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Abstract 

This paper deals with a classic but very difficult type of problems, i.e., pursuing 

analytic buckling solutions of biaxially loaded rectangular thin plates with two free 

adjacent edges that are characterized by having both the free edges and a free corner. 

The primary challenge is to find the solutions satisfying both the governing high-order 

partial differential equations (PDEs) and non-Lévy-type boundary constraints. Here, 

an up-to-date symplectic superposition method is developed for the issues, which 

yields the analytic solutions by converting the problems to be solved into the 

superposition of two elaborated subproblems that are solved by the symplectic 

elasticity approach. The distinctive merit of the method is that a direct rigorous 

derivation helps to access the analytic solutions without any assumptions/prior 

knowledge of the solution forms, which is attributed to the implementation in the 

symplectic space-based Hamiltonian system rather than in the classic Euclidean 

space-based Lagrangian system. As the important outputs, comprehensive new 

analytic results are obtained, with 1200 critical buckling loads and 100 buckling mode 

shapes presented, which are all well validated by the refined finite element analysis. 

The rapid convergence and favorable accuracy of the present method make it 

competent as a benchmark one for similar problems. 

 

Keywords: analytic solution; plate buckling; free edge; free corner; symplectic 

superposition method. 
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1. Introduction 

Plates are widely used in various engineering structures, including bridge decks, 

ship superstructures, panels in aircrafts, column supported slabs in buildings, etc. 

There have been many investigations on the mechanical behaviors of the plates, 

among which the buckling under in-plane compressive loading represents a major 

mode of failure, and thus received much attention over the past decades. The key 

fundamental issue for plate buckling analysis involves seeking the critical buckling 

loads and associated buckling mode shapes, which are required to satisfy the 

governing high-order partial differential equations (PDEs) under prescribed boundary 

conditions, in an analytic way or by the numerical approaches. Therefore, the solution 

methods are of much importance in handling the buckling problems of plates. 

Various effective numerical methods have been developed to conduct the buckling 

analysis of plates. For a brief overview of the recent progress in the field, some 

typical methods are introduced in this paragraph. Ravari et al. (2013, 2014) used the 

finite difference method to study the buckling behavior of both rectangular and 

circular annular nanoplates; the method was proved to be powerful for determination 

of the buckling loads as well as buckling modes with little computational effort. 

Moradi and Taheri (1999) investigated the delamination buckling response of a 

composite panel containing through-the-width delamination by the implementation of 

the differential quadrature (DQ) technique, which exhibited high efficiency in treating 

similar problems. Civalek et al. (2010, 2008) adopted the discrete singular 

convolution method for buckling analysis of plate structures, which demonstrated the 

suitability of the method for the problems considered due to its simplicity. Li et al. 

(2016a) employed a transfer function method to study the buckling response of 

rectangular plates resting on tensionless foundations, revealing that the boundary 

conditions at the loaded edges (end conditions) significantly affect the contact 

buckling performance. Lopatin and Morozov (2014) carried out an approximate 

buckling analysis of a rectangular orthotropic plate with two opposite edges clamped 

and another two edges free using the generalized Galerkin method, which could 

facilitate quick, reliable and accurate calculations of the critical buckling loads. Bui et 

al. (2011) proposed a meshfree moving Kriging interpolation method incorporating 

the shear-locking elimination technique for buckling analysis of thick plates, which 

was proved to be robust, effective and highly accurate. Natarajan et al. (2014) studied 
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the effect of local defects on the buckling behavior of functionally graded material 

plates subjected to mechanical and thermal load by the partition of unity method, 

providing a useful guideline for the design of plates with cracks and cutouts. Lal and 

Ahlawat (2015) took the differential transform method to successfully solve the 

differential equation governing the dynamic buckling of simply supported and 

clamped functionally graded circular plates subjected to uniform in-plane force. 

Meziane et al. (2014) presented an efficient and simple refined theory for buckling 

and free vibration of exponentially graded sandwich plates under various boundary 

conditions, where a method with approximate admissible functions was adopted for 

solution. Similar solution methods were also adopted for functionally graded 

sandwich plates (Abdelaziz et al., 2017) and shear-deformable composite beams (Kaci 

et al., 2018). Except for the newly developed methods, some classic methods, with 

proper modifications or new applications, are still prevalent for solving the buckling 

problems of various plates, e.g., the Ritz energy method (Mijuskovic et al., 2015; 

Mirzaei and Kiani, 2016) and finite element method (FEM) (Asemi et al., 2015; 

Jeyaraj, 2013; Komur and Sonmez, 2015). 

It is noted that the advanced numerical methods are often qualified for the 

buckling solutions of plates with acceptable errors such that they have been widely 

adopted as effective tools for the analyses and designs, especially for the plates with 

complex loading and boundary conditions. Nevertheless, developing novel analytic 

approaches as well as pursuing new analytic solutions is still a crucial issue, which is 

essential for the development of the plate theory. It is well acknowledged that the 

analytic solutions are valuable for providing the benchmark results for validation of 

various numerical/approximate methods, and are very useful for rapid parametric 

analysis and optimization. Despite this, analytic buckling solutions of plates have 

been far from complete due to the difficulty in exploring the solutions that satisfy the 

high-order PDEs under prescribed boundary constraints. In recent years, very few 

novel analytic methods/solutions have been found for plate buckling problems. For 

example, an analytic method for decoupling the coupled stability equations was 

introduced for moderately thick functionally graded rectangular plates with two 

opposite edges simply supported by Mohammadi et al. (2010), and for moderately 

thick functionally graded sector and annular sector plates with simply supported edges 

by Naderi and Saidi (2011a, b). An optimized hyperbolic unified formulation was 

presented by Mantari and Monge (2016) for analytic buckling solutions of simply 
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supported functionally graded sandwich plates. The classic variables separation 

method was applied by Moslemi et al. (2017) to solve the buckling problems of thick 

rectangular transversely isotropic simply supported plates. While finding that some 

new analytic approaches have been derived, it is noted that the main deficiency in the 

field is that the analytic solutions were mostly restricted to the Lévy-type plates (i.e., 

those with at least two opposite edges simply supported), but there have been rare 

reports on the non-Lévy-type plates that are more commonly encountered in 

engineering practice. This situation motivates the present exploration of new analytic 

solutions that have not been reported. 

We recently proposed a novel analytic symplectic superposition method with 

applications to some plate problems such as bending (Li et al., 2015a; Li et al., 2017; 

Li et al., 2015b), vibration (Li et al., 2016b; Li et al., 2018) and buckling (Wang et al., 

2016). The method skillfully combines the superposition method and symplectic 

elasticity approach that was pioneered by Yao et al. (2009) and well extended by Lim 

et al. (Lim, 2010; Lim et al., 2009; Lim and Xu, 2010) and Li et al. (2015a, 2016b, 

2015b, 2018) for plate problems. The solution procedure involves converting the 

problem to be solved into the superposition of several elaborated subproblems that 

can be solved by the symplectic elasticity approach. The method is realized in the 

symplectic space-based Hamiltonian system, which is quite different from any other 

analytic methods that are implemented in the Euclidean space and Lagrangian system. 

The primary advantage of the method is the potential of access to more analytic 

solutions because it is inherently rigorous without assumptions on the solution forms, 

which cannot be achieved by the classic semi-inverse methods. Till now, the only 

buckling problem that has been solved by the symplectic superposition method is for 

a uniaxially compressed rectangular thin plate with combinations of simply supported 

and clamped edges, but there has been no report of its extension to non-Lévy-type 

plates with free edges, which are more difficult issues and have not been well figured 

out (Wang et al., 2016). 

The objective of this paper is to further develop the symplectic superposition 

method for accurate buckling analysis of biaxially loaded rectangular thin plates with 

two free adjacent edges. This class of problems has the feature of having both the free 

edges and a free corner in a plate, which increases the solution difficulty. Three types 

of boundary conditions for the plates are studied, i.e., those with two adjacent edges 

free and the other two edges (i) clamped (CCFF), (ii) simply supported (SSFF), or (iii) 
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clamped-simply supported (CSFF). Here, anticlockwise denotation of the boundary 

conditions is adopted for a plate, starting from the bottom edge (Fig. 1a), with 

“F”=free, “C”=clamped, and “S”=simply supported. Comprehensive analytic results 

are obtained and shown in ten tables and ten figures, corresponding to 1200 numerical 

results for critical buckling loads and 100 buckling mode shapes, respectively. Very 

rapid convergence is observed for all of the present solutions by the convergence 

study, as reflected in another ten tables. Very good agreement with the FEM validates 

the present solutions, which can be regarded as the benchmarks for comparison with 

the future numerical/approximate approaches. 

2. Governing equation and fundamental symplectic analytic solutions 

in the Hamiltonian system 

2.1. Governing equation of a buckled plate in the Hamiltonian system 

Applying the Hellinger-Reissner variational principle in combination with the 

Lagrangian multiplier method, the governing equations of a buckled thin plate 

occupying the domain Ω  in the rectangular coordinate system oxy can be described 

by the following Hamiltonian system-based variational principle (Wang et al., 2016): 
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Here, HΠ  is the Hamiltonian functional; w is the out-of-plane deflection of the 

plate; D is the flexural stiffness; ν is the Poisson's ratio; T  is the Lagrangian 

multiplier; θ  is an introduced quantity. The internal forces per unit distance in the 

plate include the shearing forces xQ  and yQ , bending moments xM  and yM , 

twisting moment xyM , shearing membrane force xyN , and normal membrane forces 

xN  and yN . The constant normal membrane forces and zero shearing membrane 

force are assumed for convenience. According to Eq. (1), we obtain 
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equivalent shearing force. H  is a Hamiltonian operator matrix satisfying 

T =H JHJ , in which 2

2

0

0

 
=  − 

I
J

I
 is the symplectic matrix with 2I  being the 

2 2×  unit matrix (Yao et al., 2009). Therefore, Eq. (2) serves as the governing dual 

equation of the buckled plate in the Hamiltonian system, with the generalized 

displacements (w  and θ ) and generalized forces (T  and yM ) being the dual 

variables. 

2.2. Fundamental symplectic analytic solutions for the subproblems 

Buckling of a CCFF rectangular thin plate with length a and width b (Fig. 1a) is 

focused on, which is converted into the superposition of two elaborated subproblems, 

as shown in Figs. 1b and 1c. The biaxial uniform in-plane loads with intensity Pκ  

and Pγ  are applied in the x- and y- directions, respectively, where κ  and γ  are 

the loading coefficients that govern the load magnitudes. Uniaxial loading is realized 

when either κ  or γ  becomes zero. In the first subproblem, the edge along 0x =  

is slidingly clamped, and that along x a=  is simply supported. The slope 

represented by ( )1,3,5, cosn n nE xα∞
=Σ

L
 and bending moment represented by 

( )1,3,5, cosn n nF xα∞
=Σ

L
 are applied along the slidingly clamped edge at 0y =  and 

simply supported edge at y b= , respectively. Another subproblem is on the plate 

with 0y =  slidingly clamped and y b=  simply supported. The slope represented 

by ( )1,3,5, cosn n nG yβ∞
=Σ

L
 and bending moment represented by ( )1,3,5, cosn n nH yβ∞

=Σ
L

 

are distributed along the slidingly clamped edge at 0x = and simply supported edge 
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at x a= , respectively. Here, ( )2n n aα π= , ( )2n n bβ π= , nE , nF , nG  and nH  

are the coefficients of the half-cosine series expansion. 

Substituting xN Pκ= −  and yN Pγ= −  into Eq. (2), we have the governing 

equation of the first subproblem (Fig. 1b). Exchanging x  and y , a  and b , and 

κ  and γ , we have the governing equation of the second subproblem (Fig. 1c). In the 

symplectic space, the separation of variables holds for solving Eq. (2), i.e., 

( ) ( )x Y y=Z X , with ( ) ( ) ( ) ( ) ( ) T
, , , yx w x x T x M xθ =  X  as a unary vector of x 

and ( )Y y  a unary function of y. Therefore, ( ) ( )d dY y y Y yµ=  and 

( ) ( )x xµ=HX X  are deduced from Eq. (2), where µ  and ( )xX  are respectively 

the eigenvalue and eigenvector of the Hamiltonian matrix H . Applying the boundary 

conditions ( ) ( )
0 0

0xx x
w x x V x

= =
∂ ∂ = =  and ( ) ( ) 0xx a x a

w x M x
= =

= = , the 

eigenvalues and eigenvectors for the first subproblem are 
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for n=1, 3, 5, … (i=1, 2, 3 and 4), where R P D= . 

Based on the eigenvectors for the first subproblem, the state vector Z is expanded 

according to the symplectic orthogonality and conjugacy (Yao et al., 2009), yielding 

 
4

1,3,5, 1
in y

in inn i
C eµ∞

= =
=∑ ∑Z X

L
 (5) 

The mode shape function, denoted by ( )1 ,w x y , is thus obtained by 

 ( ) ( )4

1 1,3,5, 1
, cosin y

in nn i
w x y C e xµ α∞

= =
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L
  (6) 

where the constants inC  (n=1, 3, 5, …; i=1, 2, 3 and 4) are determined by 

substituting the boundary conditions at y=0 and y=b, 
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into Eq. (5). The out-of-plane deflection solution is thus obtained as 
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where ( )2 2
1 1 2n n n nRε µ γ µ ν α = + − −   and ( )2 2

3 3 2n n n nRζ µ γ µ ν α = + − −  . Using 

the coordinates exchange (Exchanging x  and y , a  and b , κ  and γ , and 

replacing nE  with nG , and nF  with nH ), the solution of the second subproblem 

(Fig. 1c), denoted by ( )2 ,w x y , can be simply obtained. 

3. Analytic buckling solutions of the plates with two free adjacent 

edges 

For a CCFF plate, zero bending moment must be satisfied at 0x =  and 0y = , 

and zero slope must be satisfied at x a=  and y b= , i.e., 
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Substituting Eq. (8) (for ( )1 ,w x y ) and its variant (for ( )2 ,w x y ) into Eq. (9), and 

expanding the polynomials that arise as the half-cosine series, followed by 

comparison of coefficients, we have the following equivalent conditions of Eq. (9). 

For 0x = , we have 
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for 1,3,5,i = L ; for 0y = , we have 
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for 1,3,5,i = L ; for x a= , we have 
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for 1,3,5,i = L ; and for y b= , we have 
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for 1,3,5,i = L . Here, 
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It is obvious that the constants in Eqs. (10)-(13) cannot be all zero, otherwise there 

is no buckling for the plate. The existence of non-zero solutions requires that the 

determinant of the coefficient matrix given by the four sets of simultaneous 

homogeneous algebraic equations with respect to nE , nF , nG  and nH  

( 1,3,5,n = L ) be zero, from which we obtain the critical buckling load solutions. 

Substitution of a set of non-zero constant solutions into Eq. (8) (for ( )1 ,w x y ) and its 

variant (for ( )2 ,w x y ), followed by their summation, the mode shape solutions are 

obtained. It is appreciated that the solutions can be obtained as accurate as desired by 

increasing the series terms in calculation.  

The other cases of the plates with two free adjacent edges, i.e., CSFF and SSFF 

plates, can be easily deduced from the solutions of CCFF plates. By equating nH  

( 1,3,5,...n = ) to zero and eliminating Eq. (12), solving the remaining three sets of 

equations yields the solutions of CSFF plates. By equating both nF  and nH  to zero 
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and eliminating both Eqs. (12) and (13), solving the remaining two sets of equations 

yields the solutions of SSFF plates. 

4. Comprehensive numerical and graphical results 

Comprehensive numerical results for critical buckling loads and graphical results 

for buckling mode shapes of CCFF, CSFF and SSFF plates with 0.25ν =  under both 

uniaxial or biaxial in-plane compressive loads are presented in this section to 

demonstrate the validity of the symplectic superposition method and accuracy of the 

analytic solutions obtained. The non-dimensional critical buckling loads, 

( )2 2
crP b Dπ , are compared with those by FEM via the commercial software 

ABAQUS (2013), where the thickness-to-width ratio of the plates is uniformly set to 

be 310− , and the thin shell element with the uniform size of 1 400 of the minimum 

in-plane dimension are taken to give the numerical solutions as reliable as possible. 

We first consider the plates with 12 different aspect ratios subjected to uniaxial 

loads. For CCFF and SSFF plates, the loads can be applied in either x- ( 1κ = , 0γ = ) 

or y- ( 0κ = , 1γ = ) direction due to symmetry, but the two loading cases should be 

differentiated for CSFF plates. Accordingly, four examples are examined, with the 

first ten non-dimensional critical buckling loads tabulated in Tables 1-4, respectively. 

The corresponding first ten buckling mode shapes of square plates are illustrated in 

Figs. 2-5, respectively. We then focus on the plates with the same aspect ratios as 

above but subjected to biaxial loads. Both 1κ = , 1γ =  and 1κ = , 5γ =  are 

investigated for each type of plates. Tables 5 and 6, 7 and 8, 9 and 10 give the first ten 

non-dimensional critical buckling loads for CCFF, SSFF and CSFF plates, 

respectively. Figures 6-11 plot the corresponding first ten buckling mode shapes of 

square plates. The convergence study is performed for all the present cases. 

Corresponding to Tables 1-10, the plates with a/b=0.4 and 4.5 are examined for each 

case, as shown in Tables 11-20. It is found that the present solutions converge rapidly, 

with only tens of series terms yielding sufficient accuracy, as reflected by the bold 

convergent results. For convenience, 80 series terms are adopted throughout this study 

to ensure the five significant figures accuracy. It is noted that all the current solutions, 

including both the critical buckling loads and mode shapes, agree very well with FEM; 

thus, the validity and accuracy of the new analytic method and solutions are well 
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confirmed. 

5. Conclusions 

The new analytic buckling solutions of rectangular thin plates with two free 

adjacent edges are obtained by the symplectic superposition method. Since the present 

solution procedure avoids any predeterminations of the solution forms, it offers a 

novel approach to tackling the buckling problems of plates without two opposite 

edges simply supported, which can rationally yield more analytic solutions that cannot 

be achieved by conventional analytic methods. The issues that are settled in this study 

represent one of the most difficult classes since both the free edges and free corner 

have been involved. A large number of numerical and graphical results for CCFF, 

SSFF and CSFF plates provide useful benchmarks for future studies. The follow-up 

work based on the symplectic superposition method may involve bending, vibration, 

and buckling of the plates with inhomogeneous materials such as the functionally 

graded materials (Mahi and Tounsi, 2015; Bousahla et al., 2016; Bellifa et al., 2017). 

Some variants of the thin plate structures such as thick plates, sandwich plates, and 

cross-ply laminated plates (Bouderba et al., 2016; El-Haina et al., 2017; Menasria et 

al., 2017; Chikh et al., 2017) may also be investigated under the same solution 

framework. 
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Tables 

Table 1. First ten buckling load factors, ( )2 2
crP b Dπ , of uniaxially loaded CCFF plates. 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 2.0393 6.6950 14.460 16.805 21.128 31.644 39.202 42.840 44.056 51.562 

 
FEM 2.0395 6.6963 14.492 16.820 21.161 31.693 39.442 42.980 44.262 51.704 

0.6 Present 1.2731 6.1922 7.1549 15.057 17.166 17.737 22.795 31.075 34.194 34.358 

 
FEM 1.2731 6.1951 7.1594 15.068 17.180 17.784 22.844 31.123 34.255 34.543 

0.8 Present 1.0650 4.0624 6.4595 10.210 14.280 16.766 17.938 19.723 25.706 29.817 

 
FEM 1.0650 4.0642 6.4607 10.225 14.292 16.778 17.961 19.778 25.763 29.857 

1 Present 1.0105 2.9500 6.2562 6.8231 12.188 12.631 16.183 16.698 20.601 23.569 

 
FEM 1.0105 2.9507 6.2577 6.8288 12.195 12.655 16.201 16.712 20.667 23.612 

1.5 Present 0.98948 2.1724 3.4416 5.8716 6.3891 9.4529 11.077 11.687 13.830 14.645 

 
FEM 0.98947 2.1726 3.4428 5.8753 6.3909 9.4655 11.082 11.694 13.858 14.659 

2 Present 0.93862 2.0315 2.7356 3.7850 5.6071 6.3081 8.0612 10.397 10.887 11.000 

 
FEM 0.93860 2.0317 2.7360 3.7863 5.6110 6.3093 8.0701 10.401 10.892 11.017 

2.5 Present 0.91392 1.7075 2.4097 3.4205 4.1870 5.4198 6.3255 7.2983 9.4666 10.151 

 
FEM 0.91390 1.7075 2.4101 3.4213 4.1883 5.4232 6.3268 7.3055 9.4794 10.155 

3 Present 0.90996 1.5647 1.9632 2.7735 3.7618 4.7879 5.6052 6.2655 6.8958 8.5440 

 
FEM 0.90994 1.5648 1.9634 2.7742 3.7633 4.7898 5.6077 6.2670 6.9013 8.5541 

3.5 Present 0.90971 1.5396 1.7119 2.2750 2.9960 3.9175 4.9916 5.9813 6.4110 6.9997 

 
FEM 0.90969 1.5396 1.7120 2.2753 2.9968 3.9192 4.9946 5.9840 6.4163 7.0032 

4 Present 0.90916 1.5038 1.6443 1.9932 2.4840 3.1845 4.0104 4.9603 6.0332 6.2826 

 
FEM 0.90914 1.5038 1.6443 1.9934 2.4845 3.1855 4.0122 4.9633 6.0376 6.2841 

4.5 Present 0.90886 1.4506 1.6071 1.9191 2.1654 2.6902 3.3224 4.0753 4.9329 5.8579 

 
FEM 0.90884 1.4506 1.6072 1.9192 2.1657 2.6909 3.3235 4.0772 4.9359 5.8622 

5 Present 0.90881 1.4327 1.5242 1.8441 2.0822 2.3935 2.8430 3.4419 4.1268 4.8945 

 
FEM 0.90879 1.4328 1.5242 1.8443 2.0823 2.3938 2.8437 3.4431 4.1288 4.8975 
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Table 2 
First ten buckling load factors of uniaxially loaded SSFF plates. 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.39373 4.7651 6.6099 11.052 15.180 25.156 28.652 29.438 30.600 38.965 

 
FEM 0.3937 4.7659 6.6158 11.058 15.189 25.254 28.714 29.504 30.652 39.069 

0.6 Present 0.40598 3.1245 5.3468 9.2561 11.446 14.573 15.745 25.214 25.716 28.921 

 
FEM 0.40594 3.1256 5.3474 9.2592 11.466 14.582 15.764 25.312 25.747 28.980 

0.8 Present 0.41548 1.9433 5.2125 6.6017 10.326 11.829 14.323 14.758 18.565 23.975 

 
FEM 0.41545 1.9436 5.2129 6.6077 10.331 11.835 14.350 14.772 18.597 23.998 

1 Present 0.42232 1.3960 4.3482 5.1619 8.9316 9.3243 13.252 14.581 14.991 16.382 

 
FEM 0.42230 1.3961 4.3506 5.1624 8.9348 9.3370 13.263 14.590 15.000 16.422 

1.5 Present 0.43227 0.85866 2.1774 4.3660 5.1561 7.4672 8.0852 9.0921 11.439 11.791 

 
FEM 0.43224 0.85865 2.1778 4.3684 5.1566 7.4751 8.0875 9.0956 11.458 11.800 

2 Present 0.43730 0.67360 1.4151 2.6504 4.3753 5.1525 6.6241 7.8881 8.9105 9.3265 

 
FEM 0.43725 0.67352 1.4152 2.6511 4.3777 5.1513 6.6299 7.8901 8.9135 9.3379 

2.5 Present 0.44020 0.58960 1.0636 1.8536 2.9607 4.3810 5.1508 6.1437 7.8771 8.1581 

 
FEM 0.44018 0.58954 1.0636 1.8538 2.9616 4.3833 5.1473 6.1481 7.8792 8.1623 

3 Present 0.44210 0.54490 0.87350 1.4215 2.1899 3.1787 4.3848 5.1508 5.8357 7.4827 

 
FEM 0.44205 0.54491 0.87352 1.4216 2.1903 3.1798 4.3871 5.1437 5.8385 7.4879 

3.5 Present 0.44330 0.51860 0.75950 1.1617 1.7258 2.4523 3.3411 4.3898 5.1398 5.6238 

 
FEM 0.44333 0.51861 0.75954 1.1617 1.7258 2.4523 3.3411 4.3898 5.1398 5.6238 

4 Present 0.44430 0.50210 0.68610 0.99310 1.4241 1.9801 2.6601 3.4641 4.3901 5.1531 

 
FEM 0.44424 0.50194 0.68599 0.99340 1.4248 1.9805 2.6606 3.4650 4.3918 5.1350 

4.5 Present 0.44497 0.49084 0.63595 0.87845 1.2189 1.6575 2.1944 2.8296 3.5633 4.3947 

 
FEM 0.44491 0.49079 0.63588 0.87838 1.2188 1.6575 2.1944 2.8298 3.5632 4.3934 

5 Present 0.44550 0.48310 0.60030 0.79650 1.0719 1.4268 1.8614 2.3758 2.9702 3.6459 

 
FEM 0.44540 0.48301 0.60025 0.79637 1.0718 1.4267 1.8613 2.3755 2.9695 3.6429 
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Table 3 
First ten buckling load factors of uniaxially loaded CSFF plates with 1κ = , 0γ = . 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.58085 6.0139 6.9798 12.191 17.035 25.222 29.613 31.404 36.969 42.820 

 
FEM 0.58078 6.0167 6.9847 12.197 17.047 25.321 29.711 31.452 37.047 42.911 

0.6 Present 0.71109 3.2230 6.5130 11.388 13.127 15.764 17.263 25.268 28.074 29.734 

 
FEM 0.71105 3.2240 6.5141 11.406 13.135 15.778 17.280 25.367 28.107 29.833 

0.8 Present 0.84515 2.1117 6.1730 6.7835 11.747 14.361 16.384 18.103 19.790 25.297 

 
FEM 0.84512 2.1120 6.1747 6.7887 11.753 14.391 16.396 18.122 19.815 25.397 

1 Present 0.96085 1.6805 4.4448 6.2860 9.4059 10.375 14.198 16.280 16.628 20.889 

 
FEM 0.96083 1.6805 4.4471 6.2870 9.4185 10.379 14.210 16.316 16.645 20.929 

1.5 Present 0.95139 1.8770 2.3496 4.4691 6.2839 7.5683 10.202 11.298 11.576 12.716 

 
FEM 0.95136 1.8770 2.3500 4.4715 6.2851 7.5761 10.206 11.306 11.592 12.725 

2 Present 0.90290 1.6584 2.7147 2.8089 4.4814 6.2511 6.7557 9.4205 9.9766 10.425 

 
FEM 0.90288 1.6585 2.7148 2.8095 4.4838 6.2526 6.7614 9.4332 9.9802 10.429 

2.5 Present 0.90450 1.4287 2.0508 3.0987 3.8421 4.4889 6.1207 6.4087 8.2838 9.8240 

 
FEM 0.90450 1.4287 2.0510 3.0997 3.8423 4.4913 6.1243 6.4113 8.2935 9.8274 

3 Present 0.90970 1.4030 1.6804 2.3652 3.3121 4.4934 5.1998 5.8842 6.3573 7.5710 

 
FEM 0.90965 1.4030 1.6805 2.3656 3.3132 4.4958 5.2002 5.8885 6.3587 7.5789 

3.5 Present 0.90930 1.4439 1.5407 1.9422 2.6142 3.4700 4.4970 5.6782 6.2268 6.9514 

 
FEM 0.90926 1.4439 1.5407 1.9424 2.6148 3.4713 4.4994 5.6823 6.2282 6.9522 

4 Present 0.90870 1.3814 1.6433 1.7191 2.1744 2.8148 3.5930 4.5021 5.5333 6.2584 

 
FEM 0.90866 1.3814 1.6433 1.7191 2.1744 2.8148 3.5930 4.5021 5.5333 6.2584 

4.5 Present 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 3.6895 4.5042 5.4166 

 
FEM 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 3.6895 4.5042 5.4166 

5 Present 0.90880 1.3740 1.4386 1.6845 2.0592 2.1497 2.5447 3.1124 3.7663 4.5034 

 
FEM 0.90879 1.3740 1.4386 1.6846 2.0595 2.1498 2.5452 3.1134 3.7679 4.5058 
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Table 4 
First ten buckling load factors of uniaxially loaded CSFF plates with 0κ = , 1γ = . 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 2.9233 4.9338 8.8889 14.834 22.782 31.891 33.122 44.866 51.274 52.690 

 
FEM 2.9233 4.9338 8.8889 14.834 22.782 31.891 33.122 44.866 51.274 52.690 

0.6 Present 1.4078 3.4099 7.3667 13.258 14.375 21.315 24.298 26.072 31.320 33.778 

 
FEM 1.4078 3.4099 7.3667 13.258 14.375 21.315 24.298 26.072 31.320 33.778 

0.8 Present 0.88512 2.8823 6.8251 8.0815 12.816 14.601 18.523 20.795 22.967 26.567 

 
FEM 0.88512 2.8823 6.8251 8.0815 12.816 14.601 18.523 20.795 22.967 26.567 

1 Present 0.64676 2.6382 5.2068 6.6187 10.829 12.508 13.528 14.705 18.412 20.552 

 
FEM 0.64672 2.6389 5.2073 6.6248 10.836 12.531 13.539 14.714 18.436 20.617 

1.5 Present 0.41706 2.2908 2.4931 5.3841 6.3644 6.5919 8.3101 12.321 12.723 13.124 

 
FEM 0.41704 2.2911 2.4936 5.3853 6.3699 6.5937 8.3164 12.343 12.732 13.131 

2 Present 0.34014 1.3426 2.3339 3.6084 3.8588 6.3043 7.2237 7.3842 8.9774 10.468 

 
FEM 0.34014 1.3425 2.3347 3.6089 3.8593 6.3106 7.2267 7.3889 8.9818 10.474 

2.5 Present 0.30591 0.89829 2.2784 2.4472 3.1077 4.7064 5.8881 6.2919 6.9116 7.7442 

 
FEM 0.30591 0.89824 2.2791 2.4473 3.1085 4.7068 5.8898 6.2981 6.9178 7.7459 

3 Present 0.28787 0.67482 1.6931 2.2792 2.8043 3.3280 4.4027 5.4146 6.2630 6.6984 

 
FEM 0.28788 0.67478 1.6931 2.2801 2.8051 3.3281 4.4038 5.4152 6.2693 6.7046 

3.5 Present 0.27725 0.54884 1.2548 2.2599 2.4577 2.6605 3.6638 4.0378 5.9102 6.1384 

 
FEM 0.27726 0.54882 1.2547 2.2607 2.4578 2.6613 3.6646 4.0380 5.9112 6.1404 

4 Present 0.27049 0.47139 0.98086 1.8878 2.2615 2.5464 3.1004 3.2884 4.5779 4.8735 

 
FEM 0.27050 0.47137 0.98081 1.8878 2.2624 2.5472 3.1005 3.2891 4.5783 4.8747 

4.5 Present 0.26592 0.42053 0.80241 1.4966 2.2516 2.4466 2.5150 3.0188 3.6630 4.1259 

 
FEM 0.26593 0.42052 0.80237 1.4965 2.2525 2.4470 2.5154 3.0196 3.6631 4.1269 

5 Present 0.26270 0.38539 0.68109 1.2200 2.0095 2.2543 2.4341 2.8414 3.0061 3.6598 

 
FEM 0.26271 0.38538 0.68106 1.2199 2.0095 2.2551 2.4349 2.8422 3.0062 3.6607 
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Table 5 
First ten buckling load factors of biaxially loaded CCFF plates with 1κ = , 1γ = . 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 1.8833 3.6713 6.5383 11.422 13.958 14.107 17.971 19.943 24.120 29.229 

 
FEM 1.8835 3.6715 6.5417 11.438 13.982 14.136 18.000 19.992 24.171 29.332 

0.6 Present 1.0559 2.3455 5.4064 6.0988 8.0403 10.487 12.605 15.656 17.426 18.182 

 
FEM 1.0559 2.3458 5.4095 6.1041 8.0464 10.497 12.625 15.681 17.468 18.224 

0.8 Present 0.75464 1.7918 3.6606 4.6607 6.4791 8.1831 9.6797 11.071 12.124 13.482 

 
FEM 0.75460 1.7921 3.6623 4.6622 6.4843 8.1882 9.6935 11.084 12.143 13.498 

1 Present 0.59800 1.4561 2.7454 3.8342 5.6991 6.5342 6.8499 8.6032 10.815 11.355 

 
FEM 0.59797 1.4564 2.7462 3.835 5.703 6.540 6.854 8.610 10.824 11.375 

1.5 Present 0.41254 0.94019 2.1897 2.3390 3.2390 4.3067 5.3511 6.0296 6.6454 6.9871 

 
FEM 0.41252 0.94022 2.1903 2.3395 3.2400 4.3078 5.3549 6.0347 6.6503 6.9917 

2 Present 0.33667 0.71184 1.4604 2.1360 2.5002 2.8712 3.5870 4.5776 5.0921 6.0480 

 
FEM 0.33667 0.71182 1.4606 2.1367 2.5008 2.8720 3.5880 4.5792 5.0954 6.0524 

2.5 Present 0.30133 0.58741 1.0461 1.8275 2.2334 2.2571 2.8754 3.1909 3.8593 4.6766 

 
FEM 0.30133 0.58739 1.0462 1.8278 2.2339 2.2578 2.8760 3.1920 3.8603 4.6789 

3 Present 0.28311 0.50411 0.82717 1.3746 2.0078 2.2190 2.3945 2.5193 3.1943 3.3921 

 
FEM 0.28311 0.50408 0.82717 1.3747 2.0083 2.2198 2.3951 2.5198 3.1950 3.3934 

3.5 Present 0.27281 0.44419 0.69724 1.0859 1.6407 2.1566 2.2079 2.2682 2.6220 2.8020 

 
FEM 0.27281 0.44417 0.69722 1.0859 1.6410 2.1572 2.2085 2.2688 2.6227 2.8025 

4 Present 0.26651 0.40073 0.61002 0.90129 1.3283 1.8573 2.1416 2.2278 2.3230 2.4765 

 
FEM 0.26652 0.40072 0.61000 0.90129 1.3284 1.8576 2.1422 2.2286 2.3236 2.4770 

4.5 Present 0.26242 0.36912 0.54573 0.77720 1.1080 1.5421 2.0085 2.2097 2.2142 2.2357 

 
FEM 0.26243 0.36911 0.54570 0.77718 1.1080 1.5423 2.0090 2.2103 2.2149 2.2365 

5 Present 0.25962 0.34588 0.49586 0.68887 0.95133 1.3021 1.7248 2.0986 2.1777 2.2218 

 
FEM 0.25963 0.34588 0.49584 0.68885 0.95134 1.3022 1.7250 2.0991 2.1784 2.2226 
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Table 6 
First ten buckling load factors of biaxially loaded CCFF plates with 1κ = , 5γ = . 

a/b Methods Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 1.0510 1.4150 1.9250 2.9640 4.5150 6.3500 7.0180 8.6100 9.1150 9.2510 

 
FEM 1.0514 1.4153 1.9255 2.9681 4.5272 6.3753 7.0356 8.6447 9.1449 9.2785 

0.6 Present 0.48680 0.72480 1.4813 2.5554 3.1037 4.0749 4.2839 4.5561 5.0658 6.2625 

 
FEM 0.48681 0.72483 1.4824 2.5595 3.1063 4.0811 4.2930 4.5622 5.0722 6.2907 

0.8 Present 0.27610 0.55400 1.3500 1.7478 2.2468 2.6581 2.7626 3.7466 4.1225 4.6151 

 
FEM 0.27611 0.55408 1.3511 1.7485 2.2488 2.6611 2.7651 3.7513 4.1353 4.6213 

1 Present 0.18278 0.49182 1.1211 1.3189 1.5151 2.1126 2.5177 2.9238 3.2591 4.0663 

 
FEM 0.18278 0.49192 1.1213 1.3200 1.5156 2.1138 2.5223 2.9262 3.2635 4.0783 

1.5 Present 0.099555 0.41799 0.54759 0.80759 1.2584 1.3308 1.6026 2.0247 2.3257 2.4582 

 
FEM 0.099552 0.41807 0.54767 0.80771 1.2595 1.3313 1.6037 2.0257 2.3270 2.4628 

2 Present 0.074479 0.27866 0.46016 0.59415 0.79067 1.1531 1.2636 1.4116 1.4622 1.8295 

 
FEM 0.074479 0.27865 0.46030 0.59423 0.79076 1.1534 1.2648 1.4124 1.4629 1.8307 

2.5 Present 0.064213 0.18983 0.43193 0.46739 0.59073 0.80525 0.97097 1.2500 1.3450 1.4166 

 
FEM 0.064213 0.18983 0.43200 0.46750 0.59084 0.80536 0.97112 1.2513 1.3460 1.4172 

3 Present 0.059167 0.14227 0.32443 0.44726 0.52683 0.60545 0.74734 0.98427 1.1410 1.2483 

 
FEM 0.059168 0.14226 0.32443 0.44742 0.52695 0.60551 0.74746 0.98442 1.1413 1.2495 

3.5 Present 0.056357 0.11472 0.24558 0.42985 0.46944 0.50414 0.63962 0.74115 0.90427 1.0996 

 
FEM 0.056358 0.11472 0.24557 0.42993 0.46953 0.50427 0.63974 0.74121 0.90444 1.0998 

4 Present 0.054645 0.097611 0.19434 0.35037 0.44767 0.48280 0.56944 0.59359 0.76512 0.85237 

 
FEM 0.054646 0.097608 0.19433 0.35036 0.44783 0.48293 0.56951 0.59368 0.76526 0.85245 

4.5 Present 0.053529 0.086366 0.16005 0.28192 0.43237 0.45622 0.49146 0.54662 0.66978 0.69271 

 
FEM 0.053531 0.086364 0.16005 0.28191 0.43245 0.45634 0.49158 0.54674 0.66987 0.69280 

5 Present 0.052763 0.078626 0.13630 0.23252 0.36672 0.44577 0.47408 0.51285 0.56674 0.62475 

 
FEM 0.052765 0.078625 0.13629 0.23251 0.36671 0.44593 0.47423 0.51294 0.56681 0.62487 
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Table 7 
First ten buckling load factors of biaxially loaded SSFF plates with 1κ = , 1γ = . 

a/b Methods Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.34749 2.1334 4.7288 6.5060 8.4314 9.9459 13.114 16.586 19.099 24.454 

 
FEM 0.34744 2.1334 4.7309 6.5121 8.4380 9.9572 13.127 16.623 19.128 24.544 

0.6 Present 0.31013 1.5311 2.9614 4.2154 5.3607 8.6190 9.4085 11.220 12.878 14.159 

 
FEM 0.31011 1.5312 2.9625 4.2171 5.3629 8.6250 9.4200 11.239 12.896 14.177 

0.8 Present 0.26398 1.2025 1.8740 3.6011 4.3555 6.2107 6.9825 8.2802 9.2503 11.451 

 
FEM 0.26396 1.2026 1.8744 3.6018 4.3577 6.2157 6.9866 8.2871 9.2624 11.462 

1 Present 0.21804 0.98165 1.4206 2.9538 3.9133 4.3390 5.5776 6.4248 8.8135 8.9938 

 
FEM 0.21802 0.98170 1.4208 2.9541 3.9154 4.3416 5.5797 6.4282 8.8254 9.0032 

1.5 Present 0.13122 0.62266 1.1056 1.7862 2.1704 3.5152 3.9229 4.2338 4.9082 5.7874 

 
FEM 0.13121 0.62265 1.1057 1.7864 2.1707 3.5159 3.9252 4.2363 4.9106 5.7900 

2 Present 0.082621 0.44656 0.98472 1.1738 1.6222 2.3172 2.6800 3.8248 3.9575 4.1900 

 
FEM 0.082616 0.44654 0.98482 1.1740 1.6223 2.3178 2.6804 3.8262 3.9595 4.1924 

2.5 Present 0.055598 0.34134 0.75661 1.0410 1.3490 1.5913 2.0982 2.6538 3.0558 3.9127 

 
FEM 0.055594 0.34132 0.75663 1.0411 1.3491 1.5916 2.0984 2.6547 3.0563 3.9148 

3 Present 0.039620 0.26813 0.58460 0.98927 1.1125 1.2964 1.7282 1.9357 2.4798 2.8810 

 
FEM 0.039617 0.26811 0.58459 0.98939 1.1126 1.2966 1.7284 1.9361 2.4801 2.8821 

3.5 Present 0.029543 0.21418 0.47204 0.83121 1.0237 1.1852 1.4014 1.5996 2.0529 2.2171 

 
FEM 0.029541 0.21417 0.47203 0.83125 1.0239 1.1853 1.4015 1.5998 2.0532 2.2176 

4 Present 0.022828 0.17366 0.39210 0.67863 0.99275 1.0823 1.1829 1.4303 1.6633 1.8858 

 
FEM 0.022827 0.17365 0.39208 0.67864 0.99288 1.0824 1.1830 1.4305 1.6636 1.8860 

4.5 Present 0.018147 0.14286 0.33138 0.56778 0.87758 1.0169 1.1139 1.2901 1.3959 1.6795 

 
FEM 0.018146 0.14285 0.33137 0.56778 0.87763 1.0170 1.1140 1.2902 1.3961 1.6796 

5 Present 0.014761 0.11914 0.28334 0.48512 0.74461 0.99524 1.0617 1.1345 1.2804 1.4998 

 
FEM 0.014760 0.11914 0.28333 0.48511 0.74464 0.99538 1.0619 1.1346 1.2805 1.4999 
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Table 8 
First ten buckling load factors of biaxially loaded SSFF plates with 1κ = , 5γ = . 

a/b Methods Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.23500 0.62000 1.2210 2.2200 3.5970 5.0900 5.5240 5.8590 6.0890 6.9710 

 
FEM 0.23539 0.62043 1.2212 2.2224 3.6052 5.0991 5.5388 5.8660 6.0966 6.9805 

0.6 Present 0.15600 0.38300 0.98000 1.9450 2.3410 2.5930 3.0740 3.3870 4.0220 5.1560 

 
FEM 0.15627 0.38300 0.98085 1.9473 2.3421 2.5945 3.0755 3.3949 4.0255 5.1758 

0.8 Present 0.10400 0.30000 0.88800 1.3000 1.4990 1.9030 2.0490 3.0080 3.2830 3.9290 

 
FEM 0.10378 0.29957 0.88865 1.3003 1.4990 1.9058 2.0501 3.0110 3.2912 3.9323 

1 Present 0.071635 0.26119 0.78553 0.90092 1.0112 1.5790 1.8557 2.4594 2.6310 3.2432 

 
FEM 0.071630 0.26120 0.78572 0.90130 1.0114 1.5795 1.8582 2.4612 2.6334 3.2512 

1.5 Present 0.033826 0.22191 0.36684 0.54190 0.82266 1.0853 1.1767 1.5098 1.8115 1.8581 

 
FEM 0.033824 0.22193 0.36685 0.54192 0.82315 1.0856 1.1771 1.5103 1.8137 1.8592 

2 Present 0.019203 0.18934 0.22552 0.38489 0.63544 0.80595 0.85843 0.99367 1.2542 1.3842 

 
FEM 0.019202 0.18934 0.22554 0.38490 0.63549 0.80639 0.85863 0.99415 1.2545 1.3848 

2.5 Present 0.012273 0.12504 0.20853 0.31211 0.40985 0.58589 0.79599 0.82556 0.92083 1.1248 

 
FEM 0.012273 0.12504 0.20856 0.31212 0.40986 0.58594 0.79635 0.82579 0.92131 1.1252 

3 Present 0.0084959 0.085710 0.20308 0.25972 0.29752 0.45286 0.57595 0.78760 0.81770 0.88395 

 
FEM 0.0084954 0.085705 0.20311 0.25972 0.29754 0.45288 0.57597 0.78791 0.81803 0.88442 

3.5 Present 0.0062224 0.061968 0.18748 0.20847 0.26181 0.37321 0.43018 0.61120 0.70619 0.80074 

 
FEM 0.0062221 0.061964 0.18748 0.20849 0.26183 0.37323 0.43020 0.61126 0.70624 0.80124 

4 Present 0.0047516 0.046732 0.14446 0.20212 0.24462 0.30653 0.34975 0.49332 0.55123 0.76315 

 
FEM 0.0047513 0.046729 0.14445 0.20215 0.24464 0.30653 0.34977 0.49335 0.55126 0.76330 

4.5 Present 0.0037464 0.036436 0.11224 0.19971 0.22951 0.24855 0.31108 0.40855 0.45095 0.61557 

 
FEM 0.0037462 0.036434 0.11224 0.19974 0.22952 0.24856 0.31110 0.40856 0.45097 0.61562 

5 Present 0.0030294 0.029179 0.089287 0.18701 0.20374 0.23000 0.28640 0.33732 0.39072 0.50695 

 
FEM 0.0030293 0.029178 0.089283 0.18702 0.20376 0.23003 0.28642 0.33733 0.39074 0.50697 
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Table 9 
First ten buckling load factors of biaxially loaded CSFF plates with 1κ = , 1γ = . 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.50086 2.6272 5.8185 6.6464 9.3018 11.619 14.468 19.124 21.033 24.949 

 
FEM 0.50081 2.6276 5.8223 6.6524 9.3092 11.635 14.486 19.166 21.081 25.045 

0.6 Present 0.50481 1.9436 3.2728 5.0851 6.6032 9.5574 10.958 12.174 13.609 15.339 

 
FEM 0.50477 1.9439 3.2740 5.0870 6.6081 9.5639 10.976 12.195 13.629 15.359 

0.8 Present 0.47033 1.4899 2.3990 4.1449 5.9440 6.5355 7.6548 9.2172 11.580 12.768 

 
FEM 0.47030 1.4901 2.3996 4.1458 5.9490 6.5415 7.6594 9.2247 11.597 12.785 

1 Present 0.42640 1.1615 2.1627 3.3722 4.3147 5.7048 6.4827 7.5580 9.0667 10.133 

 
FEM 0.42638 1.1616 2.1633 3.3728 4.3170 5.7082 6.4875 7.5633 9.0788 10.141 

1.5 Present 0.34552 0.77591 1.7799 2.2118 2.7116 3.8893 4.3413 5.7524 6.3011 6.6981 

 
FEM 0.34551 0.77589 1.7802 2.2125 2.7121 3.8904 4.3433 5.7557 6.3065 6.7032 

2 Present 0.30544 0.61728 1.1840 2.0785 2.2363 2.5461 3.1926 4.1030 4.4677 5.7757 

 
FEM 0.30544 0.61725 1.1840 2.0790 2.2369 2.5468 3.1932 4.1050 4.4691 5.7790 

2.5 Present 0.28519 0.52228 0.890865 1.5597 2.1728 2.2022 2.5650 2.8788 3.5495 4.1606 

 
FEM 0.28520 0.52225 0.89087 1.5599 2.1735 2.2029 2.5655 2.8795 3.5502 4.1628 

3 Present 0.27398 0.45605 0.731998 1.1871 1.8465 2.1784 2.2187 2.4443 2.8629 3.1478 

 
FEM 0.27399 0.45603 0.73198 1.1872 1.8468 2.1790 2.2195 2.4448 2.8636 3.1486 

3.5 Present 0.26723 0.40861 0.631986 0.95978 1.4578 2.0358 2.1819 2.2389 2.3681 2.7148 

 
FEM 0.26724 0.40859 0.63196 0.95979 1.4580 2.0363 2.1826 2.2396 2.3686 2.7153 

4 Present 0.26289 0.37446 0.560981 0.81353 1.1890 1.6874 2.1242 2.1918 2.2274 2.3870 

 
FEM 0.26290 0.37444 0.56096 0.81353 1.1891 1.6877 2.1248 2.1924 2.2281 2.3876 

4.5 Present 0.25995 0.34960 0.50697 0.71318 1.0041 1.4002 1.8750 2.1554 2.1878 2.2288 

 
FEM 0.25996 0.34959 0.50695 0.71316 1.0041 1.4003 1.8753 2.1561 2.1884 2.2296 

5 Present 0.25787 0.33119 0.46464 0.63972 0.87280 1.1901 1.5876 2.0181 2.1608 2.1933 

 
FEM 0.25788 0.33118 0.46462 0.63970 0.87280 1.1902 1.5878 2.0186 2.1614 2.1939 
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Table 10 
First ten buckling load factors of biaxially loaded CSFF plates with 1κ = , 5γ = . 

a/b Methods Modes          

  
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 Present 0.31573 0.74033 1.5981 2.7649 4.3521 5.2159 5.8417 6.2799 6.4892 7.3926 

 
FEM 0.31571 0.74038 1.5991 2.7693 4.3640 5.2240 5.8503 6.2878 6.5153 7.4043 

0.6 Present 0.21630 0.54730 1.3913 2.2465 2.5545 2.7718 3.3641 4.1830 4.5080 6.0432 

 
FEM 0.21623 0.54740 1.3924 2.2481 2.5572 2.7747 3.3663 4.1958 4.5135 6.0568 

0.8 Present 0.15330 0.49240 1.2632 1.3608 1.6078 2.3861 2.5225 3.5138 3.9377 4.1330 

 
FEM 0.15329 0.49252 1.2637 1.3617 1.6082 2.3874 2.5272 3.5183 3.9430 4.1459 

1 Present 0.11817 0.46714 0.84043 1.1450 1.2956 1.9448 2.4470 2.5596 3.0822 3.6434 

 
FEM 0.11816 0.46725 0.84054 1.1451 1.2968 1.9459 2.4506 2.5623 3.0864 3.6464 

1.5 Present 0.080186 0.36672 0.47229 0.71591 1.1323 1.2684 1.5381 1.6112 2.1663 2.3019 

 
FEM 0.080183 0.36672 0.47242 0.71601 1.1325 1.2696 1.5392 1.6118 2.1674 2.3033 

2 Present 0.066533 0.22702 0.44865 0.56291 0.67143 1.0087 1.2455 1.2899 1.4098 1.7567 

 
FEM 0.066533 0.22701 0.44879 0.56299 0.67151 1.0089 1.2465 1.2905 1.4110 1.7579 

2.5 Present 0.060311 0.15985 0.39141 0.45701 0.54356 0.75105 0.85462 1.2410 1.2847 1.3413 

 
FEM 0.060311 0.15984 0.39143 0.45716 0.54368 0.75116 0.85473 1.2420 1.2853 1.3424 

3 Present 0.056999 0.12408 0.28442 0.44531 0.50097 0.57032 0.67722 0.92625 1.0129 1.2473 

 
FEM 0.057000 0.12408 0.28441 0.44546 0.50109 0.57038 0.67734 0.92639 1.0131 1.2486 

3.5 Present 0.055040 0.10307 0.21699 0.40334 0.45281 0.49670 0.59803 0.70195 0.82196 1.0449 

 
FEM 0.055041 0.10307 0.21698 0.40336 0.45296 0.49683 0.59815 0.70202 0.82210 1.0451 

4 Present 0.053789 0.089793 0.17404 0.31818 0.44439 0.47824 0.52683 0.57720 0.71024 0.81265 

 
FEM 0.053791 0.089790 0.17403 0.31817 0.44455 0.47838 0.52690 0.57731 0.71036 0.81274 

4.5 Present 0.052943 0.080903 0.14539 0.25647 0.41046 0.45112 0.47763 0.53681 0.62152 0.67101 

 
FEM 0.052945 0.080901 0.14538 0.25646 0.41049 0.45126 0.47777 0.53694 0.62159 0.67112 

5 Present 0.052345 0.074676 0.12546 0.21280 0.34014 0.44409 0.46761 0.50288 0.53382 0.60908 

 
FEM 0.052348 0.074675 0.12546 0.21279 0.34013 0.44424 0.46776 0.50297 0.53392 0.60920 
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Table 11 
Convergence study for CCFF plates with 1κ = , 0γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 10 2.0391 6.6995 14.460 16.824 21.128 31.690 39.201 42.835 44.059 51.647 

 80 2.0393 6.6950 14.460 16.805 21.128 31.644 39.202 42.840 44.056 51.562 

 
90 2.0393 6.6950 14.460 16.805 21.128 31.644 39.202 42.840 44.056 51.562 

4.5 10 0.90442 1.4498 1.6068 1.9164 2.1654 2.6880 3.3216 4.0709 4.9220 5.7604 

 70 0.90886 1.4506 1.6071 1.9191 2.1654 2.6902 3.3224 4.0753 4.9329 5.8579 

 
80 0.90886 1.4506 1.6071 1.9191 2.1654 2.6902 3.3224 4.0753 4.9329 5.8579 
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Table 12 
Convergence study for SSFF plates with 1κ = , 0γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.39373 4.7652 6.6099 11.052 15.180 25.156 28.652 29.439 30.600 38.965 

 40 0.39373 4.7651 6.6099 11.052 15.180 25.156 28.652 29.438 30.600 38.965 

 50 0.39373 4.7651 6.6099 11.052 15.180 25.156 28.652 29.438 30.600 38.965 
4.5 10 0.44497 0.49084 0.63594 0.87845 1.2189 1.6575 2.1944 2.8296 3.5633 4.3947 

 30 0.44497 0.49084 0.63595 0.87845 1.2189 1.6575 2.1944 2.8296 3.5633 4.3947 

 40 0.44497 0.49084 0.63595 0.87845 1.2189 1.6575 2.1944 2.8296 3.5633 4.3947 
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Table 13 
Convergence study for CSFF plates with 1κ = , 0γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.58103 6.0172 6.9808 12.192 17.052 25.222 29.613 31.449 36.972 42.818 

 80 0.58085 6.0139 6.9798 12.191 17.035 25.222 29.613 31.404 36.969 42.820 
90 0.58085 6.0139 6.9798 12.191 17.035 25.222 29.613 31.404 36.969 42.820 

4.5 10 0.90430 1.3602 1.5192 1.8576 1.9161 2.3704 2.9730 3.6816 4.4885 5.3491 

 70 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 3.6895 4.5042 5.4166 

 80 0.90872 1.3605 1.5205 1.8581 1.9185 2.3740 2.9780 3.6895 4.5042 5.4166 
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Table 14 
Convergence study for CSFF plates with 0κ = , 1γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 2.9235 4.9338 8.8842 14.814 22.722 31.830 33.025 44.597 51.173 52.583 

 30 2.9233 4.9338 8.8889 14.834 22.782 31.891 33.122 44.866 51.274 52.690 

 40 2.9233 4.9338 8.8889 14.834 22.782 31.891 33.122 44.866 51.274 52.690 

4.5 10 0.26582 0.42049 0.80241 1.4965 2.2516 2.4465 2.5150 3.0184 3.6633 4.1247 

 70 0.26592 0.42053 0.80241 1.4966 2.2516 2.4466 2.5150 3.0188 3.6630 4.1259 

 80 0.26592 0.42053 0.80241 1.4966 2.2516 2.4466 2.5150 3.0188 3.6630 4.1259 
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Table 15 
Convergence study for CCFF plates with 1κ = , 1γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.4 10 1.8831 3.6721 6.5386 11.426 13.964 14.103 17.970 19.952 24.113 29.239 

 70 1.8833 3.6713 6.5383 11.422 13.958 14.107 17.971 19.943 24.120 29.229 

 
80 1.8833 3.6713 6.5383 11.422 13.958 14.107 17.971 19.943 24.120 29.229 

4.5 10 0.26231 0.36927 0.54568 0.77642 1.1069 1.5419 2.0094 2.2102 2.2139 2.2355 

 70 0.26242 0.36912 0.54573 0.77720 1.1080 1.5421 2.0085 2.2097 2.2142 2.2357 

 
80 0.26242 0.36912 0.54573 0.77719 1.1080 1.5421 2.0085 2.2097 2.2142 2.2357 
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Table 16 
Convergence study for CCFF plates with 1κ = , 5γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 1.0512 1.4144 1.9247 2.9638 4.5151 6.3445 7.0024 8.6125 9.1108 9.2506 

 70 1.0510 1.4150 1.9250 2.9640 4.5150 6.3500 7.0180 8.6100 9.1150 9.2510 

 
80 1.0510 1.4150 1.9250 2.9640 4.5150 6.3500 7.0180 8.6100 9.1150 9.2510 

4.5 10 0.053510 0.086411 0.16021 0.28233 0.43261 0.45647 0.49170 0.54654 0.67016 0.69369 

 70 0.053529 0.086366 0.16005 0.28192 0.43237 0.45622 0.49146 0.54662 0.66978 0.69271 

 80 0.053529 0.086366 0.16005 0.28192 0.43237 0.45622 0.49146 0.54662 0.66978 0.69271 
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Table 17 
Convergence study for SSFF plates with 1κ = , 1γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.34749 2.1334 4.7289 6.5060 8.4314 9.9462 13.115 16.587 19.101 24.455 

 20 0.34749 2.1334 4.7288 6.5060 8.4314 9.9459 13.114 16.586 19.099 24.454 

 30 0.34749 2.1333 4.7288 6.5060 8.4313 9.9459 13.114 16.586 19.099 24.454 

4.5 10 0.018147 0.14286 0.33141 0.56784 0.87765 1.0169 1.1139 1.2901 1.3961 1.6796 

 30 0.018147 0.14286 0.33138 0.56778 0.87758 1.0169 1.1139 1.2901 1.3959 1.6795 

 40 0.018147 0.14286 0.33138 0.56778 0.87758 1.0169 1.1139 1.2901 1.3959 1.6795 
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Table 18 
Convergence study for SSFF plates with 1κ = , 5γ = . 

a/b Number of series terms Modes          
  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.23541 0.62045 1.2208 2.2199 3.5973 5.0899 5.5239 5.8591 6.0893 6.9709 

30 0.23500 0.62000 1.2210 2.2200 3.5970 5.0900 5.5240 5.8590 6.0890 6.9710 
40 0.23500 0.62000 1.2210 2.2200 3.5970 5.0900 5.5240 5.8590 6.0890 6.9710 

4.5 10 0.0037464 0.036436 0.11224 0.19971 0.22951 0.24856 0.31108 0.40858 0.45096 0.61565 
20 0.0037464 0.036436 0.11224 0.19971 0.22951 0.24855 0.31108 0.40855 0.45095 0.61557 
30 0.0037464 0.036436 0.11224 0.19971 0.22951 0.24855 0.31108 0.40855 0.45095 0.61557 
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Table 19 
Convergence study for CSFF plates with 1κ = , 1γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.50099 2.6279 5.8200 6.6478 9.3024 11.628 14.470 19.143 21.036 24.949 

 50 0.50086 2.6272 5.8185 6.6464 9.3018 11.619 14.468 19.124 21.033 24.949 

 60 0.50086 2.6272 5.8185 6.6464 9.3018 11.619 14.468 19.124 21.033 24.949 
4.5 10 0.25983 0.34958 0.50680 0.71204 1.0021 1.3978 1.8722 2.1553 2.1879 2.2286 

 70 0.25995 0.34960 0.50697 0.71318 1.0041 1.4002 1.8750 2.1554 2.1878 2.2288 

 80 0.25995 0.34960 0.50697 0.71318 1.0041 1.4002 1.8750 2.1554 2.1878 2.2288 
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Table 20 
Convergence study for CSFF plates with 1κ = , 5γ = . 

a/b Number of series terms Modes          

  1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
0.4 10 0.31578 0.74045 1.5984 2.7657 4.3533 5.2178 5.8429 6.2813 6.4920 7.3952 

 50 0.31573 0.74033 1.5981 2.7649 4.3521 5.2159 5.8417 6.2799 6.4892 7.3926 

 60 0.31573 0.74033 1.5981 2.7649 4.3521 5.2159 5.8417 6.2799 6.4892 7.3926 
4.5 10 0.052922 0.080896 0.14539 0.25643 0.41030 0.45111 0.47759 0.53656 0.62127 0.67079 

 80 0.052943 0.080903 0.14539 0.25647 0.41046 0.45112 0.47763 0.53681 0.62152 0.67101 

 90 0.052943 0.080903 0.14539 0.25647 0.41046 0.45112 0.47763 0.53681 0.62152 0.67101 
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(a) (b) (c) 

Fig. 1. Symplectic superposition method for buckling of a CCFF plate. 
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Fig. 2. First ten buckling modes of a uniaxially loaded CCFF square plate. 
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Fig. 3. First ten buckling modes of a uniaxially loaded SSFF square plate. 
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Fig. 4. First ten buckling modes of a uniaxially loaded CSFF square plate with 1κ = , 0γ = . 
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Fig. 5. First ten buckling modes of a uniaxially loaded CSFF square plate with 0κ = , 1γ = .  
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Fig. 6. First ten buckling modes of a biaxially loaded CCFF square plate with 1κ = , 1γ = . 
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Fig. 7. First ten buckling modes of a biaxially loaded CCFF square plate with 1κ = , 5γ = . 
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Fig. 8. First ten buckling modes of a biaxially loaded SSFF square plate with 1κ = , 1γ = . 
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Fig. 9. First ten buckling modes of a biaxially loaded SSFF square plate with 1κ = , 5γ = . 
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Fig. 10. First ten buckling modes of a biaxially loaded CSFF square plate with 1κ = , 1γ = .  
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Fig. 11. First ten buckling modes of a biaxially loaded CSFF square plate with 1κ = , 5γ = . 
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Research Highlights 

 

> Buckling of rectangular plates with two free adjacent edges is analytically solved. 

> Novel symplectic superposition method is further developed for plate buckling. 

> Distinctive merit of rigorous derivation helps to access new analytic solutions. 


