified function, we can define different complex
shapes by varying the design variables. Figure 9 illustrates
how the shape changes with the exponent A1 and A2 in the
modified VMF equation.

The basic shape of streamlined head of high-speed trains
is controlled by the critical two-dimensional line, and sur-
face configuration is generated by means of interpolation
between different profile lines. According to the common
nose shapes of high-speed trains, basic lines and control
points are extracted, as shown in Fig. 10.

L1 is the upper longitudinal section profile line, L2 is hor-
izontal section profile, L3 is the bottom horizontal section
profile, L4 is the cowcatcher profile line, and L5 is the maxi-
mum cross-sectional profile line. According to the functional
requirements, the shape of cowcatcher profile line cannot be
changed too much; therefore, L4 adopts realistic geometric
structure. In addition, L5 has a fixed shape since it should
matches with the carriage of high-speed train. Equation of
L1 is given by:
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Fig. 9 a Curves variation with the parametric A1. b Curves variation with the parametric A2

Fig. 10 Basic lines and control points in VMF design

z (x) =
(

x − x11
x12 − x11

)A11
(

1 − x − x11
x12 − x11

)A12

ak1

+2 (z12 − z11)
x − x11
x12 − x11

− (z12 − z11)

(
x − x11
x12 − x11

)2

, (28)

where (x11, z11) , (x12, z12) are the coordinate values of P1
and P2. Analogously, equation of L2 is given by:

y (x) =
(

x − x11
x22 − x11

)A21
(

1 − x − x11
x22 − x11

)A22

ak2

+2 (z22 − z11)
x − x11
x22 − x11

− (z22 − z11)

(
x − x11
x22 − x11

)2

, (29)

Table 4 Design variables and their ranges

Design variables Range Design variables Range

A11 (0.20,0.60) A32 (2.20,3.50)

A12 (9.80,12.00) ak1 (0.90,2.70)

A21 (0.17,0.43) ak2 (1.15,3.45)

A22 (1.20,2.50) ak3 (1.25,3.75)

A31 (0.30,0.90)

where (x22, z22) is the coordinate value of P3. For L3, the
equation is given by:

y (x) =
(

x − x31
x32 − x31

)A21
(

1 − x − x31
x32 − x31

)A22

ak3

+2 (z32 − z31)
x − x31
x32 − x31

− (z32 − z31)

(
x − x31
x32 − x31

)2

, (30)

where (x31, z31) , (x32, z32) are the coordinate values of P4
and P5. During the process of shape construction, control
points P1 to P5 are unchanged, as a result, the basic design
parameters are aki , Ai1 and Ai2, (i = 1, 2, 3).

Table 4 shows the ranges of design parameters, and Fig. 11
shows different types of streamlined nose shapes obtained by
adjusting the design parameters.

4.2 Computational domain and CFD algorithm

In the present paper, a mixture spatial mesh that combines
with Cartesian grid and prism mesh is adopted. The total

123



Y. Zhang et al.

Fig. 11 Different shapes obtained by adjusting design parameters

length of the train is about 78m, in which the length of
the head car and the tail car is about 26m. The height H
of the train is 3.5m, while the width of the car-body is
3.38m. Take the height H as the characteristic length, and
the computational domain extends 30H ahead of the train
nose and 60H from the train tail to the exit of the computa-
tional domain. The top of the computational domain is at a
distance 30H from the bottom of the rail and the sides are
at a distance of 30H from the center axis of the train, the
outline of computational domain and the model are shown
in Fig. 12.

In this paper, the speed of high-speed train is 350 km/h,
so the Mach number was 0.2859. In this condition, the air
compression characteristic had an obvious effect on the aero-
dynamic drag of the train. Therefore, the steady compressible
Reynolds-averaged Navier-Stokes equation (Blazek 2015)
that is based on the finite volume method was used to pre-
dict the aerodynamic drag. Roe’s FDS scheme was used
to calculate convective fluxes, and lower-upper symmetric
Gauss-Seidel (LU-SGS) was chosen for temporal discretiza-
tion. The k-ω SST model was selected as the turbulence
model. The standard wall functions were used near the wall
so that the accuracy of the CFD results could be ensured
with a limited amount of mesh. The flow velocity is 97.222
m/s, the far-field pressure is 1 atm, the temperature is 288
K, and the reference area is the maximum cross-sectional
area of the train. As a result of the compressibility calcula-
tion model, one-dimensional inviscid flow of the Riemann
invariants is introduced as the far-field boundary conditions,
which are also known as non-reflective boundary conditions.
Inflow, outflow and the top boundaries are all set as far-field
boundary conditions and the train body is nonslip solid wall
boundary condition. The ground is treated as themovingwall
so as to simulate the ground effect, and the moving speed is
equal to the train speed.

4.3 Optimization process

In order to improve the optimization efficiency, a reason-
able optimization process is designed in the present paper, as
shown in Fig. 13.

All the steps are listed as follows:

(1) Modify the VMF equation and extract the design param-
eters.

(2) Determine baselines composing the streamlined surface
and then determine the range of design parameters.

(3) Generate a certain number of sample points using Latin
hypercube sampling (LHS) method.

(4) Obtain the accurate value of the aerodynamic drag and lift
for every sample point using the CFD simulation. Train
the SVR model constructed with RBF kernel. Because
there are two objectives, two sets of SVR models need
to be constructed. On the premise of sufficient precision,
two sets of models share the same parameters C, ε and
γ in the present paper. The sum of the squares of the two
errors is defined as the final prediction error. If the pre-
diction error is greater than limited value �, then use the
proposed algorithm to find the optimal values of correla-
tion coefficients C, ε and γ .

(5) Construct multi-objective CACOR algorithm using non-
dominated sorting concept and niche counts method, test
the performance with different functions and then get the
CACOR-SVR model.

(6) Based on theCACOR-SVRmodel, perform the optimiza-
tion for 3D nose shape of high-speed trains, obtain the
optimal Pareto solutions.

(7) Chose one of the solutions as the design point and gen-
erate the optimal shape correspondingly. Verify their
performance using the CFD approach.

4.4 Sample points and training of SVR

A uniform distribution of samples is essential for training the
SVR model, and reasonable sampling method could provide
the detailed information with fewer samples in the design
space. Latin hypercube sampling is a recent development
in sampling technology designed to accurately recreate the
input distribution through sampling in a few iterations. Ref-
erences (Joseph and Hung 2008) have shown that LHS offers
great benefits in terms of increased sampling efficiency and

Fig. 12 Computational domain
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Fig. 13 Optimization process

better reflects the underlying distribution for a smaller num-
ber of samples. As a result, LHS is adopted in the present
paper to generate initial samples according to the design vari-
ables and their ranges listed in Table 4. Twenty-two initial
sampling points have been generated for training the SVR
model, of which the first 20 points are chosen as training
points while the last two are chosen as the test points. For
all the sampling points, the aerodynamic drag of the whole
train (Cd) and the lift of the tail car (Cl) are calculated and
designed as optimization objectives, as shown in Table 5.

In general, the essence of training the SVRmodel based on
RBF kernel is to find the most appropriate value of C , ε and
γ . A basic SVR model could be firstly constructed from the
initial 20 training points. If the average prediction error for
the other two test points is greater than 5%, then optimize the
key parameters C, ε and γ with CACOR until the accuracy
requirement is satisfied. For the selection of the most appro-
priate values of SVR model parameters, take C, ε and γ as
the vector of independent variables and mean square error
as the optimization objective, then the appropriate param-
eters could be obtained by the CACOR algorithm. Table 6
compares the prediction error of the initial parameters and
the optimal parameters. The initial values of C, ε and γ are
2.0, 0.1 and 3.0, while after optimization the parameters are
changed to 45.6238, 0.0101 and 2.4630, respectively.

It can be observed that aerodynamic lift coefficient of the
tail car is more sensitive to the input parameters of SVR
model. Prediction error of the initial C, ε and γ for aero-
dynamic drag coefficient is about 3.0, while the error of the
optimal C, ε and γ is reduced to 0.31%. For aerodynamic

lift of the tail car, prediction error declines from about 26%
to 3.0% after optimization. Hence, the optimal SVR models
have met the accuracy requirement.

5 Results and discussion

Based on the constructed SVR model, the Pareto optimal
solution of the aerodynamic drag of the train and the aerody-
namic lift of the tail car is found. For the setting of parameters
in CACOR algorithm, ant colony population is set to 100,
parameter ρ is set to 0.9. The default number of generation
N is set to 300.

Figure 14 shows the Pareto solution of theCd-Cl optimiza-
tion based on CACOR-SVR. The result shows that a suitable
Pareto front is obtained after iterations. Theoretically, the
objective values of each point on the Pareto frontier are bet-
ter than those of the original one. In the shape design for
high-speed train, when the aerodynamic parameters are bal-
anced, the running stability of the train is the best. As a result,
points near the center of the Pareto frontier are more likely
to be the final design point. In the present paper, a specific
individual as the red star shows in Fig. 14 is chosen as the
design point for comparison.

Table 7 shows aerodynamic forces comparison between
original and optimal shape. After optimization, the aerody-
namic drag of the whole train is reduced by 10.52%, while
the aerodynamic lift of the tail car is reduced by 35.70%.
The results indicate that the aerodynamic lift of the tail car
is more sensitive to the change of nose shape.
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Table 5 Training points and test points

Type Number A11 A12 A21 A22 A31 A32 ak1 ak2 ak3 Cd Cl

Training points 1 0.2991 9.9801 0.2226 1.6503 0.8136 3.3644 2.2130 1.4009 3.6174 0.16230 0.08490

2 0.3135 11.8896 0.2670 2.4229 0.3714 2.5927 2.1553 1.2370 3.0004 0.16241 0.08447

3 0.5585 11.2598 0.3106 1.4789 0.6960 2.8826 1.6966 2.2095 2.6580 0.16217 0.06746

4 0.5247 11.0884 0.2972 2.2250 0.8690 3.1583 1.2923 3.0381 1.6319 0.16692 0.08359

5 0.4051 10.0944 0.3222 2.2942 0.6572 2.2456 2.6628 2.3088 1.2659 0.15035 − 0.00192

6 0.4860 10.6549 0.3270 1.7647 0.8975 2.3317 2.4289 1.6899 2.8705 0.14983 − 0.02569

7 0.3661 11.1728 0.3670 1.2092 0.7666 3.2856 1.6277 3.2748 1.4871 0.16399 0.00882

8 0.4516 10.4577 0.3788 2.0605 0.4505 2.7845 1.8045 1.4952 2.0942 0.14982 0.00727

9 0.4207 11.6026 0.2542 2.3638 0.8221 2.8415 1.0067 3.1376 2.5292 0.17045 0.05569

10 0.4652 11.7447 0.2457 1.9343 0.5334 2.6965 1.0674 2.6701 1.3974 0.16319 0.04437

11 0.4976 9.8646 0.1733 1.5449 0.3274 3.4006 1.7342 2.9372 2.3210 0.20527 0.16202

12 0.2510 10.1521 0.3912 1.3023 0.5936 2.4132 1.4498 2.5244 3.1954 0.16751 0.01952

13 0.5910 10.5372 0.3388 2.4622 0.6231 2.3129 2.3500 2.7842 2.7835 0.16665 0.02353

14 0.3907 11.3937 0.3579 1.4041 0.7341 3.2583 1.2173 1.8671 2.2394 0.14836 − 0.02226

15 0.2159 10.3830 0.4043 1.8728 0.4360 2.4713 1.5204 1.9837 2.4140 0.16186 0.02981

16 0.2610 10.9849 0.2337 2.0140 0.5047 2.5151 2.0512 2.8824 1.7938 0.18084 0.04759

17 0.3536 11.4373 0.1877 1.3616 0.3074 2.6640 1.3846 1.6724 3.6448 0.17622 0.22635

18 0.2357 11.9593 0.2137 2.1709 0.6300 3.4671 2.0291 2.0442 3.4539 0.16840 0.01069

19 0.2735 11.5873 0.4280 1.8319 0.5593 3.1398 1.9052 1.3084 1.8186 0.14703 − 0.01617

20 0.5450 10.2934 0.2836 2.1422 0.7523 3.0292 0.9445 2.4391 1.9569 0.15521 0.00926

Test points 21 0.5671 10.7668 0.2004 1.6009 0.4026 2.9996 2.5351 2.1359 3.0683 0.18263 0.09535

22 0.3394 10.8207 0.4102 1.7144 0.4659 2.9514 2.5949 3.3969 3.3170 0.18985 0.07477

Table 6 Prediction error
comparison

Objective Points Actual value Initial(C, ε, γ ) Optimal(C, ε, γ )
Predicted value Error Predicted value Error

Cd 21 0.18263 0.17682 3.18% 0.18206 0.31%

22 0.18985 0.18402 3.07% 0.18926 0.31%

Cl 21 0.09535 0.07016 26.42% 0.09271 2.77%

22 0.07477 0.05504 26.39% 0.07224 3.38%

Fig. 14 Pareto solution based on CACOR-SVR

Table 7 Aerodynamic forces reduction after CACOR-SVR optimiza-
tion

Model Cd Cl

Original shape 0.14933 0.02109

Optimal shape 0.13315 0.01304

Reduction 10.52% 35.70%

Figure 15 illustrates the transformation of L1, L2 and L3
after optimization. It can be seen fromFig.15 that L1 changes
a little near P1 and almost remains unchanged near P2. Cur-
vature of L2 and the first half of L3 decreases significantly,
while curvature of the second half of L3 increases slightly.

In order to better understand the influence on aerodynamic
performance due to the change of nose shape of high-speed
train, pressure distribution of head car and the iso-surface of

123



A novel CACOR-SVR multi-objective optimization approach...

Fig. 15 Comparison for section profile lines

Fig. 16 Pressure distribution of head car and the iso-surface of Q = 80 in the wake flow

the second invariant of the velocity gradient Q in the wake
floware shown inFigure 16. It can be concluded that the high-
pressure area of the head car is reduced after optimization.
Meanwhile, the strengths of two steady vortices which were
developed along the surface of the tail car are reduced; hence,
negative pressure in the wake region is weaker. The results
indicate that decreasing the curvature of horizontal section
profile and the curvature of bottom horizontal section profile
of the nose can be beneficial to local pressure distribution of
the train.

6 Conclusions

In the present paper, a chaos ant colony optimization algo-
rithm for continuous domain (CACOR) is proposed based
on chaos optimization theory and ant colony optimization
algorithm. Five single-objective test functions and twomulti-
objective functions are used to verify the searching efficiency
and global optimization capability of the proposed algorithm.
Meanwhile, the proposed algorithm is improved for multi-
objective optimization by introducing the non-dominated

sorting concept and niche counts method. The results show
that CACOR algorithm gets a good performance at single-
objective optimization as well as searching for Pareto front
in multi-objective optimization.

With limited sample points, an optimal-parameter SVR
surrogatemodel based onRBFkernel function is constructed.
Both results of test functions and test points demonstrate
sufficient prediction accuracy of the SVR model.

According to common shape of high-speed trains, a mod-
ified VMF parametric method is improved and 9 design vari-
ables are extracted. Combined with the proposed CACOR-
SVR approach, optimization for nose shape of high-speed
train has been performed, the aerodynamic drag coefficient
is reduced by 10.52%, and the aerodynamic lift of the tail car
is reduced by 35.70%. The results can be beneficial to the
shape design of high-speed trains.
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