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A statistical model of fatigue failure incorporating effects
of specimen size and load amplitude on fatigue life
Guian Qiana and Wei-Sheng Leib

aState Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of
Sciences, Beijing, People’s Republic of China; bApplied Materials, Inc., Sunnyvale, CA, USA

ABSTRACT
Among many contributing factors, the load range, number of
load cycles and specimen geometry (including configuration
and size) are three major variables for fatigue failure. Most
existing statistical fatigue models deal with only one or two
of these three variables. According to the statistical
distribution of microcracks with respect to their size and
spatial location, a weakest-link probabilistic model for
fatigue failure is established to incorporate the combined
effect of load range, number of load cycles and specimen
size. The model reveals a compound parameter of load
range and number of load cycles reminiscent of the
empirical formulae of fatigue stress-life curve and its
correlation with another compound parameter of
cumulative failure probability and specimen size. Four sets
of published fatigue test data are adopted to validate the
model.
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1. Introduction

This work is devoted to the statistical modelling of fatigue behaviour for size
scaling of fatigue limit and life. Fatigue damage is a type of brittle fracture
under cyclic loading. Similar to brittle fracture under monotonous loading
[1–3], fatigue damage [4–6] is also a random event and is specimen size depen-
dent. The probabilistic nature of fatigue failure refers to the random fatigue life
of a set of specimens with nominally identical geometry and dimensions sub-
jected to cyclic loading with nominally identical amplitude and mode. The
size effect denotes the inverse dependence of fatigue limit or fatigue life on
the geometric size of a specimen. The random behaviour of brittle fracture is
attributed to the stochastic distribution of microdefects such as microcracks in
a material with respect to spatial location, orientation, size and shape, whereas
the specimen size determines the number of defects in a specimen. These micro-
defects are either pre-existing or initiated and developed under cyclic loadings,
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which can be internal or surficial. The probabilistic nature of microdefect distri-
bution and brittle fracture calls for statistical approaches to evaluating brittle
fracture under either monotonic loading [1–3,7–10] or cyclic loading [4,11–
25]. To simplify the description and discussion, this work will only consider
volumetric defects induced fatigue failure. For a solid of volume (V ) subjected
to a cyclic load (S) for a certain number of loading cycles (N), its fatigue
failure is a random event. That says, the cumulative probability (P) for the occur-
rence of fatigue failure depends on the cyclic load (S), number of loading cycles
(N), and specimen size (V ) (Figure 1). This allows us to describe the cumulative
probability (P) of fatigue failure of a solid as a function of cyclic load (S), number
of loading cycles (N) and the volume (V ) of solid as follows:

P = F(S, N , V) (1)

Here the cyclic load (S) can be represented by either stress range (Δσ) or
strain range (Δε) at a material point, i.e. S = Ds = (smax − smin) = 2sa, or
S = D1 = (1max − 1min) = 21a, where σmax is the maximum stress, εmax is the
maximum strain, σmin is the minimum stress, εmin is the minimum strain, σa
is stress amplitude, and εa is strain amplitude. The nominal value of a parameter
will be identified by a subscript ‘nom’. For example, Dsnom, D1nom sa,nom, and
1a,nom refer to the nominal values of Ds, D1 sa, and 1a in sequence.

Derivation of the explicit formulation of Equation (1) is a much challenging
effort even under the simplest uniaxial cyclic loading condition. By introducing
y = f (x1|x2, x3) to denote y as a function of variable x1 with given values of vari-
ables x2 and x3, we may roughly sort the major studies on modelling fatigue
behaviour into deterministic and statistical approaches (Figure 1).

1.1. Deterministic models

The deterministic models of S–N (stress-life) curve [26–32] have been empiri-
cally proposed as fatigue failure criteria to depict the inverse S–N correlation

Figure 1. Three factors (S,N,V) contributing to the occurrence of fatigue damage and four mod-
elling approaches.
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for a given sized specimen (V is fixed), with the model parameters being fitted by
experimental fatigue limits for a failure probability P = 50%:

S = f (N|V , P = 0.5) (2)

As examples, Table 1 lists some representative deterministic S–Nmodels, which
adopt the stress and strain ranges (Ds, D1) as basic fatigue damage parameters.
These empirical fatigue failure criteria can use either the nominal stress or strain
range (Dsnom,D1nom) to characterise experimental fatigue limits of standard speci-
mens or the local stress and strain ranges (Ds, D1) at a material point to develop
statistical models of fatigue damage in various structural components. Given their
wide adoptions validated by numerous experimental data, it is interesting to reveal
the physical implication behind them. In this work, we will show that a physically
sound statistical fatigue model should be able to derive or justify the S-N relation-
ships. Depending on the specific loading conditions, S = Ds as the first basic
fatigue damage parameter can be either the principal tensile stress as usual, or
the normal tensile stress component [21], or the shear stress component [4,21]
on a critical plane. Similarly, S = D1 as the other basic fatigue damage parameter
can be the tensile or shear strain component [31,32]. In addition to these two basic
fatigue damage parameters, some compound variables have also been adopted as
fatigue damage parameters to build the global or local deterministic fatigue failure
criteria [15,21,25,33–36]. For examples,

S = smax · 1a [33] (3)

S = 1a · 2
1− R

( )h

[34] (4)

S = Dg

2
· 1+ sn, max

sys

( )
[35] (5)

Table 1. Some representative deterministic S-N models [26–32].

Model S

S = f (N|V , P = 0.5)

Conventional expression Equivalent expression

Wöhler (1870) [26] S = Ds Ds = A1 − B logN (Ds− A1)
logN

= −B

Basquin (1910) [27] Ds = A1NB Ds · N−B = A1

Strohmeyer (1914) [28] Ds = A1NB + Dsth (Ds− Dsth) · N−B = A1

Palmgren (1924) [29] Ds = A1(N + B)D + Dsth (Ds− Dsth) · (N + B)−D = A1

Kohout & Vechet (2001) [32] Ds = Dsth
N + B
N + A1

( )D

(Ds− Dsth)/
N + B
N + A1

( )D

− 1

[ ]
= Dsth

Coffin-Manson (1954)
[30,31]

S = D1p D1p/2 = 1′f (2N)
B (D1p/2) · (2N)−B = 1′f

Note: Δσth = fatigue limit for an infinite number of cycles to fracture, i.e. permanent fatigue limit; Δεp/2 = plastic
strain amplitude, 1′f = fatigue ductility coefficient, A1, B, D = constants.
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S = DWt = 1− n′

1+ n′
DsD1p + 1

2E
Ds

2
+ sm

( )2

[36] (6)

S = DK = YDse
����
pa

√
[21] (7)

S = Wg =
∑
i,j

∫
T
[sij(t)1̇ij(t)] dt [15] (8)

whereR = smin/smax is the stress ratio, η is afitting parameter for the sensitivity to
mean stress sm = (smax + smin)/2, Dg/2 is the shear strain amplitude, sn, max is
themaximumnormal stress on the critical plane,sys is the yield stress ofmaterial, χ
is a material constant,DWt is the total strain energy range,D1p is the plastic strain
range, n′ is the cyclic strain-hardening exponent, E is the elastic modulous, DK is
the range of stress intensity factor, Y is a dimensionless parameter dependent on
crack geometry, a is crack size, Dse is the effective or equivalent stress range
with Dse = Ds for R ≥ 0 and Dse = smax for R , 0, Wg is the strain work
density per loading cycle with the period T, sij(t) and 1̇ij(t) are the instant stress
component and strain rate at time t.

1.2. Statistical models

Refer to Figure 1 and Table 2, the major efforts on statistic modelling of fatigue
can be summarised according to the number of variables out of the three vari-
ables (S, N, V) being considered in a statistical model:

. P as a function of a single variable given the other two: P = F(N|S, V),
P = F(V |S, N), P = F(S|N , V), e.g. in [12,23,24]. This is an empirical
approach that directly applies some classical statistical distribution functions
to fit experimental data. The calibrated model parameters are not intrinsic
material properties but contingent on the values of the other fixed variables.
For example, refer to Table 2, Zhao and Liu [23] applied the ordinary 3-par-
ameter Weibull distribution function to describe the statistical distribution of
fatigue life (N) of specimens with nominally identical geometrical dimensions
at different nominal stress amplitudes. This resulted in different values of
Weibull parameters for each nominal stress amplitude. Moreover, when
specimen size changes, the estimated values of Weibull parameters will also
change. This precludes the predictability of such a single-variable statistical
model for other test conditions involving different specimen sizes or stress
amplitudes. In Section 4.2, the experimental data in [23] will be re-analysed
according to the newly proposed model in Section 3.

. P as a function of two variables given the other one: P = F(S, N|V),
P = F(N , V |S), P = F(S, V|N), e.g. in [4,11,12,15,17–23]. Specifically,
P = F(S, N|V) reveals the ongoing effort for probabilistic stress-life (P-S-N)
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Table 2. Typical probabilistic models for fatigue incorporating number of cycles (N ), load amplitude (S), and size (V ) effect [11,12,14–24].
Model type Functional form Reference

P = F(N|S, V)
P = 1− exp − N − Nth

Nu

( )c[ ]
(Nu ,Nth , c = functions of S = Δσ)

Zhao & Liu (2014) [23]

P = 1����
2p

√
∫log (N)
−1

exp − 1
2

x − Nth

Nu

( )2
[ ]

dx

(Nu ,Nth = functions of S = Δσ)

Schijve (2005) [14]

P = F(V|S, N) P = 1− exp[−q(V∗ − Vth)]
(V*= stressed volume with σ ≥ σth; q, Vth, σth = material parameters)

Sandberg & Olsson (2016) [24]

P = F(S, V|N)
P = 1− exp − �

V

sa

s0

( )m dV
V0

( )1/m
[ ]

,

(m, σ0 = functions of N )

Shirani & Harkegard (2011) [20];
Okeyoyin & Owolabi (2013) [22]

P = 1− exp − �V ta(V, c)
t0

( )m

· dV
V0

[ ]

(S = ta(V, c) = �
V=4p

�2p
0 ta(V, c) dVdc, ta(V, c) = local shear stress amplitude,

t0 = hydrostatic stress-dependent scale parameter, m, t0 = function of N.

Pessard et al. (2011) [21]

P = 1− exp − �V DK(V)

DKth/G 1+ 1
m

( )
⎛⎜⎜⎝

⎞⎟⎟⎠
m

· dV
V0

⎡⎢⎢⎣
⎤⎥⎥⎦

(S = DK (V) = �
V=4p DK(V)dV, DKth = crack propagation threshold. m= function of N.

Pessard et al. (2011) [21]

P = 1− exp − �V Wg −Wg,th

Wu

( )m

· dV
V0

[ ]
(S = Wg = strain work density per loading cycle, Wg,th = threshold; m, Wu = function of N.

Delahay & Palin-Luc (2006) [15]

P = F(N, V|S) P = 1− exp − V
V0

N
N0

( )m[ ]
Bigley et al. (2007) [17]

(Continued )
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Table 2. Continued.
Model type Functional form Reference

(m, σ0 = functions of N )

P = 1− exp − �V log (N)
log (N0)

( )(c/ log (N0 ))

· dV
V0

[ ]
(N0 = a function of Δσ)

Karolczuk (2008) [18]

P = F(N, A|S) P = 1− exp − A
A0

N
N0

( )m

− Ni

N0

( )m[ ]{ }
(N0 = a function of Δσ, A = surface area, A0 = reference area)

Schweiger & Heckel (1986) [12]

P = F(S, N|V)
P = F

sa − ∅(N)− D
s0

( )
,

A2 exp [C∅(N)] = (N + B)w(N),

N→∞, ∅ (N ) →0

Bastenaire [11]

P = 1− exp −
log

N
N0

( )
− B

( )
Ds

s0
− C

( )
− E

D

⎡⎢⎢⎣
⎤⎥⎥⎦

A2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(N0, σ0 = scale parameters; A2, B, C, D, E = functions of smin/s0 and smax/s0)

Castillo et al. (2009) [19]

P = F(S, N, L) P = 1− exp − L
L0

log
N
N0

( )
− B

( )
Ds

s0
− C

( )
− E

D

⎡⎢⎢⎣
⎤⎥⎥⎦

A2
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎫⎪⎪⎪⎬⎪⎪⎪⎭(uniaxial tension;
L =specimen length, L0 = reference length; N0, σ0 = scale parameters;
A2,B,C,D, E = functions of smin/s0 and smax/s0)

Castillo et al. (2006) [16]

P = F(S, N, V)
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studies using a given specimen configuration and size (V is fixed), e.g. in [4,11].
Most statistical models in this category adopt a basic fatigue damage par-
ameter as in the deterministic S-N relationship in Table 1 or a compound
fatigue damage parameter as showcased in Equations (3)–(8) to directly
modify the Weibull statistical fracture model. Refer to Table 2, take the
models of P = F(S, V|N) for examples, which can be generically described
as below:

P = 1− exp −
∫
V

�S− Sth
Su

( )m

· dV
V0

[ ]
(9)

where �S = 1
4p

�
=4p Sd is the average value of a fatigue damage parameter S

on all the possible material planes in a reference volume V0 defined by the
solid angle Ω in a unit sphere. �S = S when the local value of S is indepen-
dent of spatial orientation (Ω), such as the princ.pal stress/strain com-
ponents. When the threshold Sth = 0, Equation (9) reduces to a two-
parameter model. Both the two basic fatigue damage parameters
(S = Ds; D1) and the compound fatigue damage parameters in Equations
(3)–(8) have been introduced into Equation (9) in relevant studies. To
name a few, the two-parameter Weibull model adopting the amplitude of
maximum tensile principal stress (S = sa) as the local fatigue damage par-
ameter were used in [20,22]. Pessard et al. [21] also employed the two-par-
ameter Weibull model for fatigue behaviour in a forged steel by coupling
two crack initiation mechanisms: the amplitude of local shear stress
(S = ta) on a glide system in a grain was adopted as the fatigue damage
parameter for crack initiation in the material matrix, while the range of
local stress intensity factor (S = DK) in Equation (7) due to the normal
stress component (S = sn) on a crack surface was used as the fatigue
damage parameter for crack initiation from breakage of non-metallic
inclusions. Since the local stress intensity factor (DK) only takes the
normal stress component (sn) acting on the crack surface into account,
the S = DK based model is a modified Weibull model for the normal
stress component (sn) [37]. Delahay and Palin-Luc [15] proposed a
three-parameter Weibull model in terms of the strain work density per
loading cycle (Wg) at a material point defined in Equation (8), which
gave inconsistent (underestimate, overestimate or mixed) predictions com-
pared to experimental results.

Note that any model via the direct combination of Equations (3)–(8) with
Equation (9) remains as an assumption based on physical understandings of
fatigue mechanisms. As analysed in detail in [1], regardless of the specific
definition of parameter S being taken (e.g. in Equations (3)–(8)), the Weibull
model Equation (9) itself is a weakest link model based on the assumption
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that the critical value of S, here below denoted as Sc, is an intrinsic material prop-
erty with the following probability density function (PDF):

g(Sc) = m
Su

Sc − Sth
Su

( )m−1

· exp − Sc − Sth
Su

( )m[ ]
(10)

It is almost impossible to experimentally measure the PDF of Sc for any par-
ameter S defined in Equations (3)–(8).

For example, Correia, et al. [25] proposed the following purely empirical
probabilistic damage-life (P-S-N) model:

P = F(S, N|V) = 1− exp − log (N/N0) · log (S/S0)− l

d

[ ]m{ }
(11)

where N0 and S0 are two scale parameters to ensure dimensional consistency of
the ratios N/N0 and S/S0, l is a non-dimensional constant that satisfies
log (N/N0) · log (S/S0) ≥ l, d is also a scale parameter. Various definitions of
fatigue parameter S including S = Ds, S = D1p, and those in Equations (3)–
(8) can be adopted in Equation (11). When an arbitrary value 0 ≤ P ≤ 1 is
assigned to P, a corresponding S–N correlation is obtained, instead of keeping
P = 0.5 as in Equation (2).

These models are in nature the Weibull model for a newly defined variable S
other than the two basic fatigue damage parameters (S = Ds; D1). They are all
two-variable statistical models, since all Equations (3)–(8) do not contain the
number of cycles (N). Therefore, like the preceding single-variable statistical
models, the calibrated parameters of these two-variable statistical models are
also contingent on the specific value of the third variable being fixed instead
of intrinsic material properties, which prevents the transferability of the cali-
brated models to other scenarios with different values of the third variable.

. P as a function of all the three variables (S, N, V), P = F(S, N , V), e.g. in
[13,16]. In contrast to various single- or two-variable statistical models,
much less work has been done on this third category. Castillo et al. [16] devel-
oped a model of all three variables (S, N and specimen length L) in the very
specific case of uniaxial smooth tension of a wire. It resulted from combining
Weibull model Equation (9) with the following newly defined parameter S as
the function of both stress range (Ds) and loading cycles (N):

S = log
N
N0

( )
− B

( )
Ds

s0
− C

( )
(12)

where B, C, and s0 are constants.

Chantier, et al. [13] developed a statistical model to predict the very high cycle
fatigue (VHCF) behaviour of cast iron structures. This model differentiated itself
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from the preceding models by starting from the basic formulation of weakest
link statistics instead of Weibull model Equation (9) and considering the size
distribution and growth rate of microcracks. However, due to the complexity
of the models for both the size distribution and growth rate of microcracks,
the combined effects of loading amplitude (Ds), loading cycles (N) and speci-
men size (V) on the cumulative probability of fatigue failure cannot be explicitly
formulated. In addition, a wrong expression for microcrack size distribution
function was taken in their work. Further formulation for an explicit represen-
tation of the size (V) effect by simplifying the size distribution function of micro-
cracks involves wrong mathematical speculation. More detailed discussions on
the work of [13] will be given in Section 5 Discussions.

The preceding description draws attentions to two points:

(1) The statistical fatigue models. Most statistical models for fatigue failure as cited
in Table 2 directly adopt some classical empirical distribution function (e.g.
Weibull or Gaussian) for the cumulative probability. The most common prac-
tice is to assume that the PDF of the critical value Sc of some fatigue parameter S
is described by Weibull model in Equation (10). In contrast, statistical model-
ling of brittle fracture under monotonic loading commonly adopts the so-called
‘Local Approach’ [1–3,7–10], a fracture physics-based methodology that com-
bines micromechanics and statistical distribution of microcracks. This motiv-
ates this work to apply the Local Approach for fatigue modelling.

(2) The empirical S-Nmodels. On one hand, most empirical S-Nmodels in Table 1
suggest a combined effect of N and S in a form given in Equation (2). Given
their wide adoptions validated by numerous experimental data, it is interesting
to reveal the physical implication behind them. On the other hand, an empirical
deterministic S-N relationship (e.g. Basquin equation [27]) in Table 1 is always
adopted as the input condition to build the statistical fatigue models in Table 2.
In the following sessions, we will show that a physically sound statistical fatigue
model should be able to derive or justify the S-N relationships.

Recently, within the framework of Local Approach, a generalised weakest-link
model of brittle fracture [2] for monotonous loading was developed. It was vali-
dated on a wide variety of materials including gamma titanium aluminium alloy,
aluminium foam, ceramics, nuclear grade graphite, wood, coal, rock, basalt,
sugar, and potash [2,38,39]. This work aims to explore the applicability of this
generalised weakest-link model to fatigue failure along the following path:

. First, the generalised weakest-link model for brittle fracture induced by
monotonous loading will be briefly overviewed;

. Second, the model will be extended to fatigue failure;

. Third, a few case studies will be presented for preliminary validation;
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. Fourth, some critical assumptions and treatments in the statistical model of
fatigue failure will be discussed;

. Fifth, summary and conclusions will be drawn.

2.1. A brief introduction to the generalised weakest-link model of brittle
fracture under monotonous loading

The Local Approach [1–3,7–10] attempts to formulate statistical models of
brittle fracture based on the physical understanding of the microcrack nuclea-
tion and propagation processes in combination with the detailed micromecha-
nics analysis. The statistical distribution of microcracks needs to be
characterised in terms of spatial location, spatial orientation, shape and size
[1,8]. A generalised weakest-link model of brittle fracture was recently proposed
to evaluate a wide spectrum of quasi-brittle materials under monotonic loading
[2]. The model formulates the cumulative failure probability P of a solid with
volume V subjected to the stress 〈s〉, as follows:

P = 1− exp
∫
V
ln [1− p(, a, V0)] · ∂n(V)

∂V
· dV

{ }
(13)

where n(V ) is the number of non-interactive microcraks in a volume V, δV is a
differential volume element, so that the number of microcracks inside δV is
expressed as n(V) = [∂n(V)/∂V] · dV , p(s, a, V0) is the fracture probability
of a reference volume element V0 embedded with a microcrack of size a and sub-
jected to a stress state 〈s〉.

Assume a power-law spatial distribution of microcracks as below:

n(V) = kVb1 = V
V0

( )b1

, k = 1

Vb1
0

, b1 . 0 (14)

where b1 and k are constants with b1, k . 0, k has the unit of V−b1 for dimen-
sional consistency, Equation (13) reduces to

P = 1− exp b1
V
V0

( )b1−1 ∫
V
ln[1− p(, a, V0)] · VV0

{ }
(15)

Under the simplest case b1 = 1, which corresponds to the uniform spatial
distribution of microcracks, there is:

n(V) = kV = V
V0

, k = 1
V0

(16)

Accordingly, Equation (15) reduces to

P = 1− exp
∫
V
ln[1− p(s, a, V0)]

V
V0

{ }
(17)
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Under monotonic loading, Equation (15) is applicable to a variety of quasi-
brittle materials [2,38,39], while Equation (17) has been adopted for statistical
modelling of cleavage fracture of ferritic steels [1,3,8,9].

According to Section 1, since fatigue failure is much similar to brittle
failure under monotonic loading in the aspects of random occurrence and
size effect. In principle, Equation (15) or (17) should be also applicable to
fatigue failure.

As a preliminary effort and for simplicity, this work will extend Equation (17)
for the uniform spatial distribution of defects (b1 = 1) to fatigue failure. The
examples provided in this work all fit b1 = 1. We will explore fatigue failure
due to non-uniform spatial flaw distribution (b1 = 1) in future studies.

3. Extension of the model to fatigue failure

This session will mainly lay out the deduction process of the statistical fatigue
model. The critical assumptions and mathematical treatments adopted in the
model will be discussed in a separate session.

3.1. Basic considerations

To extend Equation (17) frommonotonic loading to cyclic loading, a key effort is
needed to pertinently formulate p(s, a, V0), the fracture probability of a refer-
ence volume element V0 in a stress state 〈s〉. p(s, a, V0) can be determined as
below [1,3,8,40]:

p(s, a, V0) =
∫se, max

sth

F(se ≥ s) · g(s) · ds (18)

where σe,max is the upper bound value of the equivalent stress σe, F(se ≥ s) is the
fracture probability of an existing microcrack, g(s) is the probability density
function (PDF) of microcracks with respect to the critical fracture strength (s).

Under the simplest uniaxial (tensile or shear) stress criterion for unstable
microcrack propagation, such as the maximum tensile principal stress criterion
(se = s1), F(se = s1 ≥ s) = 1, Equation (18) reduces to

p(s, a, V0) =
∫s1,max

sth

g(s) · ds ;
∫amax(sth)

a(s1,max)
f (a)da (19)

where f(a) is the PDF of microcracks with respect to microcrack size (a).
There are some distinctive differences between the monotonic loading

induced brittle fracture and the cyclic loading induced fatigue failure,
which will affect the formulation process of p(s, a, V0). Brittle fracture
due to monotonic loading is usually described as a two-step process
namely, microcrack nucleation and propagation. For brittle and quasi-
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brittle materials such as ceramics, microcracks can be pre-existing or
initiated at initial flaws [2,38], while for ductile materials such as steels,
microcracks are often nucleated because of plastic deformation [1,3,8,9].
Brittle fracture occurs as soon as one microcrack propagates unstably. There-
fore, the statistical distribution of nucleated microcracks plays a critical role
while the possibility of their stable growth or propagation prior to the occur-
rence of unstable propagation is neglected [40]. The fatigue process generally
involves microcrack evolution and macrocrack propagation [5,6,13,41].
Microcrack evolution includes microcrack initiation and subsequent stable
growth or propagation of microcracks. The initiation of microcracks may
occur directly at initial flaws in materials or begin with cyclic loading
induced microstructural changes leading to permanent damage and then
nucleation of microcracks in materials. The nucleated microcracks will pro-
pagate stably and a dominant macroscopic crack will be formed. The stable
growth or propagation of nucleated microcracks may involve coalescence of
microcracks. Subsequently, the macrocrack usually propagates unstably in
brittle materials, but it will first experience a stable growth phase prior to
unstable propagation in ductile materials. However, as stated in [13,41], in
the framework of weakest link theory, both the coalescence of microcracks
and the stable/unstable macrocrack propagation will be neglected. On the
one hand, this treatment greatly simplifies mathematical treatment, which
is almost necessary to implement the weakest link theory. On the other
hand, for high cycle fatigue (HCF) and VHCF, macrocrack propagation
only takes a minor or negligible portion of the component life. While rea-
listic microcracks may have various irregular geometrical shapes, it is a
common practice to assume all microcracks to be penny shaped to
capture their major physical characteristics as stress concentrators. The negli-
gence of microcrack coalescence is due to the same consideration. The val-
idity of these simplification treatments has to be examined by case studies.

Based on the above discussion, microscopically, we assume that under cyclic
loading, a population of mutually independent microcracks of initial size ai≥ 0
are pre-existing. Note that ai = 0 represents the scenario that the initial micro-
crack size is negligible. These microcracks grow with increase of loading
cycles; Eventually, fatigue fracture occurs as soon as one microcrack reaches a
critical size and then propagates unstably. This suggests that the growth behav-
iour of a microcrack under cyclic loading and the statistical distribution of the
instant microcrack size a need to be quantified. This physical understanding
will guide the formulation process of p(s, a, V0) and extension of Equation
(17) to fatigue fracture. Also, the maximum principal stress criterion
(seq = s1) will be adopted so that the formulation process of p(s, a, V0) will
be based on its simple definition in Equation (19). Figure 2 summarises the
thought process for model extension.
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3.2. Fracture probability of a microcrack under cyclic loading

The fracture probability of an individual microcrack of an instant size a resid-
ing in an elemental volume V0 at the N-th cycle of applied load range Ds is
given as

p(Ds, a, V0) =
∫amax(sth,N=1)

a(Ds, N)
f (a)da (20)

f (a) is confined to the following normalisation requirement

∫amax(sth ,N=1)

ai(Ds, N=0)
f (a)da = 1 (21)

Here sth is the threshold stress under monotonic loading (N = 1), amax is
the upper bound microcrack size corresponding to the monotonic threshold
stress sth.

The exact statistical distribution of the instant microcrack size a after N
cycles of loading is usually unknown. Here, we adopt the three-parameter
Weibull PDF to describe the statistical distribution of instant microcrack size
a as below,

f (a) = b
a0

a− ai
a0

( )b−1

· exp − a− ai
a0

( )b
[ ]

(22)

Figure 2. Framework of extending Equation (17) from monotonic loading to cyclic loading.
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where a0 is a scale parameter, b is a shape factor. Due to Equation (20), there is

p(Ds, a, V0) =
∫amax 
1

a
f (a) da = 1− exp − a− ai

a0

( )b
[ ]

(23)

Now the combination of Equations (23) for p(Ds, a, V0) and (15) formulates
the cumulative probability model for fatigue failure in terms of instant micro-
crack size a under the N-th cycle of applied loading:

P = 1− exp b1
V
V0

( )b1−1 ∫
V

a− ai
a0

( )b dV
V0

{ }
(24)

For the uniform spatial distribution of microcracks (b1 = 1), there is:

1− P = exp −
∫
V

a− ai
a0

( )b dV
V0

[ ]
(25)

The adoption of the Weibull distribution function in Equation (22) for the
statistical distribution of the instant microcrack size a has two merits: First, as
shown in Figure 3, by adjusting the values of parameters ai and b, the Weibull
distribution is flexible to characterise different distribution characteristics of
instant microcrack size a, including power-law type, symmetrical and non-sym-
metrical type distributions. Second, as shown in Equations (23)–(25), it facili-
tates mathematical treatments. The following sessions will focus on Equation
(25) for elaboration.

The next step is to formulate the instant microcrack size a as a function of
loading range Ds and number of loading cycles N.

Figure 3. Weibull distribution of instant microcrack size with different model parameters
(b and ai).
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3.3. Growth behaviour of an arbitrary microcrack under cyclic loading

The growth behaviour of microcracks is a rather complex topic. The generally
accepted physical understanding of microcrack growth dynamics is that the
size of microcrack (a) increases with loading cycles (N) and applied load
(Ds); alternatively, the general model of growth rate da/dN as a function of
the range of stress intensity factor DK is as below:

da
dN

= H(DK) ⇒Ds=Const da
dN

= h(a|Ds) (26)

where DK = Kmax − Kmin = YDs
����
pa

√
, Kmax and Kmin are the maximum and

the minimum stress intensity factor, respectively, However, the exact mathemat-
ical expression is unknown for real materials. It is reasonable to expect that the
size of a microcrack monotonically increases with the number of loading cycles.
Many mathematical functions are available to describe monotonous increasing
curves. It is advantageous to adopt some relatively simple mathematical function
to describe the growth behaviour of microcracks under cyclic loading to build a
conceptual model that can be evaluated and improved via experiments. The
power function y = c1(x − xth)

c2 is the simplest function for this purpose,
with the constants c1, c2, xth . 0. As c2 = 1, it reduces to the linear function
y = c1(x − xth). For example, Tomkins [42] used the following linear model
to describe fatigue crack growth rate under low-cycle fatigue (LCF) which
involves a remarkable plastic strain zone,

da
dN

= [kg0(1 p,a)
d]a (27)

or

a = ai · exp [kg0(1 p,a)
d · N] (28)

where kg0 and d are material parameters, 1 p,a is the plastic strain amplitude.
The conventional Paris’ law for the growth behaviour of a macro-crack under

cyclic loading is such a power function. It describes the growth rate of a crack
with instant size a at the N-th loading cycle as a power function of crack size,

da
dN

= c0(DK)
m = c0 YDs

��
a

√( )m
(29)

where m and c0 are material constants, also known as the Paris’ parameters.The
conventional Paris’ law in Equation (29) and its various modified expressions
have also been adopted to describe the growth rate of a microcrack, which
will be exemplified in Section 5 Discussions. For the simplicity of mathematical
treatment, here we adopt Equation (29) and assume all microcracks are self-
similar so that the parameter Y is independent of microcrack size (a). Alterna-
tively, Equation (29) can be expanded to the following power function for more
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generic situations:

da
dN

= [l1(Ds)
2h1 ]ah2 (30)

where h1, h2, and λ1 are material constants, with either h1 = h2 or h1 = h2

being possible. One example of h1 = h2 is in analogy to Equation (27) for a
linear growth rate with respect to a

Rearranging and integrating Equation (29) yields

N =
∫N
0
dN =

∫a
ai

da

0(YDK)
m

=
1

l2(Ds)
m ln

a
ai

( )
(m = 2, ai . 0)

1
l3(Ds)

m (a(2−m/2) − a(2−m/2)
i ) (m = 2, ai ≥ 0)

⎧⎪⎪⎨⎪⎪⎩ (31 a, b)

with l2 = c0 Y
��
p

√( )m
, l3 = (2−m)c0

2
.

Equations (31a,b) are rearranged as

a = F((Ds)mN)

=
aiexp[2(Ds)

mN] (m = 2, ai . 0)

[a(2−m/2)
i +3 (Ds)

mN]
(2/2−m)

(m = 2, ai ≥ 0)

{
(32 a, b)

Here a = F((Ds)mN) denotes that the instant microcrack size a is a func-
tion of the compound parameter (Ds)mN . Regardless of the complex
expressions involved, the key takeaway from Equation (32a,b) is that under
the power-law assumption of microcrack growth dynamics in Equation (29),
the instant size (a) of a microcrack under cyclic loading increases with the
compound parameter (Ds)mN . Substitution of Equation (32a,b) in Equation
(25) yields

1− P = exp −
∫
V

F((Ds)mN)− ai
a0

[ ]b dV
V0

{ }
(33)

Note that in Equation (33) we use the generic term F((Ds)mN) rather than its
explicit expressions in Equations (32a,b) to highlight the key contribution of the
compound parameter (Ds)mN . Equation (33) incorporates the contributions of
all the three variables S = Ds, N and V to the cumulative failure probability P.
Furthermore, the compound parameter (Ds)mN collectively quantifies the
driving force for fatigue fracture process. Each value of this compound par-
ameter corresponds to a specific failure probability P for a given sized specimen
(V is fixed) in a specific fatigue test, i.e.

(Ds)mN = Const(P|V) (34)
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where Const(P|V) is a constant dependent on P and V. Equation (34) is remi-
niscent of Equation (2) and some empirical formulas in Table 1, with P being
extended to any value including P = 0.5.

According to the first mean value theorem for integrals, Equation (33)
reduces to

1− P = exp − V
V0

F(h3(Dsnom)
mN)− ai

a0

[ ]b{ }
(35)

where h3 . 0 is a coefficient that defines the average value, F(h3(Dsnom)
mN), of

the integral in Equation (33) as below:

1
V

∫
V
[F((Ds)mN)− ai]

bdV = [F(h3(Dsnom)
mN)− ai]

b (36)

Note that in the integral in Equation (33), the generic term F((Ds)mN) involves
the local stress amplitude Ds, while in the average value (h3(Dsnom)

mN), the
nominal stress Dsnom is adopted due to the first mean value theorem for
integrals.

In equivalence, Equation (35) is rewritten as

1
V
ln

1
(1− P)

[ ]{ }1/b
= 1

V1/b
0

F(h3(Dsnom)
mN)− ai

a0

[ ]
(37)

Particularly, for a smooth cylindrical specimen subjected to cyclic uniaxial
tension/compression, due to the uniform stress distribution inside the specimen,
Equation (33) reduces to

1− P = exp − V
V0

F((Dsnom)
mN)− ai

a0

[ ]b{ }
(38)

or in equivalence,

1
V
ln

1
(1− P)

[ ]{ }1/b
= 1

V1/b
0

F((Dsnom)
mN)− ai

a0

[ ]
(39)

Equations (37) and (39) suggest us to synchronise the experimental data by
evaluating the correlation between the two compound parameters 1

V ln [
1

(1−P)]
and (Dsnom)

mN . Note that Equation (37) is applicable to non-uniform stress
state in a material. For specimens involving non-uniform stress states, such as
pre-cracked or notched specimens, there are multi-axial stress states at the
crack or notch. As an alternative way to simplify Equation (33) by resorting
to the first mean value theorem for integrals, the ‘heterogeneity factor’
concept as used by Chantier et al. [13] and Pessard, et al. [21] can be also
adopted to establish the correlation between the two compound parameters
1
V ln [

1
(1−P)] and (Dsnom)

mN . The ‘heterogeneity factor’ H∗
b corresponding to
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Equation (33) is written as

H∗
b = 1

V

∫
V

F((Ds)mN)− ai
F((Dsnom)

mN)− ai

[ ]b dV
V0

(40)

Accordingly, Equation (33) reduces to

P = 1− exp −H∗
b

V
V0

( )
F((Dsnom)

mN)− ai
a0

[ ]b{ }
(41)

Similar to Equation (37), Equation (41) also reveals the existence of the cor-
relation between 1

V ln [
1

(1−P)] and (Dsnom)
m in principle. In practice, the exact

values of h3 in Equation (37) and H∗
b in Equation (41) depend on the material

parameters (ai, b, m and V0), specimen geometry and the loading mode. The
scenarios of pre-cracked and notched specimens will be investigated separately
in future.

The models presented above provide a guideline to synchronise the major
variables (S = Dsnom, N and V ) responsible for fatigue failure. Accordingly,
probabilistic modelling of fatigue failure can be conducted with the following
steps:

(1). Determine the proper mathematical formulations for cumulative prob-
ability of fatigue through synchronising fatigue data analysis by correlating
the two compound parameters 1

V ln [
1

(1−P)] and (Dsnom)
mN according to

Equation (37), or (39), instead of directly assuming a specific classical
empirical distribution function for the cumulative probability, such as a
Weibull distribution or logarithmic normal distribution function.

(2). Estimate/calibrate parameters of the established cumulative probability
model.

(3). The calibrated model is used for probabilistic modelling of fatigue damage
under more complex specimen geometries which involve non-uniform
stress distributions according to Equation (33).

In the following, we will evaluate the correlation between the two com-
pound parameters 1

V ln [
1

(1−P)] and (Dsnom)
mN by analysing some published

data sets of fatigue failure of specimens subjected to cyclic tension/com-
pression or torsion to validate the extended model Equation (33) and the pro-
posed steps (1) and (2).

4. Case studies

In this session, the rank probability P for the i-th specimen is calculated accord-
ing to P(i) = (i− 0.3)/(n+ 0.4), where n is the total number of specimens with
fatigue life arranged in an ascending order in each group.
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4.1. Volume effect on fatigue life of equine cortical bone at a fixed loading
range

Bigley et al. [17] investigated the volume effect on fatigue life of equine cortical
bone. In their study, three groups of waisted rectangular specimens of cortical
bone were isolated from the mid-diaphysis of the dorsal region of equine third
metacarpal bones. Each group consists of 6 specimens, all with a nominal
cross-section of 3×4 mm. The gauge lengths are 10.5, 21, and 42 mm, respectively,
and are along the anatomical long axis of the bone. The corresponding volumes of
specimens within the gauge length are 126, 252, and 504 mm3. The exact measure-
ment reported volumes within the gauge length being 118.3±11.6(=V1), 248.8±4.9
(=V2), and 497.5±7.4 mm3(=V3) for each group, respectively. The specimens
were lightly polished with 800-grit carbide paper to remove any surface artefacts
from machining. Each specimen was thermally equilibrated for 30 min and then
underwent 100 preconditioning cycles from 10 to100N at 2Hz. Uniaxial load-con-
trolled fatigue tests were conducted with an initial strain range of 4000 με (micro-
strain) under constant irradiation with calcium-buffered saline solution at 37°C,
using a 2Hz sinusoidal waveform between 10 N and a force (exact value not
reported) that induces a strain of 4000 με.The number of load cycles to reach com-
plete fracture of the specimen within the waisted gauge length was recorded as the
fatigue life, as summarised in Figure 4(a). Two-parameter Weibull statistical
analysis of fatigue life for each group led to Weibull modulus of 1.65, 1.62, and
1.43 with the characteristic fatigue life N (as the scale parameter) of 20055,
16677, and 7927 cycles for 10.5, 21, and 42 mm long specimens, respectively.

Since the fatigue tests were run with a prismatic beam type specimen in uni-
axial cyclic tension at constant values of the minimum stress (σmin) and the
maximum stress (σmax), Dsnom = const, Equation (39) applies and can be
further simplified as (assume ai = 0):

1
V
ln

1
(1− P)

[ ]{ }1/b
= 1

V1/b
0

F(N|Dsnom) (42)

Equation (42) suggests us to evaluate the correlation between
1
V
ln

1
(1− P)

[ ]
and N . The experimental data in Figure 4(a) are rearranged in Figure 4(b)
according to Equation (42). A power-law curve fits all the data well as below.

1
V
ln

1
1− P

( )
= Nb

k(Dsnom/s0)V0
= N

580147

( )1.4783

(43)

where k(Dsnom/s0) denotes a dimensionless coefficient k dependent on nominal
stress range Dsnom and scale parameter s0, b = 1.4783,�����������������
k(Dsnom/s0)V0

b
√

= 580147 (mm)3/b. The coefficient of determination R2 =

0.92 was obtained. Note that the compound scale parameter
�����������������
k(Dsnom/s0)V0

b
√
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varies with nominal stress range Dsnom instead of being an intrinsic material
property.

The lines in Figure 4(a) are based on Equation (43).

4.2. Probabilistic stress-life analysis of rolling contact fatigue with a fixed
specimen volume

Zhao and Liu [23] studied Weibull modelling of probabilistic stress-life curves
for rolling contact fatigue between a circular plate made of a carburisation
bearing steel G20CrNi2Mo (serving as bearing raceways) and 16 balls of 5mm
in radius made of GCr15steel and chained with a plastic cage (serving as
bearing rollers). The test bearings were immersed in grease oil. The circular
plate rotated at 3000rpm. The recorded life time corresponds to the occurrence
of a shelling piece in a bearing system, which was always found at the subsurface
of the bottom circular plate. Four groups of contact fatigue tests were conducted
at given nominal Hertz contact stress amplitude (sa,nom) of 4900, 5500, 6100,
and 6700 MPa, respectively. Each group includes 14 specimens. The experimen-
tal results were summarised in Figure 5(a) and listed in Table A1 in Appendix 1.

It is noted that the rolling contact fatigue test involves complex multiaxial
stress states at the contact area. Detailed stress distribution can be obtained by
finite element analysis. Within the domain of elastic deformation, the
experiment involves a fixed volume (V). Therefore, Equation (37) applies and
can be further simplified as below for the combined effect of sa,nom and N.

ln
1

1− P

( )
= V

V0

( )1/b

F(N , sa,nom|V)

= V
V0

( )1/b F(h3(sa,nom)
mN)− ai

a0

[ ]
(44)

To apply Equation (44) to synchronise the experimental data in Figure 5(a), the
value of m need to be evaluated first. Accordingly, Equation (34) is rewritten as

N = Const(P|V)(sa,nom)
−m (45)

Figure 4. (a) Experimental data of life time (N) for specimens with different volume (V) [17]. The
lines are based on Equation (45); (b). Synchronised fatigue data analysis according to Equation (44).
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At a given value of P, a linear regression between N and (sa,nom)
−m are taken to

estimate m. The fitting results are summarised in Table 3. Now the experimental
data in Figure 5(a) are analysed in Figure 5(b), which fits to the following equation:

1

(sa,nom)
mb

ln
1

1− P

( )
= G(N|V) = V

V0

1

(s0)
mb

Nb (46)

Equation (46) is equivalent to

ln
1

1− P

( )
= V

V0

(sa,nom)
mN

(s0)
m

[ ]b
(47)

or

1− P = exp − V
V0

N · sa,nom

s0

( )m[ ]b{ }

= exp − N · (sa,nom)
m

(V0/V)
1/b · (s0)

m

[ ]b{ }
(48)

Figure 5. (a) Experimental data of life time (N) distribution at different nominal stress amplitude
(σa,nom) [23]. The lines are based on Equation (48); (b). Synchronised fatigue data analysis accord-
ing to Equation (46).

Table 3. Estimated value of m based on Equation (45).

No. P

N = Const(P, V)(sa,nom)
−m

Const(P, V) m R2

1 .049 1.94E+34 7.3 .9877
2 .118 1.83E+35 7.5 .9917
3 .188 3.89E+36 7.8 .9933
4 .257 2.59E+38 8.2 .9932
5 .326 3.09E+38 8.2 .9944
6 .396 1.32E+38 8.1 .9960
7 .465 6.14E+37 8.0 .9983
8 .535 2.97E+37 7.9 .9986
9 .604 9.31E+36 7.7 .9926
10 .674 1.64E+37 7.8 .9932
11 .743 4.63E+36 7.6 .9884
12 .813 1.25E+37 7.7 .9912
13 .882 2.74E+38 8.0 .9953
14 .951 1.07E+39 8.1 .9938
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with m = 7.8, b = 0.9451,
��������
(V0/V)b

√
(s0)

m = 1.124× 1039 (σ0 in MPa), the
coefficient of determination R2 = 0.9566. Note that the scale parameter��������
(V0/V)b

√
(s0)

mis volume (V ) dependent rather thanan intrinsicmaterial parameter.

4.3. Probabilistic stress-life analysis of torsion fatigue with a fixed specimen
volume

Shimizu et al [4] reported probabilistic stress-life studies on a bearing steel JIS
SUJ2/AISI 52100 in alternating torsion life test using 150 cylindrical rod speci-
mens of same size under 6 nominal torsion shear stress amplitudes ta,nom of
0.5, 0.63, 0.76, 0.80, 0.95, and 1.0 GPa, which is set on the test rig, with the test
speed for varying the stress cycles set from 350 to 960 rpm for high to low
stress amplitudes. The corresponding number of specimens at each stress ampli-
tude is 20, 19, 33, 25, 25, and 28 in sequence. The experimental results were sum-
marised in Figure 6(a) and listed in Table A2 in Appendix 1.

It is noted that the alternating torsion fatigue test employs a cylindrical bar of
a fixed volume (V). Therefore, Equation (37) applies and can be further sim-
plified as below for the combined effect of ta,nom and N.

ln
1

1− P

( )
= V

V0

( )1/b

F(N , ta,nom|V)

= V
V0

( )1/b F(h3(ta,nom)
mN)− ai

a0

[ ]
(49)

Similar to the analysis in Section 4.2 to estimate m, the experimental data
in Figure 6(a) are synchronised in Figure 6(b), which fits to the following
equation:

1

(ta,nom)
mb ln

1
1− P

( )
= G(N|V) = V

V0

1

(s0)
mb N

b (50)

Figure 6. (a). Experimental data of life time (N) distribution at different nominal shear stress
amplitude (τa,nom) [4]. The lines are based on Equation (52); (b). Synchronised fatigue data analy-
sis according to Equation (50).
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Equation (50) is equivalent to

ln
1

1− P

( )
= V

V0

(ta,nom)
mN

(s0)
m

[ ]b
(51)

or

1− P = exp − V
V0

N · ta,nom
s0

( )m[ ]b{ }
= exp − N · (ta,nom)m

(V0/V)1/b · (s0)
m

[ ]b{ }
(52)

with m = 10.713, b = 1.9602,
��������
(V0/V)b

√
(s0)

m = 2.444× 104 (σ0 in MPa),
the coefficient of determination R2 = 0.9906. Note that the scale parameter��������
(V0/V)b

√
(s0)

m is volume (V ) dependent rather than an intrinsic material
parameter.

4.4. Combined effect of load amplitude and specimen size on fatigue life of
cast iron

Shirani and Härkegård [20] reported fatigue life of ductile cast iron with graphite
nodules distributed on a ferritic matrix, with the fatigue test data being tabulated.
Fatigue tests were performed at constant amplitudes per standard ASTM E 466.
Two types of different sized cylindrical specimens were adopted: one has a diam-
eter of 21mm and a gauge length of 70.59mm, the other has a diameter of 50 mm
and a gauge length of 178mm. The corresponding specimen volume (V ) within
the gauge length is 24449.6 mm3 and 349502.2 mm3, respectively. 3D X-ray
computed tomographic inspection on one specimen of each type suggested
the size of preexisting defects (e.g. micro-shrinkages) is below 0.2 mm. 12 speci-
mens of each type were tested at load ratio R = −1. The load frequency was
10Hz for 21 × 70.59 (mm) specimens and 1Hz for 50 × 178 (mm) specimens.
The fatigue test data are given in Figure 7(a) and in Table A3 (Appendix 1).
In addition, 12 specimens of 21mm diameter were also tested at R = 0 to
study the mean stress effect, which is not included in this study. The experimen-
tal result in Figure 7(a) is synchronised in Figure 7(b). For reasonable estimate of
rank probability dictated by the total number (n) of specimens, the fatigue test
data for broken samples are analysed in this study only for the case of at least
three (n ≥ 3) specimens at a given stress amplitude. This includes all the 12
sets of data for 50 × 178 (mm) specimens but only 7 sets of data for 21 ×
70.59 (mm) specimens (3 specimens at 260 MPa, 4 specimens 200 MPa, the
run-out specimen is only counted for the total number of specimen in calculat-
ing ranking probability of broken specimens). The following formulation is
adopted for the analysis.

1

V(sa,nom)
mb

ln
1

1− P

( )
= G(N) = 1

V0(s0)
mb

Nb (53)
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Equation (53) can be rewritten as

ln
1

1− P

( )
= V

V0

(sa,nom)
mN

(s0)
m

[ ]b
= V

(sa,nom)
mN���

V0
b
√

(s0)
m

[ ]b
(54)

Or

1− P = exp − V
V0

N · sa,nom

s0

( )m[ ]b{ }
= exp −V · [N · (sa,nom)

m]b

V0 · [(s0)
m]b

{ }
(55)

with m0 = mb = 31, b = 3.3, m = m0/b = 9.4,
���
V0

b
√

(s0)
m = 9.706× 1028

(σ0 in MPa, V0 in mm3). Note that the scale parameter
���
V0

b
√

(s0)
m is independent

of specimen size so it is an intrinsic material property that justifies size scaling of
fatigue life.

The stress (σa) – life (N) fields at cumulative probability of failure P = 0.01,
0.5, 0.99 are plotted in Figure 7(a) for the two types of specimens according
to Equation (54) to compare with experimental data.

5. Discussions

The objective of this work is to develop a statistical model to address the com-
bined effect of specimen size, applied stress amplitude and loading cycles on
fatigue failure. While a variety of intrinsic and extrinsic factors can have an
influence on a statistical model, it is often impossible and unnecessary to
take all the factors into account at once. For example, microcrack interaction
is an intrinsic factor for fatigue damage. It is commonly accepted that both
coalescence and bifurcation of microcracks can occur during microcrack
propagation. However, within the framework of weakest link theory, which
presumes the mutual independence of microcracks, the interactions of micro-
cracks must be ignored. As another example, the calibration methods and
effect of sample number on the confidence interval of model parameters are

Figure 7. (a). Experimental data of life time (N) distribution at different nominal stress amplitude
(σa,nom) at R = -1 [20]. The lines are based on Equation (55); (b). Synchronised fatigue data analy-
sis according to Equation (53).

2112 G. QIAN AND W.-S. LEI



an important subject for the application of any statistical model, rather than a
unique extrinsic factor to a statistical fatigue model. Since this work is focused
on establishing a physical connection of specimen size, applied stress ampli-
tude and loading cycles for fatigue failure, the confidence interval of the cali-
brated parameters is not covered. While the calibration of model parameters
such as b and m needs to be optimised to improve model prediction accuracy,
the case studies reported above convincingly support a physical correlation
between the two compound parameters 1

V ln [
1

(1−P)] and (Dsnom)
mN , which is

suggested by the new statistical model. During the development of the preced-
ing statistical model of fatigue failure, we have paid significant attentions to
the balance between capturing the critical physical understandings of the rel-
evant fatigue mechanisms and achieving rigorous but also simplified math-
ematical treatments. These efforts are pursued from several aspects as
follows. We will also dissect the work of Chantier, et al. [13] as an example
to emphasise the necessity of a rigorous mathematical deduction in drawing
reliable conclusions.

5.1. Multiaxial stress states

Multiaxial stress states commonly exist in real structural components
and applications such as rolling element bearings [4, 23] and suspension
arms commonly used in vehicles [13]. A multi-axial stress based micro-
scopic fracture criterion is preferred, wmahich can be conceptually
expressed as

se = se(s1, s2, s3, ) = s1 · s̃e
s2

s1
,
s3

s1
,

( )
≥ s (s1 ≥ s2 ≥ s3) (56)

where s1, s2, and s3 are the principal stress components acting on a
microcrack, V is the solid angle for microcrack orientation, s is the micro-
scopic strength, s̃e is the dimensionless expression of the effective stress se

normalised by the maximum principal stress s1. A summary of major
microscopic fracture criteria is made in [8]. For example, the normal
stress component acting on a microcrack plane is adopted as the
effective stress se in [21] for statistical modelling of fatigue behaviour of
a forged steel. As shown in Equation (56), the inclusion of the solid
angle V, in the expression of effective stress se implies that the statistical
distribution of the solid angle V is needed to derive the fracture probability
of an individual microcrack p(s, a, V0) according to Equation (18). So far,
most studies assume a uniform distribution of the solid angle V over the
full range of 4π, i.e. the spatial orientation of a microcrack takes a
uniform distribution. Note that this adds onto the assumption that all
microcracks are penny shaped. Under the very assumption of a uniform
distribution of microcrack orientation, a closed-form solution to the
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fracture probability term F(se ≥ s) in Equation (18) is obtained for a
microcrack subjected to multiaxial stresses under the normal tensile
stress criterion in [40]. The uniform distribution of microcrack orientation
permits to rewrite Equation (18) as below [8,40]:

p(s, a, V0) = 1
4p

∫
V∗

∫se

sth

g(s) · ds
[ ]

d = 1
4p

∫
V∗

∫a(sth)

a(se)
f (a) · da

[ ]
d (57)

where V∗ is the solid angle within which se ≥ sth.
According to expression (56), substituting se = s1 · s̃e

s2
s1
, s3
s1
,

( )
in Equation

(57) leads to the formulation of p(s, a, V0) in terms of the maximum principal
stress s1, while the effect of stress state will be embodied in the integral involving
s̃e and finally reflected by the ‘heterogeneity factor’H∗

bas in Equation (40) for the
formulation of the cumulative failure probability P, as shown in [21]. This
justifies the adoption of nominal stress in a statistical model to characterise
the rolling contact fatigue in Section 4.2 of this study and the biaxial in-plane
fatigue failure of a suspension arm in [13]. However, the adoption of s1

instead of se is valid only for specimens of self-similar geometry but different

sizes since the contribution of the normalised stress term s̃e
s2
s1
, s3
s1
,

( )
stays the

same for geometrically self-similar specimens. Particularly, se = s1 leads to
s̃e = 1. So we expect that the influence of different definitions of se for multi-
axial stress conditions will have an effect on the value of the ‘heterogeneity
factor’ H∗

b as in Equation (40), but not on the shape factors of a statistical dis-
tribution function such as Weibull modulus m and b. This is supported by the
synchronisation of fatigue data from geometrically self-similar but different
sized specimens in this study in Section 4. When specimen geometry and

loading mode change, the contribution of s̃e
s2
s1
, s3
s1
,

( )
to the ‘heterogeneity

factor’ H∗
b will change. Therefore, the transferability of fatigue data between

specimens of different geometries or loading modes needs to be addressed in
future study.

5.2. Statistical distribution function of instant microcrack size a

It is of critical importance to select a statistical distribution function of instant
microcrack size a. The work adopts Weibull PDF as in Equation (22) to describe
the size distribution of microcracks due to its great flexibility to characterise
different shaped distributions as illustrated in Figure 3. It leads to the much
simple expressions of p(s, a, V0) for an individual microcrack in Equation
(23) and the cumulative probability P in Equations (24) and (25). As shown
in Section 4, this permits to conduct correlations of fatigue parameters and cali-
brate the model parameters using fatigue experiments. In comparison, Yaacoub
Agha, et al. [41] adopted a beta function as below for the flaw size distribution in
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a spheroidal graphite cast iron:

f (a) = aa−1(amax − a)b−1

Baba
a+b−1
max

(0 , a , amax, a, b . 0) (58)

where Bab is the beta function, a = 2.3, b = 18, amax = 400 mm were deter-
mined from experiments.

Substitution of Equation (58) in Equation (20) leads to an implicit formu-
lation of p(Ds, a, V0) that consists of the regularised incomplete beta func-
tion. Substitution of p(Ds, a, V0) in Equation (15) or (17) results in a
much more complicated, implicit expression of the cumulative failure prob-
ability P. In the case that the model parameters a, b, and amax are not
directly measureable, it will be much difficult to calibrate these model par-
ameters according to the implicit expression of the cumulative failure prob-
ability P with fatigue experiments. It is also unnecessary to adopt the beta
function in Equation (58) to describe the flaw size distribution. As shown
in Figure 8, the beta function with a = 2.3, b = 18, amax = 400mm can
be closely approximated by the easy-to-handle Weibull PDF in Equation
(22) with ai = 0, a0 = 49 m, b = 1.76.

As a continuation of the work in [41], Chantier, et al. [13] developed a stat-
istical model of fatigue of the same steel. Unfortunately, the work of Chantier,
et al. [13] mistakenly expressed the beta function for the flaw size distribution
in Equation (58) as the following:

f (a) = aa(amax − a)b

Baba
a+b+1
max

(0 , a , amax, a, b . 0) (59)

with the same values of a = 2.3, b = 18, amax = 400 mm. Note the difference
in the powers of a, (amax − a), and amax in Equations (58) and (59). In the same
work of [13], Equation (59) was then approximated by the following expression
to obtain explicit formulation of p(s, a, V0) for an individual microcrack in
Equation (20) and the cumulative probability P to highlight the effect of
‘stress heterogeneity factor’:

f (a) � W(amax − a)b

ab+1
max

(0 , a , amax, b . 0) (60)

where W is a coefficient.
The adoption of Equation (60) suggests that the wrong expression of the beta

distribution in Equation (59) was more likely taken during the model develop-
ment phase rather than in the typesetting process of the manuscript.

The wrong expression of f (a) in Equation (59) does not satisfy the normal-
isation condition in Equation (21). As shown in Figure 8, the value of f (a) in
Equation (59) is much smaller than that of the correct formulation in Equation
(58), leading to a much lower value of p(Ds, a, V0) than its real value according

PHILOSOPHICAL MAGAZINE 2115



to Equation (20). This may well interpret why the predicted cumulative prob-
ability for fatigue failure is much lower than the experimental results at a
given loading condition (load amplitude and number of load cycles) as reported
in Figure 4 in the work of [13].

Chantier, et al. [13] further derived the expressions of p(Ds, a, V0) for an
individual microcrack as below:

p(Ds, a, V0) = W
(b+ 1)

1− sth

s1

( )b+1
[ ]

(61)

Equation (61) was further approximated to the following for s1 
 sth:

p(Ds, a, V0) = s1 − sth

s0

( )b+1
[ ]

(62)

With

s0 = sth

2
W

b+ 1

( )1/(b+1)

(63)

Finally, the following expression for the cumulative probability P of fatigue
failure was achieved in [13]:

P = 1− exp −H∗
b+1V

V0

snom − sth

s0

( )b+1
[ ]

(64)

Refer to [13] for the detailed expression of the ‘stress heterogeneity factor’ H∗
b+1,

which characterises the effect of loading manner on failure probability. Note that
the formulations of both p(Ds, a, V0) in Equations (61) and (62) and P in
Equation (64) do not include the number of loading cycles N as a variable,

Figure 8. Approximate representation of a beta distribution by a Weibull distribution, and a
comparison of the wrong and correct expressions of beta distribution.
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unlike Equations (35) and (41) in the new model. This will be further analysed in
Section 5.3.

The reader is cautioned that even if Equation (60) were correct, the resultant
formulations Equations (61)–(64) are wrong. In fact, applying the normalisation
condition Equation (21) with ai = 0 to f (a) in Equation (60) results in the sol-
ution to W: ∫amax

0

W(amax − a)b

ab+1
max

da = 1 W = b+ 1 (65)

Equation (60) thus reduces to

f (a) � (amax − a)b

(b+ 1)ab+1
max

(0 , a , amax, b . 0) (66)

Substitution of Equation (66) in Equation (20) yields

p(Ds, a, V0) =
∫amax

a

(amax − a)b

(b+ 1)ab+1
max

da = 1− a
amax

( )b+1

(67)

Due to the Griffith law,s1
��
a

√ = Const, Equation (67) is rewritten as:

p(Ds, a, V0) = 1− sth

s1

( )2
[ ]b+1

(68)

Obviously, Equation (68) is different from Equation (61) and by no means can it
be rewritten as Equation (62).

5.3. Growth rate of a microcrack under cyclic loading

Similar to the case of macrocracks, the growth rate da/dN of microcracks is also
generally described as a function of the range of stress intensity factor DK as in
Equation (26). Both the conventional Paris’ law in Equation (29) and various
modified versions of Paris’ law are suggested to model the growth rate of a
microcrack. Take the VHCF behaviour of metallic materials for example. The
formation of the Fine Granular Area (FGA) or Optically Dark Area (ODA) con-
sumes more than 95% of the VHCF life time [5,6,43,44]. As summarised by
Paolino et al. [44], a three-stage process is often used to describe a VHCF
failure from an internal microdefect within the FGA:

Stage I. the growth phase of an initial defect within the FGA, with nI being the
number of cycles consumed. The following modified Paris’ law is used to model
the defect growth rate:

da
dN

= cI(KI − Kth,L)
mI (69)
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where cI and mI are the Paris’ constants, Kth,L is the local threshold of stress
intensity factor.

Stage II. The steady growth phase of the defect from the border of FGA up to
the border of the fish-eye, with nII being the number of cycles consumed;

Stage III. The unsteady growth phase of the defect beyond the fish-eye border,
with nIII as the number of cycles consumed.

In both stages II and III, the growth rate of a defect is modelled by the con-
ventional Paris’ law but with different Paris’ parameters (cII and mII for stage II;
cIII and mIII for stage III).

By properly partitioning the total number of cycles to failure into nI , nII , and
nIII , all the Paris’ parameters in each phase can be estimated.

In the current work, the conventional Paris law in Equation (29) is used to
describe the microcrack growth law. As shown in Equation (32a,b), it reveals
the instant microcrack size a to be an explicit function of the compound par-
ameter (Ds)mN , i.e. a = F((Ds)mN), which guides us to finally reach Equations
(37) and (41) that rationalise the physical correlation between the two com-
pound parameters 1

V ln [
1

(1−P)] and (Dsnom)
mN .

Yaacoub Agha, et al. [41] and then Chantier, et al. [13] adopted the following
modified Paris’ law by Pellas et al. [45] for the microcrack growth rate in a same
spheroidal graphite cast iron to develop a statistical model of fatigue failure:

da
dN

= c0(DKeff )
m, DKeff = [Kmaxg(R)− Kth]/[Kc − Kth/g(R)] (70)

where g(R) is a function of the load ratio R, Kc is the critical stress intensity
factor for local failure.

Integration of Equation (70) gives the closed-form solution as follows:

w

�����
a

amax

√( )
− w

�����
ai

amax

√( )
= c0

amax

g(R)Kth

Kc − Kth/g(R)

[ ]m smax

sth

( )m

N (71)

However, the expression of function w(x) depends on the power m as follows:

w(x) =

2[x + xth ln (x − xth)] (m = 1)

2 ln (x − xth)− 2x
(x − xth)

(m = 2)

2[xth − (m− 1)x]

(m− 1)(m− 2)(x − xth)
m−1 (m = 1, 2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ xth = sth

smaxg(R)

( )

(72)

This raises two difficult issues: First, it is unclear how to determine the value ofm
for microcrack growth; Second, by integration of the microcrack growth rate
model, it is supposed to formulate the instant microcrack size a as a function of
stress amplitude Ds and number of load cycles N , as we demonstrated in the
newly developed model in Section 3. However, due to the complexities of the
expressions of function w(x), an explicit expression of a as a function of Ds
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and N similar to Equation (32 a,b) is not possible. This eventually prevents us to
gain a clear physical correlation of the cumulative failure probability Pwith speci-
men size V, load amplitude Ds and number of load cycles N, such as correlation

between the two compound parameters 1
V ln

1
(1−P)

[ ]
and (Dsnom)

mN drawn from

the newly developed model. This is the reason for Chantier, et al. [13] to rely on
Equation (64) in Section 5.2 to explain the stress heterogeneity effect.

6. Summary and conclusions

Based on a Weibull size distribution and a uniform spatial distribution of micro-
cracks, a weakest-link probabilistic model Equation (33) for cyclic stress induced
fatigue failure is developed. The model incorporates the combined effect of geo-
metrical size, stress range and number of load cycles to the occurrence of fatigue
failure. The model provides a methodology to correlate the experimental data for
a combined effect of the three key variables as guidance to formulate an explicit
cumulative probability model.
(1). The model suggests that the effect of stress range and number of load cycles
can be collectively represented by the compound parameter (Dsnom)

mN , which
is reminiscent of the empirical formulae of S–N curve. Alternatively, according
to the model, the empirical S–N formulae can be justified by the growth behav-
iour of microcracks during cyclic loading.
(2). The model is validated by four sets of published fatigue test data for the com-
bined effect of volume and number of load cycles for a given stress amplitude,
stress amplitude and number of load cycles for a given volume, and all the
three parameters of volume, number of load cycles, and stress amplitude,
respectively.
(3). As revealed by comparing the four examples, an intrinsic scale parameter for
the cumulative probability model can be obtained only when all the three vari-
ables are counted in. When the cumulative probability is taken as a two dimen-
sional function of V and N (as in the first example) or Dsnom and N (as in the
second example), the resultant scale parameter is not intrinsic but dependent
on the third variable (Dsnom for the first example and V for the second), thus
limiting the scalability of the one- or two-dimensional models.

It is noted that current studies are limited to different sized specimens of
similar geometry under same loading mode. Future studies will expand to speci-
mens of different geometries and/or different loading modes.
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Nomenclature

a microcrack size
ai initial microcrack size
amax maximum microcrack size
A, L, V specimen surface area, length and volume in sequence
A0, L0, V0 reference area, length and volume in sequence
E elastic modulus
F(se ≥ s) fracture probability of an existing microcrack
KI mode-I stress intensity factor
DK range of stress intensity factor
Kmax, Kmin maximum and minimum stress intensity factors
Kc critical stress intensity factor for local failure
Kth,L local threshold of stress intensity factor
N number of loading cycles
n′ cyclic strain-hardening exponent
P cumulative probability
p(s, a, V0) fracture probability of volume element V0 with a microcrack
R stress ratio
S generalised cyclic load
�S average value of S on all the possible material planes
s microscopic fracture strength
sys yield stress
s1, s2, s3 principal stresses
sij(t) instant stress component at time t
se, Dse effective stress and its range
sm mean stress
sn normal stress component
Δσ, Dsnom local and nominal stress ranges
σmax, σmin maximum and minimum stresses
sa, sa,nom local and nominal tensile stress amplitudes
ta, t a,nom local and nominal shear stress amplitudes
1̇ij(t) instant strain rate at time t
εmax, εmin maximum and minimum strains
D1, D1nom local and nominal strain ranges
1a, 1a,nom local and nominal strain amplitudes
1 p,a, D1p plastic strain amplitude and plastic strain range
Dg shear strain range
1′f fatigue ductility coefficient
DWt total strain energy range
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Wg strain work density per loading cycle with the period T
Bab beta function
H∗

b stress heterogeneity factor
ci, mi model parameters in Paris’ law for microcracks

(i = I, II, III)
c0, d, m, x, kg0, h 1, h2, λ1 material constant
B, C, Nth, Sth, sth, xth, Vth,
Wth

thresholds

a0, N0, Nu, S0, Su, , d,
s0, 0, Wu

scale parameters

A1, A2, B, Const,
c1, c2, D, b1, k,
q, W, l 2, l3, l 3

constants

b, c, a, b shape factors
Y dimensionless parameter dependent on crack geometry
y = f (x1|x2, x3) y as a function of variable x1 with given values of variables

x2 and x3
V, c angles
HCF high cycle fatigue
LCF low cycle fatigue
VHCF very high cycle fatigue
PDF probability density function
f(a) PDF of microcrack size (a)
g(s) PDF of microscopic fracture strength (s)
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Appendix 1

Table A1. Rolling contact fatigue test data of bearing steel by Zhao and Liu [23].

Specimen number

Fatigue life N (cycles)

σa = 4900 MPa σa = 5500 MPa σa = 6100 MPa σa = 6700 MPa

1 2.25E+7 8.77E+6 5.88E+6 1.63E+6
2 3.88E+7 1.50E+7 9.43E+6 2.88E+6
3 6.42E+7 2.48E+7 1.46E+7 3.72E+6
4 1.41E+8 5.40E+7 2.90E+7 4.38E+6
5 1.70E+8 6.49E+7 3.41E+7 5.98E+6
6 1.70E+8 6.52E+7 3.42E+7 7.99E+6
7 1.85E+8 7.07E+7 3.67E+7 1.39E+7
8 2.10E+8 8.02E+7 4.10E+7 1.83E+7
9 3.61E+8 1.37E+8 6.57E+7 5.07E+7
10 4.16E+8 1.58E+8 7.42E+7 5.73E+7
11 4.21E+8 1.60E+8 7.51E+7 6.61E+7
12 4.86E+8 1.84E+8 8.50E+7 7.07E+7
13 8.29E+8 3.12E+8 1.35E+8 1.03E+8
14 1.39E+9 5.20E+8 2.11E+8 1.79E+8

Table A2. Fatigue test data of ductile cast iron at load ratio R = -1 by Shirani and Härkegård [20].
Specimen number Nominal stress amplitude (σa,nom), MPa Fatigue life (N ), cycle Note

21 × 70.59 (mm) specimens, R = -1, V = 24449.6 mm3

1 180 3,000,000 Runt out
2 190 716,400 Broken
3 190 1,674,100 Broken
4 200 679,400 Broken
5 200 801,000 Broken
6 200 1,076,600 Broken
7 200 4,181,701 Runt out
8 210 619,200 Broken
9 210 769,500 Broken
10 260 83,200 Broken
11 260 92,500 Broken
12 260 107,700 Broken
50 × 178 (mm) specimens, R = -1, V = 349502,2 mm3

1 190 295,000 Broken
2 190 869,000 Broken
3 190 869,000 Broken
4 190 1,573,335 Broken
5 220 151,400 Broken
6 220 152,000 Broken
7 220 183,700 Broken
8 220 218,000 Broken
9 260 30,200 Broken
10 260 45,100 Broken
11 260 46,900 Broken
12 260 47,300 Broken

2124 G. QIAN AND W.-S. LEI



Table A3. Alternating torsion fatigue test data of JIS SUJ2/AISI 52100 steel at 6 nominal shear stress amplitudes ta,nom by Shimizu et al. [4].

Specimen number

Fatigue life N (cycles)

ta,nom = 0.5 GPa ta,nom = 0.63 GPa ta,nom = 0.76 GPa ta,nom = 0.80 GPa ta,nom = 0.95 GPa ta,nom = 1.0 GPa

1 5.42E+06 8.65E+05 1.23E+05 6.30E+04 1.20E+04 3.28E+03
2 6.62E+06 9.67E+05 1.34E+05 8.40E+04 1.30E+04 4.58E+03
3 7.63E+06 1.09E+06 1.78E+05 1.03E+05 1.60E+04 5.77E+03
4 1.00E+07 1.25E+06 1.86E+05 1.13E+05 1.90E+04 7.61E+03
5 1.00E+07 1.35E+06 2.30E+05 1.17E+05 2.10E+04 8.20E+03
6 1.25E+07 1.37E+06 2.37E+05 1.18E+05 2.50E+04 8.29E+03
7 1.76E+07 1.53E+06 2.51E+05 1.24E+05 2.70E+04 8.89E+03
8 2.23E+07 1.74E+06 2.57E+05 1.47E+05 2.80E+04 9.56E+03
9 2.38E+07 1.79E+06 2.65E+05 1.47E+05 2.90E+04 1.17E+04
10 2.56E+07 2.20E+06 2.70E+05 1.49E+05 3.40E+04 1.22E+04
11 2.71E+07 2.21E+06 3.08E+05 1.88E+05 3.70E+04 1.29E+04
12 2.74E+07 2.93E+06 3.26E+05 2.18E+05 3.80E+04 1.36E+04
13 2.88E+07 3.01E+06 3.35E+05 2.30E+05 3.80E+04 1.39E+04
14 2.89E+07 3.12E+06 3.43E+05 2.38E+05 4.00E+04 1.40E+04
15 3.27E+07 4.42E+06 3.63E+05 2.55E+05 4.10E+04 1.42E+04
16 3.33E+07 4.74E+06 3.68E+05 2.88E+05 4.20E+04 1.52E+04
17 3.91E+07 5.02E+06 3.68E+05 3.11E+05 4.30E+04 1.57E+04
18 4.22E+07 5.25E+06 4.22E+05 3.44E+05 4.50E+04 1.76E+04
19 4.45E+07 6.82E+06 4.98E+05 3.72E+05 4.70E+04 1.84E+04
20 5.95E+07 5.11E+05 4.41E+05 5.10E+04 1.85E+04
21 5.60E+05 4.70E+05 5.20E+04 2.10E+04
22 5.64E+05 4.97E+05 5.50E+04 2.45E+04
23 5.78E+05 5.36E+05 5.70E+04 2.47E+04
24 6.08E+05 5.72E+05 6.60E+04 2.76E+04
25 6.12E+05 7.56E+05 7.00E+04 1.87E+04
26 6.13E+05 3.78E+04
27 6.34E+05 3.83E+04
28 6.49E+05 4.68E+04
29 6.70E+05
30 7.00E+05
31 8.34E+05
32 8.43E+05
33 9.82E+05
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