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We study the breakup of confined fluid threads at low flow rates to understand
instability mechanisms. To determine the critical conditions between the earlier
quasi-stable necking stage and the later unstable collapse stage, simulations and
experiments are designed to operate at an extremely low flow rate. The critical
mean radii at the neck centres are identified by the stop-flow method for elementary
microfluidic configurations. Two distinct origins of capillary instabilities are revealed
for different confinement situations. One is the gradient of capillary pressure induced
by the confinements of geometry and external flow, whereas the other is the
competition between the capillary pressure and internal pressure determined by
the confinements.
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1. Introduction
Fluid thread breakup is a widespread phenomenon in nature, industry, and daily

life (Eggers et al. 2007; Bhat et al. 2010; van Hoeve et al. 2010; Tagawa et al.
2012). As a common example, columnar water jets from a showerhead are unstable
downstream of the nozzles and break into droplets in air. This breakup scenario is
called Rayleigh–Plateau (R–P) instability (Plateau 1873; Rayleigh 1878), which is
also called capillary instability at low flow rates where the driving force is interfacial
tension (Eggers et al. 2007; Eggers & Villermaux 2008). In contrast, a fluid thread
covered by a thin film of another fluid within a tube can be stable (Duclaux, Clanet
& Quere 2006). For instance, a long air bubble in an intravenous line maintains its
shape while moving slowly with the liquid. This type of tightly confined fluid thread
is often encountered in various processes, including pore-scale breakup in enhanced
oil recovery (Olbricht 1996) and droplet or bubble generation in microfluidic devices
(Squires & Quake 2005; Anna 2016), where confined fluid threads are squeezed into
fluid necks at channel junctions and eventually break into microdroplets. The interface

† Email addresses for correspondence: ghu@zju.edu.cn, guoqing.hu@imech.ac.cn
‡ The original version of this article was published with an incorrect author name. A notice
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HTML copies.
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is quasi-stable in the earlier necking stage and becomes unstable in the later collapse
stage (Garstecki, Stone & Whitesides 2005). The stage transition is thought to be an
R–P instability (Link et al. 2004; Garstecki et al. 2005; De Menech et al. 2008) or
initiated not by an R–P instability but rather by a reversed flow from the thread tip
to the neck (van Steijn, Kleijn & Kreutzer 2009). The mechanisms of the onset of
interfacial instabilities are still puzzling.

Here, through newly designed numerical simulations and experiments at extremely
low capillary numbers, we identify the transitions between the quasi-stable and
unstable stages for confined fluid threads. Two breakup mechanisms are uncovered
for different confinement situations in surprisingly simple terms.

2. Numerical and experimental methods

Numerical simulations are conducted using the Gerris flow solver (http://gfs.sf.net).
Combining an adaptive quad/octree spatial discretization, geometrical volume-of-fluid
interface representation, balanced-force continuum-surface-force surface tension
formulation, and height-function curvature estimation, the method is shown to recover
exact equilibrium (to machine accuracy) between surface tension and pressure gradient
in the case of a stationary droplet, irrespective of viscosity and spatial resolution
(Popinet 2009). The accuracy of the code has been validated in our previous studies
for various interfacial flow problems (Chen et al. 2013, 2014). The motion of the
fluid thread inside the continuous phase forms a thin lubrication film between the
fluid thread and the channel wall (Taylor 1961). The ratio of the film thickness to the
channel diameter was found to scale with Ca2/3 (Bretherton 1961), where Ca is the
capillary number. A thickness-based refinement criterion developed in the previous
work (Chen & Yang 2014) is used to resolve the film by at least two meshes in
thickness direction. However, when Ca∼ 10−6, the ratio of the film thickness to the
channel diameter is in the order of 10−4. It is too costly to resolve such a film that
plays only a minor role in determining the shape of the fluid thread. In practice, the
film may vanish, and the interface may make contact with the wall under such a small
Ca. Therefore, the film is not resolved for cases under Ca ∼ 10−6, while a contact
angle of 180◦ is set on the wall to make it fully hydrophobic. A curvature-based
refinement criterion (Popinet 2009) is also applied to increase the grid resolution
according to the thinning of the neck region during breakup. The breakup dynamics
of confined fluid threads in various microfluidic configurations are considered in this
paper. The geometry and boundary conditions will be described when mentioned.
Grid independence studies are carried out for each configuration to obtain the proper
interfacial mesh size to capture the breakup dynamics.

Experiments are performed in circular microchannels that are fabricated by a rapid
prototyping method (Ghorbanian, Qasaimeh & Juncker 2010). Iron wires are cut and
arranged on a cured polydimethylsiloxane (PDMS) flat piece. Wires are connected
by dropping a small amount of melted paraffin into the gaps between the wires. The
connected wires are then covered with the uncured PDMS. After the PDMS is cured,
the wires are pulled out to form the desired configurations. To obtain a hydrophobic
surface, the microchannels are filled with Rain-Xr rain repellent and then washed
with deionized water. The hydrophobic treatment also improves the sharpness of
the interface during high-speed imaging. The openings of the microchannels are
connected with plastic tubes to form microfluidic devices. The microfluidic device is
mounted on the stage of an inverted microscope (Nikon Eclipse Ti, Japan). Fluids are
introduced into the channel using syringe pumps (Pump 11 Elite, Harvard Apparatus
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FIGURE 1. (Colour online) Axisymmetric breakup of a confined fluid thread. (a) Sketch
of the breakup process. (b) Comparison of droplet shapes in channels with circular and
rectangular cross-sections during breakup.

Inc., USA). Breakup dynamics in the microchannel is recorded using a Phantom
v7.3 high-speed camera (Vision Research Inc., USA) and Phantom Camera Control
software. Photographs of the microfluidic devices can be found in the supplementary
material available at https://doi.org/10.1017/jfm.2019.426.

3. Results and discussion
3.1. Critical mean neck radius for the axisymmetric breakup

Inspired by the axisymmetric configurations used in studying the breakup mechanism
of unbounded fluid threads (Gordillo et al. 2005; Eggers et al. 2007), we first
investigate the breakup of an axisymmetric water thread that is tightly confined
inside a circular microchannel, as shown in figure 1(a). A fluid neck forms under
the squeezing of the oil side flow and then collapses. As illustrated in figure 1(b),
a circular channel avoids the empty corners found in a rectangular channel through
which oil inevitably flows causing leakage and making it difficult to deform the
interface under low flow rates (Dollet et al. 2008; Shui et al. 2008). Using circular
channels, we can overcome the leakage problem and study the breakup at extremely
low flow rates. A water droplet (viscosity µw = 1 mPa s, density ρw = 998 kg m−3)
is initially tightly confined in a circular microchannel with radius R = 25 µm. The
initial shape of the droplet is a cylinder with two hemispherical tips. The incoming
oil (viscosity µo = 8 mPa s, density ρo = 770 kg m−3) from the lateral opening
(width of 50 µm) with a velocity of U deforms the interface (interfacial tension
σ = 5 mN m−1). A two-dimensional axisymmetric model is established to consider
only a quarter of the cross-section of the configuration due to the axial and bilateral
symmetries (figure S2(a) in the supplementary material). This simplification allows
us to simulate the axisymmetric breakup efficiently and accurately for a wide range
of small capillary numbers, Ca=µwU/σ .

To provide intuitive insights into the breakup dynamics, photorealistic ray-tracing
rendering is performed to show the breakup dynamics using the POV-Ray software
(Persistence of Vision Pty. Ltd 2013). Figure 2 shows three series of images leading
to the final collapse under three Ca values varying from 2.0 × 10−5 to 2.0 × 10−3.
Thickness-based and curvature-based refinements allow us to obtain the detailed flow
dynamics at the lubrication film near the channel wall, and the final collapse that leads
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(a) (b) (c)

FIGURE 2. (Colour online) Time evolutions of the axisymmetric breakup of a confined
fluid thread with photorealistic ray-tracing rendering under different Ca of 2.0× 10−5 (a),
2.0× 10−4 (b) and 2.0× 10−3 (c). The time interval is constant for each series.

to the generation of satellite droplets at the neck centre, respectively. The two ends
of the fluid thread are hemispherical under Ca = 2.0 × 10−5 (figure 2a) and 2.0 ×
10−4 (figure 2b), but have a bullet-like shape under Ca= 2.0× 10−3 (figure 2c). The
breakup dynamics under Ca = 2.0 × 10−3 also shows obvious differences compared
with those under the other two Ca, i.e. the neck region is shorter and the final collapse
generates a much larger satellite droplet at the neck centre. The effects of inertia are
thus expected to play a major role in the breakup dynamics under Ca = 2.0 × 10−3.
Since we focus on the breakup dominated by capillary, conditions under Ca on the
order of 10−4 or smaller are considered to eliminate the effects of inertia.

The neck evolutions during the axisymmetric breakup of the confined fluid thread
are characterized by two principal radii at the neck centre, R1 and R2, in the radial
and axial directions (figure 1a), respectively, and the mean radius Rm is R1R2/(R1+R2)

according to the Young–Laplace equation. Figures 3(a) and 3(b) show the evolutions
of R1 and Rm for Ca = 2.0 × 10−4 and 2.0 × 10−5, respectively, where τ = tc − t
represents the time remaining until pinch-off, with t the time and tc the time at pinch-
off. The radii are normalized by R, and time is scaled by R/U. Note that, the normal
direction of the neck surface is chosen here to point from the surface to the inside of
the fluid thread. R1 is always positive since the centre of R1 is on the same side as
the surface normal, while R2 is negative when the centre of R2 is on the opposite side
of the surface normal, as it is during most of the time of the breakup. The centre of
R2 moves to the positive side of the surface normal, as it is at the final moments of
the breakup due to the formation of the satellite droplet at the centre. In figure 3(a,b),
we identify two stages where R1 and Rm exhibit power law behaviours with τ α, where
the scaling constant α is a signature of the physical mechanisms causing the collapse
(van Hoeve et al. 2011). In the earlier necking stage before the first collapse stage for
both Ca numbers, the variations in the radii do not conform to any power law with
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FIGURE 3. (Colour online) Time evolutions of R1 and Rm for axisymmetric breakup of
a confined fluid thread under Ca of 2.0× 10−4 (a) and 2.0× 10−5 (b).

a constant α. We thus expect a critical condition representing the transition between
the earlier necking stage and the collapse stages.

From the evolution of the flow field, we find a transition of the flow pattern near
the neck. As shown in figure 4(a), oil flows expansively to squeeze the interface at
t= 0.41 and 0.45, while oil flows towards the neck centre at t = 0.48 and 0.51. We
obtain the critical time tu representing the flow transition with the help of the stop-flow
method (Stone, Bentley & Leal 1986; Blanchette & Bigioni 2006; Hoang et al. 2013).
For a given simulation, resumable files are saved at different moments. For each file,
the flow is stopped by setting the velocities of both the flow field and the inlet to zero.
The resumable files are then carried on to determine tu by distinguishing different
flow patterns. For Ca= 2.0× 10−5, we obtain tu and the corresponding critical mean
radius Ru

m, (0.76± 0.002). If the flow stops when Rm > Ru
m, as shown in figure 4(b),

the interface remains stationary after small relaxations (at t = 0.4459 and 0.4745).
If the flow stops when Rm < Ru

m, the neck thins spontaneously until it collapses (at
t = 0.4777). The mean radius of the stationary interface, corresponding to Ru

m, Rst
m,

is approximately 0.72. The critical remaining time τu = tc − tu is obtained for each
Ca number, as in figure 3(a,b). Here τu preferably represents the duration of the late
collapse stage, indicating that the transition of the flow pattern is equivalent to the
transition between the earlier necking stage and the later collapse stage.

The existence of the abovementioned transition is further confirmed by stop-flow
experiments in a flow-focusing microfluidic device with circular channels fabricated by
the rapid prototyping method. As shown in figure 4(c), water flows into the channel
junction from the left inlet and oil flows into the junction from the top and bottom
inlets. Note that, since the flow rate of the oil phase is low, the interface is expected
to have a rapid response to the oil flow to make the neck region axisymmetric.
The physical and geometrical parameters are µw = 1 mPa s, ρw = 998 kg m−3,
µo = 20 mPa s, ρo = 950 kg m−3, σ = 35 mN m−1, and R = 400 µm. During the
stop-flow experiments, the water flow is switched off after the thread tip passes the
channel junction. The oil flow is intermittently stopped and resumed to determine the
critical shape of the neck. A MATLAB code (provided in the supplementary material)
has been written to measure the two principal radii at the neck centre, as indicated in
figure 4(c). The critical mean radius, Ru

m, is found to be (0.79± 0.04), in agreement
with the value of (0.76± 0.002) obtained from simulations. When the flow stops at
Rm > Ru

m, the interface relaxes inwards, as in the simulations, and then slowly moves
outwards. This outward motion may be attributed to the leakage of oil from the neck
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(a)

(b)
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t = 0.4459

Flow stops at
t = 0.4777

Rm > Rm
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u
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2R1
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FIGURE 4. (Colour online) Determination of the critical mean radius Ru
m at the neck

centre for axisymmetric configurations. (a) Transition of the flow pattern during breakup
for Ca= 2.0× 10−5. (b) Evolution of the interface during stop-flow simulations. The initial
shapes are adapted from the simulation for Ca= 2.0× 10−5. (c) Stop-flow experiments to
determine Ru

m. Supplementary movies 1 and 2 are for Rm >Ru
m and Rm <Ru

m, respectively.

region through the gaps between the rough channel wall and the interface. When the
flow stops at Rm < Ru

m, the neck collapses irreversibly, as in the simulations.

3.2. Destabilizing mechanism of axisymmetric fluid threads
The above stop-flow studies provide direct evidence that the earlier necking stage is
quasi-stable (Garstecki et al. 2005). Our simulations suggest that the internal pressure
of the droplet is nearly constant during the quasi-stable necking stage. Using the
pressure outside of the droplet tips as the reference pressure, the internal pressure of
the fluid thread can be estimated by the capillary pressure of the tips, σ/Rm, which
equals 2σ/R since Rm = R/2 (R1 = R2 = R at the tips). Additionally, the oil pressure
outside the neck is almost evenly distributed during the quasi-stable stage. The
capillary pressure is thus nearly constant along the neck interface, indicating that Rm
can be considered constant along the neck region. In the axisymmetric configuration,
the neck interface is essentially a surface of revolution with constant mean curvature
or a Delaunay surface (Delaunay 1841). Rm varies from R to approximately 0.76R
in the quasi-stable stage. The corresponding capillary pressure, varying from σ/R
to 1.32σ/R, is consistently smaller than the internal pressure, 2σ/R. The internal
pressure pushes the interface outwards to stabilize it against inward collapse. The
stabilization of the confined fluid thread thus originates from the domination of the
internal pressure caused by the thread tips under confinement.

The constant-mean-curvature feature of the neck interface inspires us to propose a
theoretical analysis to reveal an unrecognised destabilizing scenario of the capillary
instability. As shown in figure 4(b), the shape of a tightly confined droplet can be
divided into three types of regions at low flow-rate conditions: (a) the neck region,
(b) two cylindrical regions and (c) two hemispherical head-ends. If representing the
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FIGURE 5. (Colour online) (a) Sketch of the neck profile consisting of a constant-mean-
curvature curve. (b) Axisymmetric constant-mean-curvature surface with increasing 1/Rm.
(c) Variation of the length of the neck region with 1/Rm. (d) Variation of the volume
contained by the constant-mean-curvature surface with 1/Rm.

neck profile as r(z) in the rotating coordinate system shown in figure 5(a), the two
principal radii of curvature are derived from geometrical relationships as

R1(z)= r(z)[1+ ṙ(z)2]1/2 (3.1)

and

R2(z)=−
[1+ ṙ(z)2]

3/2

r̈(z)
, (3.2)

respectively. We consider a general situation in which the fluid thread is long enough
to have all three types of regions during the breakup. Boundary conditions of r(0)=R
and ṙ(0)= 0 are thus valid at the junction between the neck and cylindrical regions.
The shapes of the neck for 1/R 6 1/Rm 6 2/R are obtained by solving

1/Rm = 1/R1(z)+ 1/R2(z) (3.3)

using a MATLAB code (provided in the supplementary material). Note that it is
possible to predict the shape of the entire fluid thread since the only additional
variable for a given 1/Rm is the length of each cylindrical region, which can
be obtained from volume conservation. Figure 5(b) shows the shapes of the
constant-mean-curvature surface with the variation of 1/Rm. The shape changes
from cylindrical to two intersecting hemispheres. The length of the neck region L
decreases near-linearly with 1/Rm, as shown in figure 5(c). The initial cylindrical
shape has a maximum length of 2πR, according to Delaunay (1841). The length
decreases to 2R for 1/Rm= 2R. The volume contained by the constant-mean-curvature
surface Vi also decreases with 1/Rm, as shown in figure 5(d) (scaled by R3).
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FIGURE 6. (Colour online) (a) Evolution of the oil volume between the interface and
the cylindrical channel with the mean curvature for the constant-mean-curvature surface.
(b) Comparison of the neck profiles between the numerical simulations (solid lines) and
constant-mean-curvature profiles (dashed lines) using the neck radii from the simulations
as boundary conditions.

It is interesting to note that the volume between the neck interface and the columnar
channel wall Vo increases first and then decreases with increasing 1/Rm as shown in
figure 6(a). During the whole process of necking, oil inevitably flows into the channel,
resulting in the oil volume increasing with 1/Rm during the breakup. When the volume
is larger than the maximum allowed for the constant-mean-curvature surfaces, Rm can
no longer be constant along the neck interface. A capillary pressure gradient thus
emerges along the interface to promote an irreversible collapse. Figure 6(a) shows
that the maximum oil volume for the constant-mean-curvature surfaces occurs at
Rm = (0.71± 0.001). The corresponding Vo is approximately 5.45. This critical Rm is
in good agreement with Rst

m obtained numerically for Ca= 2.0× 10−5, approximately
0.72. We support this finding directly by comparing the simulated neck profiles
for Ca = 2.0 × 10−5 with the corresponding constant-mean-curvature profiles as
shown in figure 6(b). The constant-mean-curvature profiles are calculated by solving
(3.3) using the values of R1 and Rm at the neck centre as boundary conditions.
Good agreements are achieved before the critical moment tu, approximately 0.48.
Note that there are disparities between the numerical and theoretical profiles near
the joint of the neck region and the cylindrical region. They are likely due to
dynamical effects in the flow-field that increase the oil pressure near the joint.
Obvious differences are observed after tu, indicating that the neck profiles are no
longer constant-mean-curvature profiles. The destabilization of the axisymmetrically
confined fluid threads is clearly the result of the gradient of the capillary pressure
induced by the confinements of both geometry and flow. This instability scenario can
be termed confinement-induced capillary instability.

To further validate the above finding, we calculate the static shapes of an
axisymmetrically confined fluid thread for given Vo (scaled by R3) using the Surface
Evolver program that is able to evolve the surface towards its minimal energy (Brakke
1992). A fluid thread with a fixed volume is constrained in a circular tube. The outer
fluid with a volume of Vo is placed at the centre of the fluid thread to encircle
it. Figure 7(a) shows several static shapes under different Vo. The fluid thread is
stable as Vo varies from 0 to 5.46. When Vo = 5.47, the fluid thread becomes
unstable and the interfacical meshes collapse to the centre since the Surface Evolver
program cannot handle a topological change of interface. The critical Vo is in good
agreement with the above theoretical prediction, i.e. approximately 5.45. As shown
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FIGURE 7. (Colour online) (a) Static shapes of axisymmetrically confined fluid thread
obtained by Surface Evolver for given Vo. (b) Variation of the interfacial energy of the
confined fluid thread Sd with Vo.

in figure 7(a), the critical neck profile predicted theoretically is overlapped onto the
static shape for Vo = 5.46, further indicating the good agreement. Figure 7(b) shows
that the interfacial energy of the fluid thread Sd increases with Vo until Vo = 5.46.
When Vo = 5.47, the interfacial energy is released to show a sudden jump. Note
that, in practice, the fluid thread breaks into two identical droplets with round ends
at Vo = 5.47. The corresponding Sd can be calculated from volume conservation, as
indicated by the dashed line in figure 7(b). The energy plot indicates that there is an
energy barrier, determined by the critical shape, that must be overcome to induce the
capillary instability.

Additional simulations are carried out to investigate the influences of Ca and
the physical parameters of the two fluids on the critical neck shape. For the first
case, only U is altered to be 1/10 of that in the case in figure 3(b), with a
corresponding Ca of 2.0 × 10−6. The top and bottom images in figure 8(a) show
the evolutions of the interface when the flow is stopped just before and after the
critical moments, respectively. We find Ru

m is measured to be approximately 0.73R
and Rst

m is approximately 0.71R, which is very close to the theoretical prediction.
This means that Ru

m and Rst
m obtained from the stop-flow simulations converge to

the theoretical value of 0.71R as Ca decreases and approaches 0. For the second
case, water is changed to air based on the case in figure 3(b). Ru

m obtained from the
stop-flow simulations in figure 8(b) is approximately 0.76R and Rst

m is approximately
0.71R. For the third case, the viscosity ratio of the oil and water is reduced from
8 to 4, while the interfacial tension is increased from 5 mN m−1 to 10 mN m−1.
The corresponding capillary number Ca is 1.0 × 10−5. Stop-flow simulations in
figure 8(c) indicate that Ru

m and Rst
m are approximately 0.75R and 0.72R, respectively.

For the fourth case, we further reduce the viscosity ratio from 4 to 1 and increase
the interfacial tension from 10 mN m−1 to 40 mN m−1. The corresponding Ca is
2.5 × 10−6. Ru

m and Rst
m are then 0.72R and 0.71R, respectively. The critical neck

profile predicted theoretically is overlapped onto the top images in the four frames
in figure 8, to show the agreements between the numerical simulations and the
theoretical prediction. Therefore, it is safe to conclude that the confinement-induced
capillary instability is not affected by the physical parameters of the two fluids.

Droplet-based microfluidics utilizes the breakup of a confined fluid thread to
generate monodispersed droplets. Microfluidic channels fabricated by soft lithography
have rectangular cross-sections. To determine if the confinement-induced mechanism
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(a) (b)

(c) (d)

FIGURE 8. (Colour online) Interfacial evolutions just before and after the critical moments
determined by stop-flow simulations for four conditions with different flow and physical
parameters. The top and bottom images in each of the four frames are for before and
after the critical moments, respectively. (a) Only U is altered to be 1/10 of that in the
case in figure 3(b). The corresponding capillary number Ca is 2.0 × 10−6. (b) Water is
changed to air based on the case in figure 3(b). (c) The viscosity ratio of oil and water
is 4, while the interfacial tension is 10 mN m−1. The corresponding Ca is 1.0× 10−5. (d)
The viscosity ratio of oil and water is 1, while the interfacial tension is 40 mN m−1. The
corresponding Ca is 2.5× 10−6.
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FIGURE 9. (Colour online) Droplet breakup in a flow-focusing configuration with a square
microchannel. (a) Schematic of the simulation set-up. (b) Time evolutions of the three
radii for Ca = 6.2 × 10−4. The three radii are scaled with H/2, and the time is scaled
with H/2U. The critical time tu is determined by stop-flow simulations.

is valid for fluid threads in rectangular channels, droplet breakup in a flow-focusing
configuration with a square microchannel is studied numerically. As shown in
figure 9(a), the oil phase with a velocity of U flows into the channel with a height
H (25 µm) and from the top and bottom openings to squeeze a long water droplet
at its centre. The physical parameters are the same as those in figure 3. The time
evolutions of the three radii for Ca = 6.2 × 10−4 are shown in figure 9(b). We find
that the neck region is approximately axisymmetric at the centre since Ca is small.
Stop-flow simulations demonstrate that Ru

m = (0.76 ± 0.01)(H/2), agreeing with that
in the axisymmetric configuration. The confinement-induced capillary instability is
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FIGURE 10. (Colour online) Rapid collapse of the neck region and determination of
the critical mean radius at the neck centre Rr

m. (a) Experimental configuration and
measurements of two principal radii of curvature for fluid thread breakup in a T-junction
of a cross-flowing configuration. The physical parameters are the same as those in
figure 2(c). (b) Time evolution of the radii at the neck centre for Ca = 2.0 × 10−5.
(c) Interfacial evolution before and after the critical moment from experiments using
the stop-flow method. Supplementary movies 3 and 4 are for Rm > Rr

m and Rm < Rr
m,

respectively.

thus also applicable for fluid threads in square microchannels, as long as the fluid
thread has an axisymmetric neck region.

3.3. Destabilizing mechanism of non-axisymmetric fluid threads
The above investigations combine simulations, experiments, and theory to reveal
the confinement-induced breakup mechanism of axisymmetric fluid threads. We also
experimentally study the breakup of a non-axisymmetric fluid thread with circular
channels in a cross-flowing configuration, as shown in figure 10(a). The channel
diameter and the fluid properties are the same as those in figure 4(c). Water and
oil flow from the bottom and right inlets, respectively, into the channel junction.
The water thread is squeezed by the oil phase to break up at the channel junction
into water droplets. The usage of circular channels avoids leakage in the corners of
rectangular channels. This enables us to investigate the fluid thread breakup in the
cross-flowing configuration under an extremely low flow-rate condition. It is thus
reasonable to assume that the main radius is constant around the cross-section of
the neck centre, except the region that contacts with the wall. The shape of the
neck can then be represented by the two principal radii indicated in figure 10(a).
Figure 10(b) shows the evolution of the three radii measured from high-speed images
under Ca = 2.0 × 10−5. The measurement procedure and code can be found in
the supplementary material. The collapse occurs more rapidly than that in the
axisymmetric configuration, suggesting the existence of a different destabilization
mechanism. The stop-flow experiment in figure 10(c) shows that the critical mean
radius Rr

m is (0.51± 0.01)R. The capillary pressure at the neck centre is approximately
2σ/R, which is equal to the internal pressure of the fluid thread determined by the
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Confinements regulate capillary instabilities of fluid threads 827

hemispherical tip with Rm of R/2, i.e. 0.50R. The destabilizing mechanism is thus
quite simple – the fluid thread becomes unstable when the capillary pressure at the
neck centre balances the internal pressure.

Several destabilizing mechanisms, essentially the same as the one described above,
have been identified in other confined situations. For example, approximately half a
century ago, Roof (1970) considered the breakup of an oil thread inside a water-filled
pore. He indicated theoretically, based on the balancing of the capillary pressure, that
for a given shape of constriction, there is a minimum size to the protruding portion
of the oil that permits breakup. Subsequently, Beresnev, Li & Vigil (2009) analysed
the distribution of the capillary pressure in a channel with a sinusoidal profile. A
geometrical criterion for the spontaneous breakup was developed by comparing the
capillary pressure in the troughs to that in the crests. The criterion reduces to the
condition for the occurrence of the R–P instability for a free liquid jet in gas. For
a fluid thread in a step-emulsification microfluidic device with rectangular channels,
a so-called ‘curvature balance model’ for droplet breakup was proposed based on a
quasi-static balance between the curvature of the thread inside the inlet channel and
the curvature of the ‘bulb’ downstream of the step (Dangla et al. 2013). It was also
found that the balance is not dependent upon the fluid properties.

The breakup of a fluid thread in a cross-flowing configuration with rectangular
microchannels was believed to be triggered by the backward flow in the corners,
from the thread tip to the neck (van Steijn et al. 2009). They used the pressure in
the gas thread as the reference pressure to calculate the pressure in the liquid at the
squeezing interface and at the thread tip. The pressure difference over the gutters was
thus expressed by subtracting the latter pressure from the prior pressure. Experimental
measurements of the radii showed that the pressure difference changes sign when the
gas thread begins to collapse. This proposed critical condition was indeed essentially
the same as the abovementioned mechanism based on the balancing of the capillary
pressure. However, it was believed that this change causes the reversed flow in the
gutters, which drives the liquid back to the squeezed neck to force the thread to
collapse. The existence of the backward flow was determined through the observation
of velocity fields only near the neck region (van Steijn et al. 2009). Conversely,
our experiments involving a cross-flowing configuration with a circular cross-section
(figure 10) demonstrate that the critical geometrical condition happens even when
there is no corner at all. To look into this contradiction, numerical simulations
are carried out for a fluid thread in a cross-flowing configuration within square
microchannels. The channel height and fluid properties are the same as those in the
simulations in figure 9. The velocity vectors in the plane of 0.1H from the top wall
are shown in figure 11 for two situations with different lengths of the generated
droplets. It is clear that the backward flow in the corners does not start from the
thread tip, but only exists near the neck region. The accelerating collapse of the neck
region causes the backward flow that drives the oil phase towards the neck centre,
similar to the axisymmetric breakup in figure 4(a).

For another non-axisymmetric configuration, droplet breakup in a T-junction (as
shown in figure 12a), Hoang et al. (2013) stated that the autonomous breakup starts
when the curvature at the neck becomes larger than the curvature everywhere else.
The mechanism responsible for the autonomous breakup was believed to be similar
to the end-pinching mechanism (Stone et al. 1986). However, the end-pinching
mechanism was proposed analytically to be a consequence of the motion generated
via capillary pressure gradients in the region near the end of the droplet (Stone
et al. 1986), not via the competition of the curvatures that determines the capillary
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(a) (b)

FIGURE 11. Velocity vectors in the plane of 0.1H from the top wall during the thread
breakup in a T-junction. The capillary number based on the oil phase is 6.2× 10−4. The
lengths of the generated droplets are approximately 2.5H (a) and 2.0H (b) by varying the
flow rate of the water phase.

pressure. Meanwhile, Hoang et al. (2013) obtained a simple relation between the
critical neck thickness (twice the R1 defined here) for autonomous breakup and the
height-to-width ratios of the rectangular channels. Since the relation was the same
as that for the cross-flowing configuration, Hoang et al. (2013) suggested that the
breakup mechanism was similar to the aforementioned backward-flow mechanism
(van Steijn et al. 2009). The breakup mechanism of droplet breakup in a T-junction
is thus still unclear. The accuracy is also questionable when using R1 to represent the
neck shape.

We revisit droplet breakup in a T-junction through numerical simulations. The
geometrical set-up is shown in figure 12(a), where a T-junction comprises two square
microchannels. The oil phase flows with a velocity U into the T-junction from one
channel to deform a confined water droplet at the centre of the T-junction. The
fluid properties are the same as those for the axisymmetric simulations in § 3.1
and H of the square channels is 30 µm. Both the fluid properties and geometrical
parameters are identical to those in previous experimental (Link et al. 2004; Jullien
et al. 2009) and numerical (Hoang et al. 2013) studies. Figure 12(b) depicts the
evolutions of R1 and the three mean radii at three key positions of the neck centre
under Ca= 6.2× 10−4. As indicated in figure 12(c), the three mean radii are the top
and bottom mean radii from the top view, Rt

m and Rb
m, and the mean radius from the

side view, Rs
m. Owing to the asymmetric flow, the three radii are not equal. Rt

m is
larger than Rb

m since the oil flow compresses the droplet from the top. Figure 13(a)
shows the evolutions of the droplet profiles on the longitudinal symmetry plane and
the cross-section across the neck centre. As the profiles have the same time interval,
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FIGURE 12. (Colour online) Droplet breakup in a T-junction. (a) The schematic diagram
of the simulation set-up. (b) The time evolution of the radii for Ca= 6.2× 10−4. (c) The
critical droplet shape determined by stop-flow methods.

(a)

(b)

(c)

FIGURE 13. (Colour online) Evolutions of droplet profiles on the longitudinal symmetry
plane and the cross-section across the neck centre, during the breakup under Ca= 6.2×
10−4, when flow stops just before (b) and after (c) the critical moment.

a rapid change of the neck profile is observed close to the final breakup. The profiles
of the cross-section are circles which are nearly concentric.

Stop-flow simulations are carried out to obtain the critical neck shape as shown in
figure 12(c). R1 at the critical moment tr is found to be approximately 0.52(H/2),
agreeing with 0.53(H/2) in Hoang et al. (2013). Non-negligible distinctions between
R1 and the three mean radii at tr are observed in figure 12(b), indicating that it is not
accurate to use σ/R1 to represent the capillary pressure. The evolutions of the droplet
profiles when the flow is stopped just before and after tr are shown in figures 13(b)
and 13(c), respectively. When the flow is stopped just before tr, the neck centre moves
towards the oil inlet. After the neck centre reaches the centre of the channel, the
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neck shape becomes nearly axisymmetric and expands slowly owing to the leakage
of the oil phase from the corners. When the flow is stopped just after tr, the motion
of the interface at the neck centre couples both the motion towards the oil inlet and
the collapse motion towards the neck centre. The profiles on the cross-section show a
consistent decrease of R1. The upper profile on the longitudinal symmetry plane moves
towards the oil inlet first and then collapses towards the neck centre. The motion
towards the oil inlet indicates that, after the oil flow is stopped, the internal pressure
inside the neck turns to push the upper interface outward to stabilize the interface.
Naturally, the shape of the upper interface cannot be expected to represent the critical
neck shape.

The abovementioned breakup mechanism for a fluid thread in the cross-flowing
configuration inspires us to look into the internal pressure of a droplet in a rectangular
channel. For a static non-wettable long fluid thread in a rectangular channel, the
internal pressure of the droplet is σ/Run

m , where Run
m is the mean radius of the

unconfined droplet interface, including the droplet tips and corner interface at the
columnar region (Wong, Radke & Morris 1995). Run

m at the corner interface reduces
to the radius of the circular arcs Rg in the cross-section of the columnar region.
Utilizing this geometrical feature, Wong et al. (1995) developed an explicit solution
of Rg for a static non-wettable long fluid thread under Ca→ 0, i.e.

Rst
g = λH/[1+ λ+ [(1− λ)

2
+πλ]

1/2
], (3.4)

where λ is the ratio of the channel width W and height H. For the square channel
here, λ = 1 and Rst

g ≈ 0.53(H/2). Under a finite Ca, the interface is altered by the
droplet motion and the corner flow around the droplet to divide the mean radius from
Rst

g (Wong et al. 1995). We then quantify the internal pressure by measuring Rg from
the cross-section of the columnar region in figure 12(c). Due to the asymmetry of the
flow-field, Rg at the left two corners are larger than those at the right two corners. The
smaller Rg at the right corners thus determines the internal pressure through a higher
capillary pressure. Here Rg stays constant during the breakup and is measured to be
approximately 0.71(H/2). When Rg is indicated on figure 12(b) with a dashed line,
we find that it is approximately equal to Rs

m at tr, (0.70 ± 0.02)(H/2). The equality
relation of the critical Rs

m and Rg indicates essentially the same breakup mechanism
as for the abovementioned fluid threads in a cross-flowing condition. Again, the fluid
thread becomes unstable when the capillary pressure at the neck centre balances the
internal pressure, which occurs here, only at parts of the neck interface due to the
asymmetric flow under a finite Ca.

3.4. Critical droplet lengths for obstructed breakup
The above analyses show that the critical conditions for the onset of capillary
instability for small Ca numbers are geometrical for confined fluid threads. This
finding is consistent with previous experimental studies (Link et al. 2004; Jullien et al.
2009) on droplet breakup in a T-junction. Jullien et al. (2009) classified the droplet
dynamics into non-breakup, non-obstructed breakup, and obstructed (or blocked)
breakup. For obstructed breakup, the droplet touches the walls of the T-junction,
i.e. droplets keep obstructing the T-junction before breakup. For non-breakup and
non-obstructed breakup, there is a tunnel between the droplet and the wall. A droplet
shorter than a Ca-dependent length opens a tunnel on one side of the junction by a
random disturbance, and eventually moves in the opposite direction without breakup.
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A longer droplet can break under the non-obstructed condition. When Ca is low
enough, the non-obstructed breakup cannot happen. Jullien et al. (2009) identified
experimentally that there exists a critical initial droplet length, Lcr. For a droplet with
a length larger than Lcr, obstructed breakup happens, independent of Ca. Inspired
by this finding, we predict Lcr based on the critical neck shape from the stop-flow
simulations as shown in figure 12(c). The critical droplet shape from the top view in
figure 12(c) can be divided into five regions: the neck region (a), two plug-shaped
regions (b) and two hemispherical head-ends (c). For different initial droplet lengths,
neither the critical shape of the neck region nor the shape of the head-ends changes.
The shortest breakable droplet should thus have a volume that comprises only those
of the neck region and two head-ends. A shorter droplet cannot reach the critical
neck shape for obstructed breakup since the volume is not large enough to reach the
critical neck shape for breakup. According to the critical droplet shape in figure 12(c),
Lcr is calculated by subtracting the length of the two plug-shaped regions from the
length of the initial droplet to give approximately 3.07H. This length is close to πH,
which is used by Link et al. (2004) to predict the boundary between no breakup and
breakup according to the R–P stability criterion for the same combination of fluids.
Jullien et al. (2009) found that Lcr is altered by the viscosity ratio of the dispersed
and continuous phases, and is 2.62H and 4.20H for a viscosity ratio of 0.11 and
1.67, respectively. For the fluids considered here, the viscosity ratio is approximately
0.13. The Lcr obtained is thus consistent with the experimental study of Jullien et al.
(2009). It is likely that the viscosity ratio influences the critical shape through the
asymmetric flow field around the neck and the leakage flow at the corners.

Similarly, Lcr for the axisymmetric configuration in figure 1(a) can be determined
theoretically (corresponding to the critical Rm = 0.71R) to be approximately 4.52R or
2.26D (with the diameter D = 2R). Simulations with different initial droplet lengths
are carried out for Ca = 2.0 × 10−4, 2.0 × 10−5 and 2.0 × 10−6 to find Lcr for the
obstructed breakup. Different from the simulations in figure 1, that consider the
obstructed breakup using only a quarter of the cross-section of the configuration,
half of the cross-section is used here to consider the situations of non-breakup
and non-obstructed breakup (see the supplementary material for the schematic of
the computational domain). All three types of droplet dynamics are obtained for
Ca = 2.0 × 10−4, but only non-breakup and obstructed breakup are observed for
Ca of 2.0 × 10−5 and 2.0 × 10−6. Figure 14(a) shows the droplet dynamics for
Ca = 2.0 × 10−4 under different initial droplet length L. When L = 1.75D, the neck
region cannot reach the critical shape for breakup. The droplet moves to one side
due to the asymmetric flow outside the neck surface. When L = 2.00D, the droplet
breaks with a tunnel between the interface and the wall. When the tunnel vanishes,
the neck evolutions are obviously the same for L= 2.45D, 3.00D and 4.00D. Previous
experiments (Jullien et al. 2009) distinguished non-obstructed breakup and obstructed
breakup by the width of the opening tunnel. If the width was below the optical
resolution, the breakup was classified as the obstructed one. Our work is different in
that we use the time period required for breakup tb to distinguish these two types of
breakup. Figure 14(b) shows that tb decreases with L but then shows independence of
L. The physical reason for the independence is that, when the droplet length is large
enough to cause obstructed breakup, the shape revolution at the neck region will not
be affected by L. Lcr for Ca = 2.0 × 10−4 is thus obtained from figure 14(b) to be
approximately 2.43D. This value is in agreement with the theoretical prediction of
2.26D. The difference between the theoretical and numerical predictions may be due
to the disparities between the numerical and theoretical neck profiles near the joint
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L = 2.00D

L = 2.45D

L = 3.00D

L = 4.00D L = 2.55D

L = 2.50D

(a) (b)

(c)

FIGURE 14. (Colour online) (a) Three types of droplet dynamics, non-breakup,
non-obstructed breakup, and obstructed breakup, for different L under Ca = 2.0 × 10−4.
(b) Evolution of the breakup time with L for Ca= 2.0× 10−4. (c) Two types of droplet
dynamics, non-breakup and obstructed breakup, for different L under Ca= 2.0× 10−5.

of the neck region and the cylindrical region, as observed previously in figure 6(b).
Figure 14(c) shows that the non-obstructed breakup vanishes as Ca decreases to
2.0 × 10−5. Lcr for Ca = 2.0 × 10−5 and 2.0 × 10−6 are obtained directly from the
boundary between non-breakup and obstructed breakup to be 2.53D and 2.68D,
respectively. Lcr thus increases only by approximately 10 % as Ca decreases by two
orders of magnitude. This slow variation of Lcr with Ca is roughly in agreement with
the experimental observations for droplet breakup in a T-junction (Jullien et al. 2009),
that Lcr is independent of Ca (in a range between 4 × 10−4 and 2 × 10−1). As the
variation of Lcr with Ca is related to the non-breakup situation, the flow through the
tunnel between the droplet and the wall should be considered. The flow dynamics is
beyond the scope of the present paper and will be considered in a future study.

4. Concluding remarks
The present study highlights the essential role of capillarity and ultimately

illuminates the two origins of capillary instability of confined fluid threads in
microfluidic channels. Distinct from an unbounded fluid thread, a confined fluid
thread is stabilized by its internal pressure and destabilized by the gradient of the
capillary pressure induced by confinements or local capillary pressure that exceeds
this internal pressure. The revealed mechanisms not only explain the underlying
physics but also can be used to invent new configurations of microfluidic devices that
can further improve the precision and efficiency of droplet/bubble generation.
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