Accepted Manuscript =

New analytic buckling solutions of rectangular thin plates with two free adjacent edges| ’\ﬂoh(b
by the symplectic superposition method ¢l -

Rui Li, Haiyang Wang, Xinran Zheng, Sijun Xiong, Zhaoyang Hu, Xiaoye Yan, Zhe
Xiao, Houlin Xu, Peng Li

PII: S0997-7538(18)30325-5
DOI: https://doi.org/10.1016/j.euromechsol.2019.04.014
Reference: EJMSOL 3779

To appearin:  European Journal of Mechanics / A Solids

Received Date: 2 May 2018
Revised Date: 4 April 2019
Accepted Date: 25 April 2019

Please cite this article as: Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X,, Xiao, Z., Xu, H., Li, P.,
New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic
superposition method, European Journal of Mechanics / A Solids (2019), doi: https://doi.org/10.1016/
j-euromechsol.2019.04.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.euromechsol.2019.04.014
https://doi.org/10.1016/j.euromechsol.2019.04.014
https://doi.org/10.1016/j.euromechsol.2019.04.014

New analytic buckling solutions of rectangular thin plates with
two free adjacent edges by the symplectic superposition method

Rui Li*"", Haiyang Wan@ Xinran Zhend Sijun Xiond, Zhaoyang HY
Xiaoye Yar, Zhe Xiad, Houlin XUf, Peng L}

@State Key Laboratory of Structural Analysis forusttial Equipment, Department of
Engineering Mechanics, and International Researchnt€r for Computational

Mechanics, Dalian University of Technology, Dals6024, China

P State Key Laboratory of Nonlinear Mechanics, Inétof Mechanics, Chinese
Academy of Sciences, Beijing 100190, China

¢ Studienbereich Mechanik, Technische Universitat ndadt, Darmstadt 64289,

Germany

" Corresponding author.

E-mail addressruili@dlut.edu.cn (R. Li)



Abstract

This paper deals with a classic but very diffictype of problems, i.e., pursuing
analytic buckling solutions of biaxially loaded taegular thin plates with two free
adjacent edges that are characterized by havirngthetfree edges and a free corner.
The primary challenge is to find the solutionssfging both the governing high-order
partial differential equations (PDEs) and non-Léyye boundary constraints. Here,
an up-to-date symplectic superposition method eldped for the issues, which
yields the analytic solutions by converting the lppeons to be solved into the
superposition of two elaborated subproblems that solved by the symplectic
elasticity approach. The distinctive merit of theethod is that a direct rigorous
derivation helps to access the analytic solutionthomt any assumptions/prior
knowledge of the solution forms, which is attribditeo the implementation in the
symplectic space-based Hamiltonian system rathen tin the classic Euclidean
space-based Lagrangian system. As the importarputsjt comprehensive new
analytic results are obtained, with 1200 criticatkling loads and 100 buckling mode
shapes presented, which are all well validatedhieyréfined finite element analysis.
The rapid convergence and favorable accuracy of pfesent method make it

competent as a benchmark one for similar problems.

Keywords. analytic solution; plate buckling; free edge; frearner; symplectic

superposition method.



1. Introduction

Plates are widely used in various engineering 8iras, including bridge decks,
ship superstructures, panels in aircrafts, columppsrted slabs in buildings, etc.
There have been many investigations on the mediab®haviors of the plates,
among which the buckling under in-plane compressbagling represents a major
mode of failure, and thus received much attentigaer dhe past decades. The key
fundamental issue for plate buckling analysis imesl seeking the critical buckling
loads and associated buckling mode shapes, whiehreguired to satisfy the
governing high-order partial differential equatiqDES) under prescribed boundary
conditions, in an analytic way or by the numer@paproaches. Therefore, the solution
methods are of much importance in handling the lnuglroblems of plates.

Various effective numerical methods have been d@esl to conduct the buckling
analysis of plates. For a brief overview of theergcprogress in the field, some
typical methods are introduced in this paragrapvaR et al. (2013, 2014) used the
finite difference method to study the buckling bebawf both rectangular and
circular annular nanoplates; the method was prdodee powerful for determination
of the buckling loads as well as buckling modeshwittle computational effort.
Moradi and Taheri (1999) investigated the delanmdmatbuckling response of a
composite panel containing through-the-width defation by the implementation of
the differential quadrature (DQ) technique, whighibited high efficiency in treating
similar problems. Civalek et al. (2010, 2008) aédptthe discrete singular
convolution method for buckling analysis of plateustures, which demonstrated the
suitability of the method for the problems consatkdue to its simplicity. Li et al.
(2016a) employed a transfer function method to ysttiee buckling response of
rectangular plates resting on tensionless foundstioevealing that the boundary
conditions at the loaded edges (end conditionshifsigntly affect the contact
buckling performance. Lopatin and Morozov (2014)rieal out an approximate
buckling analysis of a rectangular orthotropic @latith two opposite edges clamped
and another two edges free using the generalizddrkda method, which could
facilitate quick, reliable and accurate calculasiar the critical buckling loads. Bui et
al. (2011) proposed a meshfree moving Kriging péation method incorporating
the shear-locking elimination technique for bucglianalysis of thick plates, which
was proved to be robust, effective and highly aaturNatarajan et al. (2014) studied



the effect of local defects on the buckling behaewab functionally graded material
plates subjected to mechanical and thermal loadhbypartition of unity method,
providing a useful guideline for the design of pkatvith cracks and cutouts. Lal and
Ahlawat (2015) took the differential transform madhto successfully solve the
differential equation governing the dynamic bucgliof simply supported and
clamped functionally graded circular platesbjected to uniform in-plane force.
Meziane et al. (2014) presented an efficient angpka refined theory for buckling
and free vibration of exponentially graded sandwitdtes under various boundary
conditions, where a method with approximate adibiesiunctions was adopted for
solution. Similar solution methods were also addpfer functionally graded
sandwich plates (Abdelaziz et al., 2017) and sdefosrmable composite beams (Kaci
et al., 2018). Except for the newly developed meshsome classic methods, with
proper modifications or new applications, are girktvalent for solving the buckling
problems of various plates, e.g., the Ritz energgthod (Mijuskovic et al., 2015;
Mirzaei and Kiani, 2016) and finite element meth@®EM) (Asemi et al., 2015;
Jeyaraj, 2013; Komur and Sonmez, 2015).

It is noted that the advanced numerical methods odien qualified for the
buckling solutions of plates with acceptable errsush that they have been widely
adopted as effective tools for the analyses an@jugsespecially for the plates with
complex loading and boundary conditions. Nevertgleleveloping novel analytic
approaches as well as pursuing new analytic solsiti® still a crucial issue, which is
essential for the development of the plate theliris well acknowledged that the
analytic solutions are valuable for providing thenbhmark results for validation of
various numerical/approximate methods, and are wseful for rapid parametric
analysis and optimization. Despite this, analytichling solutions of plates have
been far from complete due to the difficulty in &g the solutions that satisfy the
high-order PDEs under prescribed boundary consstaln recent years, very few
novel analytic methods/solutions have been foumdpfate buckling problems. For
example, an analytic method for decoupling the tmdistability equations was
introduced for moderately thick functionally gradeectangular plates with two
opposite edges simply supported by Mohammadi ef2@l10), and for moderately
thick functionally graded sector and annular septates with simply supported edges
by Naderi and Saidi (2011a, b). An optimized hypédounified formulation was
presented by Mantari and Monge (2016) for analigtickling solutions of simply

4



supported functionally graded sandwich plates. Thassic variables separation
method was applied by Moslemi et al. (2017) to edhe buckling problems of thick

rectangular transversely isotropic simply suppoméates. While finding that some

new analytic approaches have been derived, ittesdnihat the main deficiency in the
field is that the analytic solutions were mostlgtreeted to the Lévy-type plates (i.e.,
those with at least two opposite edges simply sup@dp but there have been rare
reports on the non-Lévy-type plates that are maoenmgonly encountered in

engineering practice. This situation motivatesghesent exploration of new analytic
solutions that have not been reported.

We recently proposed a novel analytic symplectipesposition method with
applications to some plate problems such as ber{dirngt al., 2015a; Li et al., 2017;
Li et al., 2015b), vibration (Li et al., 2016b; &t al., 2018) and buckling (Wang et al.,
2016). The method skillfully combines the superposi method and symplectic
elasticity approach that was pioneered by Yao.gR809) and well extended by Lim
et al. (Lim, 2010; Lim et al., 2009; Lim and Xu,2) and Li et al. (2015a, 2016b,
2015b, 2018) for plate problems. The solution pdoce involves converting the
problem to be solved into the superposition of smvelaborated subproblems that
can be solved by the symplectic elasticity approddte method is realized in the
symplectic space-based Hamiltonian system, whiajuige different from any other
analytic methods that are implemented in the Eeelidspace and Lagrangian system.
The primary advantage of the method is the poteofieaccess to more analytic
solutions because it is inherently rigorous withassumptions on the solution forms,
which cannot be achieved by the classic semi-imvengthods. Till now, the only
buckling problem that has been solved by the syatiglsuperposition method is for
a uniaxially compressed rectangular thin plate wdmbinations of simply supported
and clamped edges, but there has been no repdad ektension to non-Lévy-type
plates with free edges, which are more difficutuiss and have not been well figured
out (Wang et al., 2016).

The objective of this paper is to further develtye symplectic superposition
method for accurate buckling analysis of biaxiddigded rectangular thin plates with
two free adjacent edges. This class of problemsHeateature of having both the free
edges and a free corner in a plate, which increthsesolution difficulty. Three types
of boundary conditions for the plates are studied, those with two adjacent edges
free and the other two edg@sclamped (CCFF)ii) simply supported (SSFF), (i)
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clamped-simply supported (CSFF). Here, anticlockwdenotation of the boundary
conditions is adopted for a plate, starting frone thottom edge (Fig. 1a), with
“F'=free, “C"=clamped, and “S"=simply supported. @prehensive analytic results
are obtained and shown in ten tables and ten Bgem@responding to 1200 numerical
results for critical buckling loads and 100 bucglimode shapes, respectively. Very
rapid convergence is observed for all of the presetutions by the convergence
study, as reflected in another ten tables. Verydgagreement with the FEM validates
the present solutions, which can be regarded abeghehmarks for comparison with

the future numerical/approximate approaches.

2. Governing equation and fundamental symplectic analytic solutions
in the Hamiltonian system

2.1. Governing equation of a buckled plate in tlzritonian system

Applying the Hellinger-Reissner variational prinigipin combination with the
Lagrangian multiplier method, the governing equatiocof a buckled thin plate
occupying the domaim in the rectangular coordinate systemy can be described

by the following Hamiltonian system-based variasibprinciple (Wang et al., 2016):

Y 2 ) 2
d_lH :5II 2 a_VV +E E +D|/a W%+ D(l_V)(%j
HRAS 2\ ay X dy 9 X

2 2
- D_(&_'_%_'_VG_VVJ +T[3_a_vvj

2(1-v?)\ D 3y aX ay (1)
2
+1 NX(G—WJ +N & +2N, [a_vvje dxdy
2 ox Y Y\ ox
=0

Here, I, is the Hamiltonian functionalw is the out-of-plane deflection of the

plate; D is the flexural stiffnessy is the Poisson's ratioT is the Lagrangian

multiplier; @ is an introduced quantity. The internal forces peit distance in the

plate include the shearing forcdg, and Q,, bending momentsM, and M,

twisting moment M, shearing membrane forchll , and normal membrane forces

Xy ! xy ?
N, and N,. The constant normal membrane forces and zerorisjemembrane

force are assumed for convenience. According to(&}).we obtain



0Z

= =HZ 2

oy (2)
F G 0 1 0O O

where Z:[W,H,T,M:'T, H= | F= 5/ , G= :
y Q -F —va*/ox* 0 0 -1D
-D(1-v?)8%/ox" + N,8%/0x* 0 , _

and Q= . It is obtained

0 2D(1-v)a%/ax* = N,

oM
from Eq. (2) thatd=0w/dy and T =-V,, with V, =Q, +a—xy+ Nyg—w being the
X y

equivalent shearing forceH is a Hamiltonian operator matrix satisfying
T . . O I2 . . . . .
H' =JHJ, in which J= L0 is the symplectic matrix withl, being the
2

2x 2 unit matrix (Yao et al., 2009). Therefore, Eq. @rves as the governing dual
equation of the buckled plate in the Hamiltoniarstegpn, with the generalized

displacements W and &) and generalized forcesT( and M ) being the dual

variables.

2.2. Fundamental symplectic analytic solutionstha subproblems

Buckling of a CCFF rectangular thin plate with lédmg and widthb (Fig. 1a) is
focused on, which is converted into the superpmsitf two elaborated subproblems,
as shown in Figs. 1b and 1c. The biaxial uniforaplemne loads with intensity P

and yP are applied in the- andy- directions, respectively, wherg and y are

the loading coefficients that govern the load magtas. Uniaxial loading is realized

when eitherx or y becomes zero. In the first subproblem, the edgegalx = 0

is slidingly clamped, and that alonggk=a is simply supported. The slope
represented by Z;":M’S;__Encos(anx) and bending moment represented by
Ty 5. F.coda.x) are applied along the slidingly clamped edgeyatO and
simply supported edge ay =b, respectively. Another subproblem is on the plate
with y=0 slidingly clamped andy =b simply supported. The slope represented
by = ;5. .G,codB.y) and bending moment represented By, ,, H,co3,y)

are distributed along the slidingly clamped edgexat 0 and simply supported edge



at x=a, respectively. Hereg, =nmf/(2a), B, =nm/(2b), E,, F,, G, and H,
are the coefficients of the half-cosine series aspmm.

Substituting N, =-«P and N, =-yP into Eq. (2), we have the governing

equation of the first subproblem (Fig. 1b). Exchaggx and y, a and b, and
k and y, we have the governing equation of the secondrsbbgm (Fig. 1c). In the

symplectic space, the separation of variables hdtis solving Eq. (2), i.e.,
Z=X(x)Y(y), with X(x):[w(x),H(X),T( ¥, M( >)]T as a unary vector of
and Y(y) a wunary function ofy. Therefore, dY(y)/dy=xY(y and

HX(x) = uX(x) are deduced from Eq. (2), wherg and X(x) are respectively

the eigenvalue and eigenvector of the Hamiltoniatrim H . Applying the boundary

conditions aw(x)/0¥ =V, (X =0 and w(x)|_=M,(x|_ =0, the
eigenvalues and eigenvectors for the first subgratdre

Hho = \/ai -yRj2+ [Rxa +y(y R4-a?)]

IuZn = _:uln (3)

Yoy = \/aﬁ -yR/2- R ka? +y(yR4-a?)]

lu4n = _IUSn
and

Xy ={L44,.D(va? - 1) D[ 12 +(v - Y2+ yR]} coda,¥) (4)

forn=1, 3, 5, ... (£1, 2, 3 and 4), whereR = P/ D.
Based on the eigenvectors for the first subprobtémn state vectaf is expanded

according to the symplectic orthogonality and cgapy (Yao et al., 2009), yielding

Z= Z::Ls,s;--z:‘: 1C'neumyxin (5)
The mode shape function, denoted ty(x, y), is thus obtained by
) 4 .
w(xy) =3 ., 2, G € coda, ) (6)
where the constantC  (n=1, 3, 5, ...;i=1, 2, 3 and 4) are determined by

substituting the boundary conditionsyad andy=Db,



T|y:0 =0

B0 = 2 ess, EncO @)
w|,_, =0

M y‘y:b = z:=1,3,5,...':n coya,X)

into Eq. (5). The out-of-plane deflection solutisrthus obtained as

w(xy)= 3 coste)

Dty s (12, = 113,)
x{D{ e, [sh(t,Y) = th{tsb) ottty )] =<, SMe) ~ thesssd i)} E, (8)
4l [ SECH(f130) Hptyy) = secysb) ity F)

where &, =y, Ry + 14, ~(2-v)a?] and ¢, = p, [ Ry + 15, - (2-v)a?]. Using

(7)

the coordinates exchange (Exchangimgand y, a and b, « and y, and

replacing E, with G, and F, with H,), the solution of the second subproblem

(Fig. 1c), denoted byw, (x, y), can be simply obtained.

3. Analytic buckling solutions of the plates with two free adjacent

edges

For a CCFF plate, zero bending moment must befigatiat x=0 and y =0,

and zero slope must be satisfied>ata and y=Db, i.e.,

> CAIRMFCIL T R
=1 gx? ay” o
> ALY R
Loyt 0x° y=0 (9)
ZZ % =0
= ox |,
ZZ % :O
=1 gy -

Substituting Eq. (8) (forw,(x, y)) and its variant (forw,(X y)) into Eq. (9), and
expanding the polynomials that arise as the hafre series, followed by
comparison of coefficients, we have the followirguiralent conditions of Eq. (9).

For x=0, we have



D| &th(ag ) (& -vB)-nth(ai, ) (5 -vA°) |G
~y fiy | sech(aft, ) (f2; ~vi®) - secha, )(#25 -v®) | H
B B ity (£ - 123 (10
wizs, (717 + 4072 ) (A 2+ b )
X{BbD[Zn,uln (aﬁ - v,ufn) (ﬂ'zi 24 4b2y32n) - £n,u3n(a 2 V,L132n) (nzi 2 +4b%1? )] c
Fhoksn (12, = 112,)

n

+47i (viti? + o%a?) sin(ﬂj Fn} =0
2
for 1=1,3,5;--; for y=0, we have
D[ ¢;th(ba ) (45 -va®) - & th(buy ) (g -va®) | E
~ L4y [ [secl'(b,ul )(qu - |/ai'2) - seC(1b,UB)(/J§ -vq 2)] F
5 Hkts (15 - 15)
wizs, (P2 + 42?2 ) (mh 2+ da n2)
| 830 & (B ~vitl) (" + 40’ ) = fuo (B vits) (40 )|
Ialnl[[Sn (l[lfn - lagn)

n

+47i (vrTi? + & B7) sir(%jH } =0
(11)

for 1=1,3,5;--; for x=a, we have

DI:Ei/:/ﬁ Sed(a/:/j ) /A sec(1a[18 ):l G

+ [y 1y [ﬂ1th(aﬂ1)_ﬂsth(aﬂe):| H

. e (2 = 2

B z _ ,Uluzlaz(lﬁ :Lzls) _ (12)

n:l,3,5;~-(772| +4b /Jln)(lﬁ +4 ,usn)

X{SDban Sin(aan)I:ﬂzi2 (En/an _Znuln) + szlulr'/'liin(g nuln_Z #3 r)}

E

n

Pty (112, = 13,)
~16rmia,b? sin(aa,,) sir(%j Fn} =0

for i =1,3,5;--; and for y = b, we have
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D[ ¢ 44 secH{(by, ) - & u, sechiou, ) | E
44145 [ 1 th (b ) = pgth(buy ) ] F

S My s \ 15— g

-5 (4 - 1)

(717 + 402 ) (7732 + 20 %)
8Dag, Sin(bﬂn)[ﬂzi2 (,7n/'~13n _fr‘flln) + 4a21[11r[13n(,7 = $ r)]
P s (15, = £5,)

(13)

G

X

n

-167 B,a” sin(b,) sir[%.j Hn} =0

for i =1,3,5;--. Here,

t =\/af - Ri2+ [Ruat +y{yRa-at) |, 14 =Jaf - Ri2-\[R Kkt +y(yR4-q7)]

i = -xR2+ [F e +x(kRa-)] . s =\ ~kR2- [R g +k(x Ra- )]

o= - KFVZ*HW +k(kRa-5)] Jﬂz ~xR2-[R 4 (x4 1)
&=t [Ry+1£ -(2-v)a®], &= [Ry+1h =(2-v)a*], n =k [Re+[§ -(2-v) £ ],
&=ty [Re+[E ~(2-V) ], n =M Re+ [ =(2-V) B, & =M | Re+ [, =(2-V) 57 ],
a =inf(2a), and B =inf(D).

It is obvious that the constants in Egs. (10)-(18)rmot be all zero, otherwise there

is no buckling for the plate. The existence of nemzsolutions requires that the
determinant of the coefficient matrix given by tlieur sets of simultaneous

homogeneous algebraic equations with respect Hp, F,, G, and H,

(n=1,3,5;--) be zero, from which we obtain the critical bungliload solutions.

Substitution of a set of non-zero constant solgtiono Eq. (8) (forvvl(x, y)) and its

variant (for W2(><, y)), followed by their summation, the mode shape tsmhs are

obtained. It is appreciated that the solutionslmamwbtained as accurate as desired by
increasing the series terms in calculation.

The other cases of the plates with two free adjaedges, i.e., CSFF and SSFF

plates, can be easily deduced from the solution€@©FF plates. By equatingd,
(n=1,3,5,..) to zero and eliminating Eq. (12), solving the rarmy three sets of

equations yields the solutions of CSFF plates. @yaéing both F, and H_ to zero
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and eliminating both Eqs. (12) and (13), solvingrmaining two sets of equations

yields the solutions of SSFF plates.

4. Comprehensive numerical and graphical results

Comprehensive numerical results for critical bualioads and graphical results
for buckling mode shapes of CCFF, CSFF and SSREpleith ¥ =0.25 under both
uniaxial or biaxial in-plane compressive loads @mesented in this section to
demonstrate the validity of the symplectic supeitpms method and accuracy of the

analytic solutions obtained. The non-dimensionalticaii buckling loads,

Pcrbz/(nzD), are compared with those by FEM via the commersiaiftware

ABAQUS (2013), where the thickness-to-width ratfatlze plates is uniformly set to
be 10°, and the thin shell element with the uniform sifel/400 of the minimum

in-plane dimension are taken to give the numesoaltions as reliable as possible.
We first consider the plates with 12 different agp®tios subjected to uniaxial
loads. For CCFF and SSFF plates, the loads capfed in eithex- (k =1, y=0)

ory- (k =0, y=1) direction due to symmetry, but the two loadingesashould be

differentiated for CSFF plates. Accordingly, foutaenples are examined, with the
first ten non-dimensional critical buckling loaddtlated in Tables 1-4, respectively.
The corresponding first ten buckling mode shapesgofre plates are illustrated in
Figs. 2-5, respectively. We then focus on the platgh the same aspect ratios as

above but subjected to biaxial loads. Both=1, y=1 and k=1, y=5 are

investigated for each type of plates. Tables 5@ntland 8, 9 and 10 give the first ten
non-dimensional critical buckling loads for CCFFSFF and CSFF plates,

respectively. Figures 6-11 plot the correspondingt ten buckling mode shapes of
square plates. The convergence study is performedallothe present cases.

Corresponding to Tables 1-10, the plates waitl+0.4 and 4.5 are examined for each
case, as shown in Tables 11-20. It is found thaptiesent solutions converge rapidly,
with only tens of series terms yielding sufficieatcuracy, as reflected by the bold
convergent results. For convenience, 80 seriesstarmadopted throughout this study
to ensure the five significant figures accuracys lhoted that all the current solutions,
including both the critical buckling loads and math@pes, agree very well with FEM;
thus, the validity and accuracy of the new analytiethod and solutions are well

12



confirmed.

5. Conclusions

The new analytic buckling solutions of rectangulaintplates with two free
adjacent edges are obtained by the symplectic gagiion method. Since the present
solution procedure avoids any predeterminationsghef solution forms, it offers a
novel approach to tackling the buckling problemsptdtes without two opposite
edges simply supported, which can rationally yralore analytic solutions that cannot
be achieved by conventional analytic methods. Eheds that are settled in this study
represent one of the most difficult classes sinath the free edges and free corner
have been involved. A large number of numerical graphical results for CCFF,
SSFF and CSFF plates provide useful benchmark&ifore studies. The follow-up
work based on the symplectic superposition methagt mvolve bending, vibration,
and buckling of the plates with inhomogeneous nelteisuch as the functionally
graded materials (Mahi and Tounsi, 2015; Bousahtd.£2016; Bellifa et al., 2017).
Some variants of the thin plate structures sucthigk plates, sandwich plates, and
cross-ply laminated plates (Bouderba et al., 2Elg4aina et al., 2017; Menasria et
al., 2017; Chikh et al., 2017) may also be invedéd under the same solution

framework.
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Tables

Table 1. First ten buckling load factorsPcrbz/(nz D) , of uniaxially loaded CCFF plates.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present 2.0393 6.6950 14.460 16.805 21.128 431.6 39.202 42.840 44.056 51.562
FEM 2.0395 6.6963 14.492 16.820 21.161 31.693 29.44 42.980 44,262 51.704
0.6 Present 1.2731 6.1922 7.1549 15.057 17.166 317.7 22.795 31.075 34.194 34.358
FEM 1.2731 6.1951 7.1594 15.068 17.180 17.784 22.84 31.123 34.255 34.543
0.8 Present 1.0650 4.0624 6.4595 10.210 14.280 666.7 17.938 19.723 25.706 29.817
FEM 1.0650 4.0642 6.4607 10.225 14.292 16.778 17.96 19.778 25.763 29.857
1 Present 1.0105 2.9500 6.2562 6.8231 12.188 12.63116.183 16.698 20.601 23.569
FEM 1.0105 2.9507 6.2577 6.8288 12.195 12.655 16.20 16.712 20.667 23.612
1.5 Present 0.98948 2.1724 3.4416 5.8716 6.3891 5294  11.077 11.687 13.830 14.645
FEM 0.98947 2.1726 3.4428 5.8753 6.3909 9.4655 821.0 11.694 13.858 14.659
2 Present 0.93862 2.0315 2.7356 3.7850 5.6071 6.308 8.0612 10.397 10.887 11.000
FEM 0.93860 2.0317 2.7360 3.7863 5.6110 6.3093 04.07 10.401 10.892 11.017
25 Present 0.91392 1.7075 2.4097 3.4205 4,1870 198.4 6.3255 7.2983 9.4666 10.151
FEM 0.91390 1.7075 2.4101 3.4213 4.1883 5.4232 6832 7.3055 9.4794 10.155
3 Present 0.90996 1.5647 1.9632 2.7735 3.7618 4.787 5.6052 6.2655 6.8958 8.5440
FEM 0.90994 1.5648 1.9634 2.7742 3.7633 4.7898 79.60 6.2670 6.9013 8.5541
35 Present 0.90971 1.5396 1.7119 2.2750 29960 178.9 4.9916 5.9813 6.4110 6.9997
FEM 0.90969 1.5396 1.7120 2.2753 2.9968 3.9192 4699 5.9840 6.4163 7.0032
4 Present 0.90916 1.5038 1.6443 1.9932 2.4840 5.184 4.0104 4.9603 6.0332 6.2826
FEM 0.90914 1.5038 1.6443 1.9934 2.4845 3.1855 2201 4.9633 6.0376 6.2841
45 Present 0.90886 1.4506 1.6071 1.9191 2.1654 902.6 3.3224 4.0753 4.9329 5.8579
FEM 0.90884 1.4506 1.6072 1.9192 2.1657 2.6909 35.32 4.0772 4.9359 5.8622
5 Present 0.90881 1.4327 1.5242 1.8441 2.0822 2.393 2.8430 3.4419 4.1268 4.8945
FEM 0.90879 1.4328 1.5242 1.8443 2.0823 2.3938 37.84 3.4431 4.1288 4.8975
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Table?2

First ten buckling load factors of uniaxially load8SFF plates.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present  0.39373 4.7651 6.6099 11.052 15.180 25.156 28.652 9.438 30.600 38.965
FEM 0.3937 4.7659 6.6158 11.058 15.189 25.254 28.71 29.504 30.652 39.069
0.6 Present 0.40598 3.1245 5.3468 9.2561 11.446 5734. 15.745 25.214 25.716 28.921
FEM 0.40594 3.1256 5.3474 9.2592 11.466 14.582 645.7 25.312 25.747 28.980
0.8 Present 0.41548 1.9433 5.2125 6.6017 10.326 8291. 14.323 14.758 18.565 23.975
FEM 0.41545 1.9436 5.2129 6.6077 10.331 11.835 5.3 14.772 18.597 23.998
1 Present 0.42232 1.3960 4.3482 5.1619 8.9316 9.324 13.252 14.581 14.991 16.382
FEM 0.42230 1.3961 4.3506 5.1624 8.9348 9.3370 6B3.2 14.590 15.000 16.422
15 Present 0.43227 0.85866 2.1774 4.3660 5.1561 4671. 8.0852 9.0921 11.439 11.791
FEM 0.43224 0.85865 2.1778 4.3684 5.1566 7.4751 8780 9.0956 11.458 11.800
2 Present 0.43730 0.67360 1.4151 2.6504 4.3753 25.15 6.6241 7.8881 8.9105 9.3265
FEM 0.43725 0.67352 1.4152 2.6511 4.3777 5.1513 2986 7.8901 8.9135 9.3379
25 Present 0.44020 0.58960 1.0636 1.8536 2.9607 3814d. 5.1508 6.1437 7.8771 8.1581
FEM 0.44018 0.58954 1.0636 1.8538 2.9616 43833 4731 6.1481 7.8792 8.1623
3 Present 0.44210 0.54490 0.87350 1.4215 2.1899 78B.1 4.3848 5.1508 5.8357 7.4827
FEM 0.44205 0.54491 0.87352 1.4216 2.1903 3.1798 3874 5.1437 5.8385 7.4879
3.5 Present 0.44330 0.51860 0.75950 1.1617 1.7258 .4522 3.3411 4.3898 5.1398 5.6238
FEM 0.44333 0.51861 0.75954 1.1617 1.7258 2.4523 3413 4.3898 5.1398 5.6238
4 Present  0.44430 0.50210 0.68610 0.99310 1.4241 1.9801 2.660 3.4641 4.3901 5.1531
FEM 0.44424 0.50194 0.68599 0.99340 1.4248 1.9805 B3.660 3.4650 4.3918 5.1350
45 Present  0.44497 0.49084 0.63595 0.87845 1.2189 1.6575 2.194 2.8296 3.5633 4.3947
FEM 0.44491 0.49079 0.63588 0.87838 1.2188 1.6575 2.194 2.8298 3.5632 4.3934
5 Present 0.44550 0.48310 0.60030 0.79650 1.0719 4268. 1.8614 2.3758 2.9702 3.6459
FEM 0.44540 0.48301 0.60025 0.79637 1.0718 1.4267 .861B 2.3755 2.9695 3.6429
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Table3

First ten buckling load factors of uniaxially load€SFF plates withk =1, y=0.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present  0.58085 6.0139 6.9798 12.191 17.035 25.222 29.613 1.408 36.969 42.820
FEM 0.58078 6.0167 6.9847 12.197 17.047 25.321 129.7 31.452 37.047 42.911
0.6 Present 0.71109 3.2230 6.5130 11.388 13.127 7645. 17.263 25.268 28.074 29.734
FEM 0.71105 3.2240 6.5141 11.406 13.135 15.778 807.2 25.367 28.107 29.833
0.8 Present 0.84515 2.1117 6.1730 6.7835 11.747 3614. 16.384 18.103 19.790 25.297
FEM 0.84512 2.1120 6.1747 6.7887 11.753 14.391 966.3 18.122 19.815 25.397
1 Present 0.96085 1.6805 4.4448 6.2860 9.4059 50.37 14.198 16.280 16.628 20.889
FEM 0.96083 1.6805 4.4471 6.2870 9.4185 10.379 1.2 16.316 16.645 20.929
15 Present 0.95139 1.8770 2.3496 4.4691 6.2839 683.5 10.202 11.298 11.576 12.716
FEM 0.95136 1.8770 2.3500 4.4715 6.2851 7.5761 080.2 11.306 11.592 12.725
2 Present 0.90290 1.6584 2.7147 2.8089 4.4814 B.251 6.7557 9.4205 9.9766 10.425
FEM 0.90288 1.6585 2.7148 2.8095 4.4838 6.2526 18.76 9.4332 9.9802 10.429
25 Present 0.90450 1.4287 2.0508 3.0987 3.8421 884.4 6.1207 6.4087 8.2838 9.8240
FEM 0.90450 1.4287 2.0510 3.0997 3.8423 4.4913 4312 6.4113 8.2935 9.8274
3 Present 0.90970 1.4030 1.6804 2.3652 3.3121 4.493 5.1998 5.8842 6.3573 7.5710
FEM 0.90965 1.4030 1.6805 2.3656 3.3132 4.4958 0”20 5.8885 6.3587 7.5789
35 Present 0.90930 1.4439 1.5407 1.9422 2.6142 708.4 4.4970 5.6782 6.2268 6.9514
FEM 0.90926 1.4439 1.5407 1.9424 2.6148 3.4713 A49 5.6823 6.2282 6.9522
4 Present 0.90870 1.3814 1.6433 1.7191 2.1744 2.814 3.5930 45021 5.5333 6.2584
FEM 0.90866 1.3814 1.6433 1.7191 2.1744 2.8148 3859 4.5021 5.5333 6.2584
4.5 Present  0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 .6898 45042 5.4166
FEM 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 80.97 3.6895 4.5042 5.4166
5 Present 0.90880 1.3740 1.4386 1.6845 2.0592 2.149 2.5447 3.1124 3.7663 45034
FEM 0.90879 1.3740 1.4386 1.6846 2.0595 2.1498 5254 3.1134 3.7679 45058
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Table4

First ten buckling load factors of uniaxially lo@d€SFF plates withk =0, y=1.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present 2.9233 4.9338 8.8889 14.834 22.782 981.8 33.122 44.866 51.274 52.690
FEM 2.9233 4.9338 8.8889 14.834 22.782 31.891 23.12 44.866 51.274 52.690
0.6 Present 1.4078 3.4099 7.3667 13.258 14.375 121.3 24.298 26.072 31.320 33.778
FEM 1.4078 3.4099 7.3667 13.258 14.375 21.315 34.29 26.072 31.320 33.778
0.8 Present 0.88512 2.8823 6.8251 8.0815 12.816 6014. 18.523 20.795 22.967 26.567
FEM 0.88512 2.8823 6.8251 8.0815 12.816 14.601 2B8.5 20.795 22.967 26.567
1 Present 0.64676 2.6382 5.2068 6.6187 10.829 82.50 13.528 14.705 18.412 20.552
FEM 0.64672 2.6389 5.2073 6.6248 10.836 12.531 35 14.714 18.436 20.617
15 Present 0.41706 2.2908 2.4931 5.3841 6.3644 918.5 8.3101 12.321 12.723 13.124
FEM 0.41704 2.2911 2.4936 5.3853 6.3699 6.5937 63.31 12.343 12.732 13.131
2 Present 0.34014 1.3426 2.3339 3.6084 3.8588 8.304 7.2237 7.3842 8.9774 10.468
FEM 0.34014 1.3425 2.3347 3.6089 3.8593 6.3106 67.22 7.3889 8.9818 10.474
25 Present 0.30591 0.89829 2.2784 2.4472 3.1077 7064. 5.8881 6.2919 6.9116 7.7442
FEM 0.30591 0.89824 2.2791 2.4473 3.1085 47068 8988 6.2981 6.9178 7.7459
3 Present 0.28787 0.67482 1.6931 2.2792 2.8043 83.32 4.4027 5.4146 6.2630 6.6984
FEM 0.28788 0.67478 1.6931 2.2801 2.8051 3.3281 0384 5.4152 6.2693 6.7046
3.5 Present 0.27725 0.54884 1.2548 2.2599 2.4577 6603. 3.6638 4.0378 5.9102 6.1384
FEM 0.27726 0.54882 1.2547 2.2607 2.4578 2.6613 6486 4.0380 5.9112 6.1404
4 Present 0.27049 0.47139 0.98086 1.8878 2.2615 462.5 3.1004 3.2884 45779 4.8735
FEM 0.27050 0.47137 0.98081 1.8878 2.2624 2.5472 1005. 3.2891 45783 4.8747
45 Present 0.26592 0.42053 0.80241 1.4966 2.2516 .446@ 2.5150 3.0188 3.6630 4.1259
FEM 0.26593 0.42052 0.80237 1.4965 2.2525 2.4470 5152 3.0196 3.6631 4.1269
5 Present 0.26270 0.38539 0.68109 1.2200 2.0095 542.2 2.4341 2.8414 3.0061 3.6598
FEM 0.26271 0.38538 0.68106 1.2199 2.0095 2.2551 4343 2.8422 3.0062 3.6607
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Table5

First ten buckling load factors of biaxially loadE€FF plates withx =1, y=1.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present  1.8833 3.6713 6.5383 11.422 13.958 14.107 17.971 .9439 24.120 29.229
FEM 1.8835 3.6715 6.5417 11.438 13.982 14.136 08.00 19.992 24.171 29.332
0.6 Present  1.0559 2.3455 5.4064 6.0988 8.0403 10.487 12.605 .6565 17.426 18.182
FEM 1.0559 2.3458 5.4095 6.1041 8.0464 10.497 B2.62 15.681 17.468 18.224
0.8 Present 0.75464 1.7918 3.6606 4.6607 6.4791 838.1 9.6797 11.071 12.124 13.482
FEM 0.75460 1.7921 3.6623 4.6622 6.4843 8.1882 3%.69 11.084 12.143 13.498
1 Present 0.59800 1.4561 2.7454 3.8342 5.6991 $.534 6.8499 8.6032 10.815 11.355
FEM 0.59797 1.4564 2.7462 3.835 5.703 6.540 6.854 .61(8 10.824 11.375
15 Present 0.41254 0.94019 2.1897 2.3390 3.2390 3064%. 5.3511 6.0296 6.6454 6.9871
FEM 0.41252 0.94022 2.1903 2.3395 3.2400 43078 5483 6.0347 6.6503 6.9917
2 Present 0.33667 0.71184 1.4604 2.1360 2.5002 12.87 3.5870 45776 5.0921 6.0480
FEM 0.33667 0.71182 1.4606 2.1367 2.5008 2.8720 885 45792 5.0954 6.0524
25 Present 0.30133 0.58741 1.0461 1.8275 2.2334 2572. 2.8754 3.1909 3.8593 4.6766
FEM 0.30133 0.58739 1.0462 1.8278 2.2339 2.2578 76D.8 3.1920 3.8603 4.6789
3 Present 0.28311 0.50411 0.82717 1.3746 2.0078 19@.2 2.3945 2.5193 3.1943 3.3921
FEM 0.28311 0.50408 0.82717 1.3747 2.0083 2.2198 3951 2.5198 3.1950 3.3934
3.5 Present 0.27281 0.44419 0.69724 1.0859 1.6407 .156& 2.2079 2.2682 2.6220 2.8020
FEM 0.27281 0.44417 0.69722 1.0859 1.6410 2.1572 2085 2.2688 2.6227 2.8025
4 Present 0.26651 0.40073 0.61002 0.90129 1.3283 8573. 2.1416 2.2278 2.3230 2.4765
FEM 0.26652 0.40072 0.61000 0.90129 1.3284 1.8576 .1422 2.2286 2.3236 2.4770
4.5 Present  0.26242 0.36912 0.54573 0.77720 1.1080 1.5421 3.008 2.2097 2.2142 2.2357
FEM 0.26243 0.36911 0.54570 0.77718 1.1080 1.5423 .0099 2.2103 2.2149 2.2365
5 Present 0.25962 0.34588 0.49586 0.68887 0.95133.3021 1.7248 2.0986 21777 2.2218
FEM 0.25963 0.34588 0.49584 0.68885 0.95134 1.3022 1.7250 2.0991 2.1784 2.2226

21



Table6

First ten buckling load factors of biaxially loadE€FF plates withx =1, y=5.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present  1.0510 1.4150 1.9250 2.9640 45150 6.3500 7.0180 6108. 9.1150 9.2510
FEM 1.0514 1.4153 1.9255 2.9681 45272 6.3753 B.035 8.6447 9.1449 9.2785
0.6 Present 0.48680 0.72480 1.4813 2.5554 3.1037 0744. 4.2839 45561 5.0658 6.2625
FEM 0.48681 0.72483 1.4824 2.5595 3.1063 4.0811 9302 45622 5.0722 6.2907
0.8 Present 0.27610 0.55400 1.3500 1.7478 2.2468 6582. 2.7626 3.7466 41225 4.6151
FEM 0.27611 0.55408 1.3511 1.7485 2.2488 2.6611 6517 3.7513 4.1353 4.6213
1 Present 0.18278 0.49182 1.1211 1.3189 1.5151 2@.11 25177 2.9238 3.2591 4.0663
FEM 0.18278 0.49192 1.1213 1.3200 1.5156 2.1138 2235 2.9262 3.2635 4.0783
15 Present 0.099555 0.41799 0.54759 0.80759 1.25841.3308 1.6026 2.0247 2.3257 2.4582
FEM 0.099552  0.41807 0.54767 0.80771 1.2595 1.3313 1.6037 2.0257 2.3270 2.4628
2 Present 0.074479 0.27866 0.46016 0.59415 0.79061.1531 1.2636 1.4116 1.4622 1.8295
FEM 0.074479 0.27865 0.46030 0.59423 0.79076 1.1534 1.2648 1.4124 1.4629 1.8307
2.5 Present 0.064213 0.18983 0.43193 0.46739 0359070.80525 0.97097 1.2500 1.3450 1.4166
FEM 0.064213 0.18983 0.43200 0.46750 0.59084 08053 0.97112 1.2513 1.3460 1.4172
3 Present 0.059167  0.14227 0.32443 0.44726 0.52688.60545 0.74734 0.98427 1.1410 1.2483
FEM 0.059168 0.14226 0.32443 0.44742 0.52695 05055 0.74746 0.98442 1.1413 1.2495
3.5 Present 0.056357 0.11472 0.24558 0.42985 0446940.50414 0.63962 0.74115 0.90427 1.0996
FEM 0.056358 0.11472 0.24557 0.42993 0.46953 06042 0.63974 0.74121 0.90444 1.0998
4 Present 0.054645 0.097611 0.19434 0.35037 0.44760.48280 0.56944 0.59359 0.76512 0.85237
FEM 0.054646  0.097608 0.19433 0.35036 0.44783 03182 0.56951 0.59368 0.76526 0.85245
4.5 Present  0.053529 0.086366 0.16005 0.28192 0.43237 0.45622.49106 0.54662 0.66978 0.69271
FEM 0.053531 0.086364 0.16005 0.28191 0.43245 34156 0.49158 0.54674 0.66987 0.69280
5 Present 0.052763 0.078626  0.13630 0.23252 0.36670.44577 0.47408 0.51285 0.56674 0.62475
FEM 0.052765 0.078625 0.13629 0.23251 0.36671 03145 0.47423 0.51294 0.56681 0.62487
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Table7

First ten buckling load factors of biaxially load8&FF plates withe =1, y=1.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present 0.34749 2.1334 47288 6.5060 8.4314 9.9459 13.114 6.586 19.099 24.454
FEM 0.34744 2.1334 4.7309 6.5121 8.4380 9.9572 213.1 16.623 19.128 24.544
0.6 Present 0.31013 1.5311 2.9614 4.2154 5.3607 198.6  9.4085 11.220 12.878 14.159
FEM 0.31011 1.5312 2.9625 42171 5.3629 8.6250 0@42 11.239 12.896 14.177
0.8 Present 0.26398 1.2025 1.8740 3.6011 43555 10B.2 6.9825 8.2802 9.2503 11.451
FEM 0.26396 1.2026 1.8744 3.6018 4.3577 6.2157 66.98 8.2871 9.2624 11.462
1 Present 0.21804 0.98165 1.4206 2.9538 3.9133 9@.33 5.5776 6.4248 8.8135 8.9938
FEM 0.21802 0.98170 1.4208 2.9541 3.9154 43416 795 6.4282 8.8254 9.0032
15 Present 0.13122 0.62266 1.1056 1.7862 2.1704 5152. 3.9229 4.2338 4.9082 5.7874
FEM 0.13121 0.62265 1.1057 1.7864 2.1707 3.5159 2529 4.2363 4.9106 5.7900
2 Present 0.082621  0.44656 0.98472 1.1738 1.6222 3172. 2.6800 3.8248 3.9575 4.1900
FEM 0.082616  0.44654 0.98482 1.1740 1.6223 2.3178 .6802 3.8262 3.9595 4,1924
2.5 Present 0.055598 0.34134 0.75661 1.0410 1.34901.5913 2.0982 2.6538 3.0558 3.9127
FEM 0.055594  0.34132 0.75663 1.0411 1.3491 1.5916 .0982 2.6547 3.0563 3.9148
3 Present 0.039620 0.26813 0.58460 0.98927 1.1125 .2964 1.7282 1.9357 2.4798 2.8810
FEM 0.039617 0.26811 0.58459 0.98939 1.1126 1.2966 1.7284 1.9361 2.4801 2.8821
3.5 Present 0.029543  0.21418 0.47204 0.83121 1.02371.1852 1.4014 1.5996 2.0529 2.2171
FEM 0.029541  0.21417 0.47203 0.83125 1.0239 1.18531.4015 1.5998 2.0532 2.2176
4 Present 0.022828 0.17366 0.39210 0.67863 0.9927%.0823 1.1829 1.4303 1.6633 1.8858
FEM 0.022827 0.17365 0.39208 0.67864 0.99288 1.08241.1830 1.4305 1.6636 1.8860
4.5 Present 0.018147  0.14286 0.33138 0.56778 0887751.0169 1.1139 1.2901 1.3959 1.6795
FEM 0.018146  0.14285 0.33137 0.56778 0.87763 1.01701.1140 1.2902 1.3961 1.6796
5 Present 0.014761  0.11914 0.28334 0.48512 0.74460.99524 1.0617 1.1345 1.2804 1.4998
FEM 0.014760 0.11914 0.28333 0.48511 0.74464 08953 1.0619 1.1346 1.2805 1.4999
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Table 8

First ten buckling load factors of biaxially load8&FF plates withk =1, y=5.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present 0.23500 0.62000 1.2210 2.2200 3.5970 09086. 5.5240 5.8590 6.0890 6.9710
FEM 0.23539 0.62043 1.2212 2.2224 3.6052 5.0991 3885 5.8660 6.0966 6.9805
0.6 Present 0.15600 0.38300 0.98000 1.9450 2.3410 .593@ 3.0740 3.3870 4.0220 5.1560
FEM 0.15627 0.38300 0.98085 1.9473 2.3421 2.5945 (0753. 3.3949 4.0255 5.1758
0.8 Present 0.10400 0.30000 0.88800 1.3000 1.4990 .9030Q 2.0490 3.0080 3.2830 3.9290
FEM 0.10378 0.29957 0.88865 1.3003 1.4990 1.9058 0504 3.0110 3.2912 3.9323
1 Present 0.071635 0.26119 0.78553 0.90092 1.0112 .579a 1.8557 2.4594 2.6310 3.2432
FEM 0.071630 0.26120 0.78572 0.90130 1.0114 1.5795 1.8582 2.4612 2.6334 3.2512
15 Present 0.033826  0.22191 0.36684 0.54190 0682261.0853 1.1767 1.5098 1.8115 1.8581
FEM 0.033824  0.22193 0.36685 0.54192 0.82315 1.08561.1771 1.5103 1.8137 1.8592
2 Present 0.019203 0.18934 0.22552 0.38489 0.63540.80595 0.85843 0.99367 1.2542 1.3842
FEM 0.019202 0.18934 0.22554 0.38490 0.63549 08063 0.85863 0.99415 1.2545 1.3848
2.5 Present 0.012273  0.12504 0.20853 0.31211 0640980.58589 0.79599 0.82556 0.92083 1.1248
FEM 0.012273  0.12504 0.20856 0.31212 0.40986 04859 0.79635 0.82579 0.92131 1.1252
3 Present 0.0084959 0.085710  0.20308 0.25972 (229750.45286 0.57595 0.78760 0.81770 0.88395
FEM 0.0084954 0.085705 0.20311 0.25972 0.29754 2885 0.57597 0.78791 0.81803 0.88442
3.5 Present 0.0062224 0.061968 0.18748 0.20847 18126 0.37321 0.43018 0.61120 0.70619 0.80074
FEM 0.0062221 0.061964 0.18748 0.20849 0.26183 3237 0.43020 0.61126 0.70624 0.80124
4 Present 0.0047516 0.046732 0.14446 0.20212 (224460.30653 0.34975 0.49332 0.55123 0.76315
FEM 0.0047513 0.046729  0.14445 0.20215 0.24464 6830 0.34977 0.49335 0.55126 0.76330
4.5 Present 0.0037464 0.036436 0.11224 0.19971 98122 0.24855 0.31108 0.40855 0.45095 0.61557
FEM 0.0037462 0.036434 0.11224 0.19974 0.22952 8624 0.31110 0.40856 0.45097 0.61562
5 Present 0.0030294 0.029179 0.089287 0.18701 4203 0.23000 0.28640 0.33732 0.39072 0.50695
FEM 0.0030293 0.029178 0.089283 0.18702 0.20376 3002 0.28642 0.33733 0.39074 0.50697
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Table9

First ten buckling load factors of biaxially load€&FF plates withx =1, y=1.

a/b Methods Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 Present  0.50086 2.6272 5.8185 6.6464 9.3018 11.619 14.468 9.124 21.033 24.949
FEM 0.50081 2.6276 5.8223 6.6524 9.3092 11.635 864.4 19.166 21.081 25.045
0.6 Present 0.50481 1.9436 3.2728 5.0851 6.6032 5795 10.958 12.174 13.609 15.339
FEM 0.50477 1.9439 3.2740 5.0870 6.6081 9.5639 780.9 12.195 13.629 15.359
0.8 Present 0.47033 1.4899 2.3990 4.1449 5.9440 35B6.5 7.6548 9.2172 11.580 12.768
FEM 0.47030 1.4901 2.3996 4.1458 5.9490 6.5415 94.65 9.2247 11.597 12.785
1 Present 0.42640 1.1615 2.1627 3.3722 4.3147 8.704 6.4827 7.5580 9.0667 10.133
FEM 0.42638 1.1616 2.1633 3.3728 4.3170 5.7082 75.48 7.5633 9.0788 10.141
1.5 Present 0.34552 0.77591 1.7799 2.2118 2.7116 8893. 4.3413 5.7524 6.3011 6.6981
FEM 0.34551 0.77589 1.7802 2.2125 2.7121 3.8904 4383 5.7557 6.3065 6.7032
2 Present 0.30544 0.61728 1.1840 2.0785 2.2363 62.54 3.1926 4.1030 4.4677 5.7757
FEM 0.30544 0.61725 1.1840 2.0790 2.2369 2.5468 9321 4.1050 4.4691 5.7790
25 Present 0.28519 0.52228 0.890865  1.5597 2.17282.2022 2.5650 2.8788 3.5495 4.1606
FEM 0.28520 0.52225 0.89087 1.5599 2.1735 2.2029 5655 2.8795 3.5502 4.1628
3 Present 0.27398 0.45605 0.731998 1.1871 1.8465 1782. 2.2187 2.4443 2.8629 3.1478
FEM 0.27399 0.45603 0.73198 1.1872 1.8468 2.1790 219. 2.4448 2.8636 3.1486
3.5 Present 0.26723 0.40861 0.631986  0.95978 1.45782.0358 2.1819 2.2389 2.3681 2.7148
FEM 0.26724 0.40859 0.63196 0.95979 1.4580 2.0363 .1828 2.2396 2.3686 2.7153
4 Present 0.26289 0.37446 0.560981 0.81353 1.1890 .6874 2.1242 2.1918 2.2274 2.3870
FEM 0.26290 0.37444 0.56096 0.81353 1.1891 1.6877 .12438 2.1924 2.2281 2.3876
4.5 Present  0.25995 0.34960 0.50697 0.71318 1.0041 1.4002 0.875 2.1554 2.1878 2.2288
FEM 0.25996 0.34959 0.50695 0.71316 1.0041 1.4003 .875B 2.1561 2.1884 2.2296
5 Present 0.25787 0.33119 0.46464 0.63972 0.87280.1901 1.5876 2.0181 2.1608 2.1933
FEM 0.25788 0.33118 0.46462 0.63970 0.87280 1.1902 1.5878 2.0186 2.1614 2.1939
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Table 10

First ten buckling load factors of biaxially load€&FF plates withk =1, y=5.

a/b Methods
2nd 3rd 5th 6th 7th 8th 9th 10th
0.4 Present 0.74033 1.5981 4.3521 5.2159 5.84176.2799 6.4892 7.3926
FEM 0.74038 1.5991 4.3640 5.2240 5088 6.2878 6.5153 7.4043
0.6 Present 0.54730 1.3913 2.5545 7718. 3.3641 4.1830 4.5080 6.0432
FEM 0.54740 1.3924 2.5572 27747 6633 4.1958 45135 6.0568
0.8 Present 0.49240 1.2632 1.6078 3862. 2.5225 3.5138 3.9377 4.1330
FEM 0.49252 1.2637 1.6082 2.3874 2725 3.5183 3.9430 4.1459
1 Present 0.46714 0.84043 1.2956 448.9 2.4470 2.5596 3.0822 3.6434
FEM 0.46725 0.84054 1.2968 1.9459 4508. 2.5623 3.0864 3.6464
15 Present 0.36672 0.47229 1.13231.2684 1.5381 1.6112 2.1663 2.3019
FEM 0.36672 0.47242 1.1325 1.2696 1.5392 1.6118 2.1674 2.3033
2 Present 0.22702 0.44865 0.671432.0087 1.2455 1.2899 1.4098 1.7567
FEM 0.22701 0.44879 0.67151 1.0089 1.2465 1.2905 1.4110 1.7579
25 Present 0.15985 0.39141 0654350.75105 0.85462 1.2410 1.2847 1.3413
FEM 0.060311 0.15984 0.39143 0.54368 0.75116 0.85473 420.2 1.2853 1.3424
3 Present 0.12408 0.28442 0.50090.57032 0.67722 0.92625 1.0129 1.2473
FEM 0.057000 0.12408 0.28441 0.50109 0.57038 0.67734 2669 1.0131 1.2486
3.5 Present 0.10307 0.21699 0145280.49670 0.59803 0.70195 0.82196 1.0449
FEM 0.10307 0.21698 0.45296 031968 0.59815 0.70202 0.82210 1.0451
4 Present 0.089793 0.17404 0.44430.47824 0.52683 0.57720 0.71024 0.81265
FEM 0.089790 0.17403 0.44455 33178 0.52690 0.57731 0.71036 0.81274
4.5 Present 0.080903 0.14539 0.41046 0.45112.47763 0.53681 0.62152 0.67101
FEM 0.080901  0.14538 0.41049 Q@51 0.47777 0.53694 0.62159 0.67112
5 Present 0.074676  0.12546 0.34010.44409 0.46761 0.50288 0.53382 0.60908
FEM 0.074675 0.12546 0.34013 Q444 0.46776 0.50297 0.53392 0.60920




Table 11

Convergence study for CCFF plates wikhi=1, y=0.

a/b Number of series terms  Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 10 2.0391 6.6995 14.460 16.824 21.128 31.690 39.201 .8382  44.059 51.647
80 2.0393 6.6950 14.460 16.805 21.128 31.644 39.202 42.840 44.056 51.562
90 2.0393 6.6950 14.460 16.805 21.128 31.644 39.202 .8402  44.056 51.562
4.5 10 0.90442  1.4498 1.6068 1.9164 2.1654 2.6880 3.3216 .0709 4.9220 5.7604
70 0.90886  1.4506 1.6071 1.9191 2.1654 2.6902 3.3224 4.0753 4.9329 5.8579
80 0.90886  1.4506 1.6071 1.9191 2.1654 2.6902 3.3224 .0753 4.9329 5.8579
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Table12
Convergence study for SSFF plates wikh=1, y=0.

a/b Number of series terms  Modes

1st 2nd 3rd

4th

9th 10th
0.4 10 0.39373  4.7652 6.6099 11.052 28.6529.439 30.600 38.965
40 0.39373  4.7651 6.6099 11.052 30.600 38.965
50 0.39373 4.7651 6.6099 11.052 28.6529.438 30.600 38.965
4.5 10 0.44497 0.49084 0.63594 0.87845 1.6575 1942. 3.5633 4.3947
30 0.44497 0.49084 0.63595 0.87845 3.5633 4.3947
40 0.44497 0.49084 0.63595 0.87845 1.6575 1942. 3.5633 4.3947
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Table 13

Convergence study for CSFF plates wikh=1, y=0.

a/b Number of series terms  Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 10 0.58103 6.0172 6.9808 12.192 17.052 25.222 29.613 1.449 36.972 42.818
80 0.58085 6.0139 6.9798 12.191 17.035 25.222 29.613 31.404 36.969 42.820
90 0.58085 6.0139 6.9798 12.191 17.035 25.222 39.61 31.404 36.969 42.820
45 10 0.90430 1.3602 1.5192 1.8576 1.9161 2.3704 2.9730 .6818 4.4885 5.3491
70 0.90872  1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 3.6895 4.5042 5.4166
80 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 P.978 3.6895 45042 5.4166
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Table 14
Convergence study for CSFF plates wikh=0, y=1.

a/b Number of series terms  Modes

1st 2nd 3rd 4th 9th 10th
0.4 10 2.9235 4.9338 8.8842 14.814 33.025 5974 51.173 52.583
30 2.9233 4.9338 8.8889 14.834 51.274 52.690
40 2.9233 4.9338 8.8889 14.834 33.122 .8684 51.274 52.690
45 10 0.26582 0.42049 0.80241 1.4965 2.515(8.0184 3.6633 4.1247
70 0.26592  0.42053 0.80241  1.4966 3.6630 4.1259
80 0.26592 0.42053 0.80241 1.4966 2.515(08.0188 3.6630 4.1259
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Table 15
Convergence study for CCFF plates wikh=1, y=1.

a/b Number of series terms  Modes

9th

10th

1st 2nd 3rd 4th
0.4 10 1.8831 3.6721 6.5386 11.426
70 1.8833 3.6713 6.5383 11.422
80 1.8833 3.6713 6.5383 11.422
45 10 0.26231 0.36927 0.54568 0.77642
70 0.26242 0.36912 0.54573 0.77720
80 0.26242 0.36912 0.54573 0.77719

17.970 .9529

17.971 .9439
2.009 2.2102

3.008 2.2097

24.113
24.120
24.120
2.2139
2.2142
2.2142

29.239
29.229
29.229
2.2355
2.2357
2.2357
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Table 16
Convergence study for CCFF plates wikhi=1, y=5.

a/b Number of series terms  Modes

1st 2nd 3rd
0.4 10 1.0512 1.4144 1.9247
70 1.0510 1.4150 1.9250
80 1.0510 1.4150 1.9250
4.5 10 0.053510 0.086411 0.16021
70 0.053529 0.086366 0.16005
80 0.053529 0.086366 0.16005

2.9638
2.9640
2.9640

0.28233
0.28192
0.28192
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Table 17
Convergence study for SSFF plates wikh=1, y=1.

a/b Number of series terms  Modes

9th 10th

1st 2nd 3rd
0.4 10 0.34749  2.1334 4.7289
20 0.34749 2.1334 47288
30 0.34749  2.1333 4.7288
4.5 10 0.018147 0.14286
30 0.018147 0.14286  0.33138
40 0.018147 0.14286

0.33138

6.5060
6.5060
6.5060

0.56784
0.56778
0.56778

$3.11 16.587

13.114 6.586
1.0169.1139

1.0169 13%.1

19.101 24.455
19.099 24.454
19.099 24.454
1.3961 1.6796
1.3959 1.6795
1.3959 1.6795
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Table 18
Convergence study for SSFF plates wikh=1, y=5.

ab Number of series terms  Modes

1st 2nd 3rd
0.4 10 0.23541 0.62045
30 0.23500 0.62000 1.2210
40 0.23500 0.62000 1.2210
4.5 10 0.0037464 0.036436 0.11224
20 0.0037464 0.036436 0.11224
30 0.0037464 0.036436 0.11224

1.2208

2.2199
2.2200
2.2200

0.19971
0.19971
0.19971
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Table 19

Convergence study for CSFF plates wikh=1, y=1.

a/b Number of series terms  Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.4 10 0.50099 2.6279 5.8200 6.6478 9.3024 11.628 14.470 9.143 21.036 24.949
50 0.50086  2.6272 5.8185 6.6464 9.3018 11.619 14.468 19.124 21.033 24.949
60 0.50086 2.6272 5.8185 6.6464 9.3018 11.619 84.46 19.124 21.033 24.949
45 10 0.25983 0.34958 0.50680 0.71204 1.0021 1.3978 2.872 2.1553 2.1879 2.2286
70 0.25995 0.34960 050697 0.71318  1.0041 1.4002 1.8750 2.1554 2.1878 2.2288
80 0.25995 0.34960 0.50697 0.71318 1.0041 1.4002 8750. 2.1554 2.1878 2.2288
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Table 20
Convergence study for CSFF plates wikh=1, y=5.

a/b Number of series terms  Modes
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.4 10 0.31578 0.74045 1.5984 2.7657 4.3533 5.2178 25.84 6.2813 6.4920 7.3952

50 0.31573 0.74033 1.5981 2.7649 4.3521 5.2159 5.8417 6.2799 6.4892 7.3926

60 0.31573 0.74033 1.5981 2.7649 4.3521 5.2159 13.84 6.2799 6.4892 7.3926
45 10 0.052922 0.080896 0.14539 0.25643 0.41030 0.4511147789 0.53656 0.62127 0.67079

80 0.052943 0.080903 0.14539 0.25647 0.41046 0.45112 0.47763 053681 0.62152 0.67101

90 0.052943 0.080903 0.14539 0.25647 0.41046 0.4511247763 0.53681 0.62152 0.67101
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Research Highlights

> Buckling of rectangular plates with two free adjacent edgesis analytically solved.
> Novel symplectic superposition method is further developed for plate buckling.
> Disgtinctive merit of rigorous derivation helps to access new analytic solutions.



