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Abstract: Understanding the hydrodynamic properties of polymeric coatings is crucial for the rational
design of molecular transport involving polymeric surfaces and is relevant to drug delivery, sieving,
molecular separations, etc. It has been found that the hydrodynamic radius of a polymer segment is
an order of magnitude smaller than its physical size, but the origin of this effect does not seem to
be well understood. Herein, we study the hydrodynamic properties of polymeric coatings by using
molecular dynamics simulations, navigated by the continuous Navier-Stokes-Brinkman model. We
confirm that the averaged hydrodynamic radius of a polymer bead is about one order of magnitude
smaller than its physical radius, and, in addition, we show that it exhibits a strong dependence on
the degree of polymerization. We relate this variation of the hydrodynamic radius to the structural
properties and hydrodynamic shielding by surrounding polymer beads. This is done by separating
the effects originating from near and far beads. For the near beads, shielding is mainly due to the
two nearest beads (of the same polymer) and leads to about a 5-fold reduction in the hydrodynamic
radius. Assuming the additivity of the hydrodynamic shielding by far beads, we suggest a simple
model, which captures correctly the qualitative behaviour of the hydrodynamic radius with the
degree of polymerization. The revealed shielding effects provide important insights relevant to the
advanced modelling of hydrodynamic properties of polymeric coatings.

Keywords: polymeric coatings; Stokes radius; hydrodynamic shielding; molecular dynamics
simulations; Navier-Stokes-Brinkman model

1. Introduction

Grafting polymers on surfaces is a versatile way to tune their physicochemical properties, which
has numerous applications [1–3]. For instance, grafting nanocarriers with polymers improves their
bio-compatibility and stability, making them a promising candidate for drug transport [4,5]. Channels
coated with polymers regulate flows and enable “smart” functionalities in sieving, separation, and
remote control [6–8]. Such wide-spread applications have stimulated the fundamental research on
transport phenomena involving polymer-grafted surfaces [9–13]. Indeed, electrokinetic transport is
widely used in micro/nanoscale systems because of its ease-to-use scale-up capabilities [14,15]. Typical
examples include electrophoresis of particles [16], where particles are in motion relative to stationary
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fluids, and electroosmotic flows (EOFs) in nanochannels [17], where fluids are in motion relative to
stationary walls. The fundamental transport model governing these two phenomena is the same, and
hence the insights obtained from one phenomenon can be applied to the other [6].

Electrokinetic transport of hard-core particles is relatively well understood now [18,19], but
understanding the transport involving polymer-coated surfaces remains a challenge due to the
complexity of hydrodynamic interactions [20]. Frequently, polymeric coatings are modeled as porous
media exerting a drag force on their environment [21,22]. The hydrodynamics are then characterized
by the friction coefficient of polymers [23] or by the hydrodynamic radius of resistance segments [24].
For instance, polymeric coatings have been modeled as a distribution of resistance centers described
by certain distribution profiles such as a uniform layer [23], a diffusive layer [20], a Gaussian-like
layer [24], and a self-consistent polymer profile [25]. Harden et al. [26] studied the relation between
the electroosmotic mobility of the polymer-grafted surfaces and the conformation of polymers. The
hydrodynamic properties of polymeric coatings were examined by a mean-field approach, in which
again the distribution of polymer beads was approximated by a certain profile of resistance centers.
However, such a mean-field approach neglects the molecular nature of polymer chains, i.e., that the
polymers are chains of connected beads rather than isolated resistance centers.

To model more accurately the hydrodynamic properties of polymers, it is necessary to consider the
hydrodynamic interactions at nanoscale [27,28]. This can be achieved by molecular simulations [29],
which allow one to take into account such interactions explicitly and offer important molecular
insights. For instance, Grest [30] studied the interfacial sliding of polymeric coatings using molecular
dynamics (MD) simulation, and Gama Goicochea et al. [31] calculated the friction coefficient of
surfaces functionalized with polymer chains using dissipative particle dynamics. Sarkar et al. [32]
investigated the structure and hydrodynamic properties of nanocarriers under flow conditions by
Brownian dynamics simulations. They found that the conformations and orientations of nanocarriers
under shear depend on the applied shear rate and crosslinking density of nanocarriers. Hill [25]
interpreted the electrophoretic mobility data of PEG coated liposomes [33] by full electrokinetic model
and achieved an excellent agreement between the theory and experiment, but the fitted hydrodynamic
radius of a polymer segment turned out to be unusually small. More recently, Raafatnia et al. [34]
studied electrophoresis of soft particles by Lattice-Boltzmann (LB) simulations. The LB results were
matched with the predictions of the continuous Darcy-Brinkman equation, in which the Stokes radius
of a polymer segment was obtained from the LB simulations and used as an input.

The aforementioned studies of polymeric coatings on macro- and microscopic levels have unveiled
some of the most important hydrodynamic properties. However, several key questions remain
unanswered: Why the Stokes radius of the polymer bead in a polymeric coating, abead, is much smaller
than its physical radius? Whether and to what extent the conformation of polymers affects abead? It
is vital to resolve these issues in order to model more accurately the hydrodynamic and rheological
properties of polymeric coatings, which has been identified as a key challenge in the electrokinetic
transport in polymer-coated systems [3]. In this work, we investigate polymeric coatings, screening an
EOF, by MD simulations and by continuous, one-dimensional Navier-Stokes-Brinkmann (NSB) model.
We extract the effective Stokes radius of polymer beads, by matching the simulation results with the
results of the NSB model, and demonstrate that abead varies significantly with the chain length N of
polymers. We rationalize the reduction of abead, and its variation with N, by relating the structural and
hydrodynamic properties of polymer’s beads in coatings.

2. Methods

Electro-osmotic flow (EOF) in a polymer-coated nanoslit was modeled by using molecular
dynamics (MD) simulations and the continuous Navier-Stokes-Brinkman (NSB) model. The MD
simulations were used to calculate the velocity profile of the EOF across the slit (as well as the densities
of the solvent, ions and polymers’ beads). The NSB equation was applied to obtain the flow field
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across the slit and to infer the Stokes radius of the polymer’s bead, abead, by matching the flow velocity
with that obtained by MD simulations.

2.1. MD Simulation

The MD system is shown in Figure 1a and consists of an electrolyte confined between two
parallel walls grafted with polymer chains. The grafting density of polymers was 0.164 nm−2 as in
the experiments [33]. The walls were constructed of three layers of atoms placed on the face-centered
cubic lattice with atom density 33.3 nm−3. The wall atoms in contact with the electrolyte were charged,
with the surface charge density σs = 3.28 × 10−2 C/m−2, and the atoms of the other layers were left
uncharged. In order to model correctly the solvation behaviour at the walls, we introduced additional
“virtual” walls, placed 0.1 nm away from the innermost layers, which interact via the Lennard-Jones
(LJ) interactions with the ions only; these walls shift the ion distribution to that obtained using the
SPC/E model of water [35–37]. The size of the system in the x and y direction was 9.88 nm and the slit
width was w = 20 nm (w is the distance between the innermost layers of the two walls, and z = 0 was
chosen to be at the center of the innermost layer of the bottom wall). A vacuum space of width 30 nm
was added in the z direction. System parameters are summarized in Table S1. The corresponding
parameter and coordinate files can be found in Supplementary Materials.

In order to focus on the hydrodynamic properties, unobscured by chemical details of real
intermolecular interactions, we used the Weeks-Chandler-Andersen (WCA) interaction potential [38]
between the solvent molecules and between the solvent and the ions, and charged WCA particles were
used to model ions. Dielectric constant was taken εs = 78 to account for the dielectric properties of the
solvent. The ionic strength of electrolyte was 3.4×10−2 mol/L as in the experiments (0.56 M) [33]. We
used the force field parameters for solvent and ions as in Ref. [39] (Table S2).

Polyethylen glycol (PEG), H – (O – CH2 – CH2)n – OH, was simulated by using the united-atom
model, in which every backbone atom (carbon and oxygen) is modeled as LJ spheres (beads) with
the same force-field parameters, while the hydrogen atoms are ignored; also the solvent (water) was
consistently modeled as a single bead with the same LJ parameters (Table S2). Thus, within our
model, a monomer consisted of three beads and a polymer of degree n of 3n + 1 beads. However, we
used the first two beads of a polymer to attach it to the wall, and therefore we had N = n − 1 free
monomers and 3N + 2 free beads. Force field parameters for polymers were taken from the OPLS
parameters for hydrocarbon [40]. The topology files, which define bonds, bond angles and dihehedral
interactions of polymers, were obtained by submitting the molecular structure of the hydrocarbon
chains to PRODRG2 server [41]; the dihedral parameters were then tuned to obtain a flexibly deformed
polymer. The corresponding itp files can be found in Supplementary Materials.

We chose to develop the united-atom model in order to capture the fine-grain features of PEG
polymers, especially overlapping atoms. To check this model, we calculated the scaling law of the
gyration radius, Rg, as a function of the degree of polymerization N (i.e., the exponent γ in Rg ∼ Nγ),
and obtained γ = 0.65. For a random-walk polymer, the scaling of gyration radius of the polymer
chain is 0.59 [42]. This difference in γ might be due to the strong interactions between the polymer
and solvent. However, the polymers in our united-atom model can freely deform, mimicking the
configurations of real polymers.

MD simulations were performed by using simulation package Gromacs 4.5.1 [43]. The cut-off
radius of the Lennard-Jones potential was 21/6 σ (σ = 0.3 nm) to mimic the solution condition of
polymers in good solvent [30]. Electrostatic interactions were computed by using the Particle-Mesh
Ewald (PME) in 2D (in x and y dimensions) [43] with a cut-off radius 1.3 nm. To generate an EOF, we
applied an electric field in the x direction of strength Ex = 1.6 × 10−2 V/nm. Temperature was 300 K
and we used V-rescaling thermostat [43]; the pressure was one bar. The time step was 4 fs, and the
simulations were run for 10 ns to reach a steady state, which was followed by a production run of
100 ns. In each case we performed three independent simulation runs.
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2.2. Navier-Stokes-Brinkman Model

The Navier-Stokes-Brinkman (NSB) equation is [25]

d
dz

[
µ(z)

dueo(z)
dz

]
− 6πµ(z)n(z)abeadK(φ(z))ueo(z) +

M

∑
i=1

Fci(z)Eext = 0, (1)

where µ(z) is the fluid viscosity, ueo is the EOF velocity, n(z) is the number density distribution of
polymer beads, abead is the effective Stokes radius and φ(z) is the volume of polymer beads. The
function K(φ) accounts for the correlations between homogeneously distributed spherical particles [44]
(Section S4 A in Supplementary Materials), F is the Faraday constant, ci(z) the ionic concentration of
species i, M = 2 is the number of ionic species, and Eext is an applied electric field. On the left hand
side of Equation (1), the first term denotes the viscous force, the second term is the hydrodynamic drag
exerted by a polymeric coating on the fluid, and the last term is the driving force of the EOF.

The functions n(z) and ci(z) were measured directly in MD simulations and used as an input
in Equation (1). For the fluid viscosity, µ(z), we used the bulk solvent viscosity, combined with the
Einstein relation model to account for the effect of polymer beads [45] (Figure S6, Section S4 B in
Supplementary Materials; for a more rigorous method to determine the fluid viscosity, see Ref. [46]).
No-slip boundary condition was applied at the wall and the mirror symmetry of EOF velocity profile
was imposed at the center of the slit (Section S4 C in Supplementary Materials). The hydrodynamic
radius abead was treated as an adjustable parameter to match the EOF velocity profile obtained by
MD simulations.

3. Results and Discussion

We have considered a slit filled with an aqueous electrolyte; the slit walls were positively charged
and grafted with polyethylene glycol (PEG) polymers (Figure 1a; see Section 2 for modelling details).
The electro-osmotic flow (EOF) was induced by applying a homogeneous static electric field Ex in
the x-direction along the slit. From molecular dynamics (MD) simulations, we obtained the averaged
concentration profiles across the slit, which are shown in Figure 1b–c. Since the slit walls were charged,
an electric double layer was built at each wall; its structure and thickness are consistent with the results
obtained earlier by a SPC/E model of water [35–37]. The density distribution of polymer beads is also
in good agreement with the previous studies [38]. The solvent density shows an oscillatory behaviour
at the walls (Figure 1c) and is reduced due to the presence of the polymers (Figure S1).

Our primary interest was to study the hydrodynamic properties of polymer coatings, screening
the electro-osmotic flow. An important quantity characterizing such screening is the effective
hydrodynamic (or Stokes) radius of the polymer bead, abead, which appears in the continuous,
one-dimensional (along the z axis, see Figure 1a) Navier-Stokes-Brinkmann (NSB) equation (see
Equation (1)). In order to calculate abead, we fitted the averaged solvent velocity profile across the
slit, obtained from the MD simulations, to the velocity profile calculated from the NSB equation. For
the parameters of the NSB equation (such as viscosity, density of beads, etc.), we used the values
obtained directly from the MD simulations, so that the bead’s hydrodynamic radius was the only
fitting parameter. Figure 1d demonstrates an excellent match between the MD and NSB approaches,
and suggests that the continuous NSB model can describe well the electro-osmotic flow screened
by polymers (for additional velocity profiles see Figure S2). A similar agreement between the two
approaches has been reported by Raafatnia et al. [34]. It is important to point out that the flow is still
in the linear regime even for relatively strong applied electric fields (the inset in Figure 1d).
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Figure 1. Polymer coating screening the electrokinetic flow in a slit. (a) Snapshot from molecular
dynamics (MD) simulations. A homogeneous electric field Ex is applied in the x direction to drive
the electro-osmotic flow, which is screened by the polymeric coatings attached to the slit walls. The
ions are depicted by red and blue colors, and the solvent is turquoise; (b,c) Averaged ion density (b),
and polymer bead and solvent densities (c), across the slit from MD simulations; (d) Average solvent
velocity across the slit from MD simulations and from the continuous Navier-Stokes-Brinkmann (NSB)
model. The inset shows the solvent velocity in the middle of the slit as a function of the applied field. In
(a–d), the degree of polymerization N = 14 so the polymers have 3N + 2 = 44 free beads (see Section 2).
The polymers are placed on a square lattice with the lattice constant a = 2.5 nm on both slit walls.
The slit width is w = 20 nm. Effective hydrodynamic radius of the polymer bead in the NSB model
abead ≈ 0.019 nm; (e) The effective hydrodynamic radius of the polymer bead as a function of the
degree of polymerization N; abead is normalized to the Lennard-Jones radius of the bead a0 = 0.156 nm.
The inset shows the mid-plane solvent velocity versus N.

3.1. The Stokes Radius of Beads in Polymeric Coatings

We next calculated the hydrodynamic radius of polymer beads for different degrees of
polymerization N (in our simulations, a polymer of degree of polymerization N consisted of 3N + 2
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“free” beads, see Section 2). The range of N considered covers the mushroom and brush-like
configurations, which correspond to the gyration radius smaller and larger than the polymer-polymer
separation, respectively; for our set-up, the crossover between the two conformations occurs at N = 14
(note that another possibility to obtain the transition between the brush and mushroom configurations
is to fix the polymer length and to vary the grafting density).

Figure 1e demonstrates two important features of the hydrodynamic screening:

1. The hydrodynamic radius, abead, is about one order of magnitude smaller than the physical
(i.e., Lennard-Jones) radius of the polymer bead. This result is consistent with the previous
studies [25,34], but its origin does not seem to be well understood.

2. The hydrodynamic radius decreases at a decreasing slope with increasing the degree of
polymerization, N. This is in agreement with the decreasing center-line flow velocity (i.e.,
the solvent velocity measured in the middle of the slit). This result is a new finding and implies
that abead depends on the configuration of polymers, as suggested by Monteferrante et al. [47].

We rationalized these findings by studying the structure and the hydrodynamic properties of
polymeric coatings, as described in detail below.

3.2. Structure of Polymeric Coatings

The crucial assumption in the continuous NSB approach is that polymer beads are treated as
isolated resistance centers screening the flow. However, the polymers are chains of connected beads
and the screening properties of a bead shall be affected by the beads surrounding it; in other words, the
effective hydrodynamic radius of the polymer beads is expected to depend on the structure of a polymer
coating [47], which, in turn, depends on the polymer’s length and polymer-polymer separations.

To reveal the conformational structure of the grafted polymers, we have calculated the gyration
radius of polymers (Figure S3, Section S1 in Supplementary Materials) and the bead-bead radial
distribution function (RDF, Figure 2; since the bead density in the system is essentially inhomogeneous,
we have left the RDF non-normalized). The RDF unveils that the short-distance structure is practically
independent of the polymer length (N). The first peak in the RDF results from two neighbouring beads,
and the second peak from the next-nearest beads, of the same polymer. The noticeable dependence
of the RDF on N is apparent only for distances larger than r0 ≈ 0.3 nm, beyond which the polymer
structure becomes influenced by the beads from the neighbouring polymers.
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Figure 2. Structural properties of polymer coating. Non-normalized radial distribution function
(RDF) is shown for a few polymers of different length N. The inset demonstrates a delta-like peak at
r = 0.15 nm, arising due to the two next-neighboring beads, as depicted in the sketch. The thin vertical
line at r0 = 0.3 nm separates the short and long distance regimes, where the effect of polymer length is
negligible and appreciable, respectively. The empty circles in the sketches show the beads of a polymer
that contribute the most to the corresponding peaks.
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It is reasonable to expect that the hydrodynamic properties of polymer beads are different in these
two regions, and we thus studied such properties separately for near and far beads.

3.3. Hydrodynamic Screening by Near Beads

To understand better the configuration of, and the hydrodynamic shielding by near beads, we first
calculated the orientation distribution function, f , that is, the surface density of beads on a sphere of
radius r as a function of orientation, θ. Figure 3a,b shows f (θ) at r = 0.15 nm (the separation between
two beads in a polymer) calculated in the (x, z) and (x, y) planes, i.e., in the planes perpendicular
and parallel to the slit walls, respectively; here θ denotes the angle with respect to the direction of
flow (the sketch in Figure 3c). This figure demonstrates that there is no preferred orientation of
beads, independently of the degree of polymerization. This is likely because there is only weak or
vanishing force from the electro-osmosis acting on the nearest beads, which might have caused a
non-homogeneous distribution of these beads.
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Figure 3. Near bead orientation and flow shielding. (a,b) Orientation distribution of the nearest
bead in a polymeric coating within the (x, z) and (x, y) planes (see Figure 1a) for different degrees
of polymerization; (c) Drag force acting on the beads in a three-bead configuration as a function of
orientation in the (x, z) plane. The positions of all beads are fixed and the beads are not allowed to
fluctuate. The drag force is expressed in terms of the drag acting on the bead in the absence of other
beads, F1 ≈ 4.7 kJ/(mol nm); (d) Drag force acting on the central bead for different numbers of beads
in a sample.

Having gained some insight into the near-bead structure, we decided to study the hydrodynamic
shielding and its dependence on the bead orientation. For clarity, we focused on a simplified model,
consisting of three aligned beads located in a channel under electro-osmotic flow. The beads were
placed at a given angle with respect to the flow direction nflow (the sketch in Figure 3c) and were not
allowed to fluctuate. We took the bead separation the same as that in the polymer coatings (0.15 nm),
and applied a strong electric field (Ex = 8 × 10−2 V/nm), in order to calculate the drag force acting on
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the beads with good accuracy. To reduce the hydrodynamic influence of the periodic images, we also
extended the system in the flow direction to 19.76 nm.

Figure 3c shows the hydrodynamic drag acting on each bead as a function of orientation in the
(x, z) plane. The forces acting on the head and tail beads are opposite in sign and depend vividly on θ;
they are remarkably strong for the beads aligned along the flow, nflow (corresponding to θ = 0), but
become orders of magnitude weaker for the beads oriented perpendicular to nflow (corresponding to
θ = 90◦). This is because, for θ ≈ 0, the interaction of these beads with the solvent is limited due to
screening by their neighbouring beads. Indeed, the tail bead, which faces the flow, interacts only with
the solvent on its left side (see the sketch in Figure 3c), and hence there is a strong force, Ftail, acting
along the flow. In contrast, the head bead experiences only repulsive interactions with the solvent on
its right side, which leads to a strong force pointing in the direction opposite to nflow (this force is thus
opposite in sign to Ftail, and also slightly weaker, because the flow leads to the solvent density that is
slightly lower in front of the head bead, as compared to the back of the tail bead (Figure S4). As the
orientation changes to perpendicular, the beads interact with the solvent from both sides; this means
that the forces acting on the left and right sides of these beads partially compensate each other, and the
magnitude of the total force decreases drastically.

For the same reason, the hydrodynamic drag on the central bead, Fcentral, is greatly reduced as
compared to the head and tail beads; it is also much weaker than the drag acting on a single bead (i.e.,
with no other beads around). Figure 3d shows that Fcentral practically vanishes for θ = 0, when it is
determined mostly by the viscous sliding of the solvent. It increases roughly linearly with θ, achieving
the maximum at θ = 90◦; in this case, Fcentral is mainly due to the normal stress exerted by the solvent,
as discussed above. Interestingly, Fcentral is virtually independent of the number of beads in a sample,
which suggests that the screening is predominantly due to the two nearest beads.

To estimate the value of the hydrodynamic radius due to shielding by near beads, we proceeded
as follows. First, for a given orientation of just two near beads (angle θ, Figure 3c), we calculated
the ambient velocity, v, at the same height (z coordinate) as the position of the central bead (it was
calculated in the region sufficiently far from the beads, see Figure S4). Then, we used the Stokes law,
which gives for the hydrodynamic radius abead(θ) = Fcentral(θ)/[6πµv(θ)], where µ is the viscosity.
Figure 3a,b show that the distribution of near beads in the polymer coatings is homogeneous, i.e.,
the normalized distribution density is uniform; thus, in order to get a rough estimate of abead, we
averaged abead(θ) over θ (Section S2 in Supplementary Materials), which gave abead ≈ 0.18a0, where
a0 is the physical bead radius. This value is higher than abead obtained by using the continuous
Navier-Stokes-Brinkmann (NSB) model for polymer coatings (Figure 1e). More importantly, such
near-bead considerations do not bring any dependence on the degree of polymerization, in contrast to
the results of the NSB model.

3.4. Shielding by Far Beads

To rationalize the dependence of the effective Stokes radius on the degree of polymerization, we
studied screening by far beads. It is reasonable to expect, however, that the contribution to screening
from a far bead is small or negligible, if this bead itself is “screened” by other far beads. Thus, in our
analysis, we considered only those beads that are directly “exposed” to each other, i.e., when there is
no other bead between them (we took it, quite arbitrarily, to be within the bead diameter). Figure 4b
shows the number of such beads, nfar(r), with one bead being at a distance z = 1 nm from the bottom
wall (see Figure S5 for the distribution of far beads at z = 2 nm). As one may expect, nfar increases
with the degree of polymerization N. Similarly as for the near beads, the distribution of far beads is
practically independent of their orientation (Figure 4c,d); here, however, some deviations are visible in
the (x, z) plane, but their magnitude is relatively small.



Polymers 2019, 11, 1038 9 of 13

0

0.02

0.04

0.06

0 0.5 1

(b)

0

1

2

0 30 60 90 120 150 180

(d)

(x, z) plane
0

1

2

0 30 60 90 120 150 180

(c)

(x, y) plane

0

0.1

0.2

0.3

0.5 1

(e)

r

r θfar

0.22

0.24

4 8 12 16 20 24

(f)

anearbead/a0

#
of

ex
po

se
d

be
ad

s

distance, r (nm)

N = 4
N = 12
N = 24

0

0.02

0.04

0.06

0 0.5 1

no
rm

al
iz

ed
de

ns
ity

orientation, θfar

N = 4
N = 12
N = 24

0

1

2

0 30 60 90 120 150 180

no
rm

al
iz

ed
de

ns
ity

orientation, θfar

N = 4
N = 12
N = 24

0

1

2

0 30 60 90 120 150 180

St
ok

es
ra

di
us

,a
b
ea
d
/a

0

distance, r (nm)

θfar = 0◦

θfar = 45◦

θfar = 90◦

0

0.1

0.2

0.3

0.5 1 St
ok

es
ra

di
us

,a
b
ea
d
/a

0

degree of polymerization, N

0.22

0.24

4 8 12 16 20 24

(a)

Figure 4. Far bead structure and flow shielding. (a) Snapshot from MD simulations showing the top
view on the bottom surface. The wall atoms are shown in grey, the polymer beads in green, and the
beads attached to the wall are shown in red. The arrows demonstrate the separations between far
beads, and the crossed arrow demonstrates the separations not counted in the distribution function
shown in panel (b); (b) Average number of far beads directly exposed to each other (see text) in
the polymeric coating of Figure 1a as a function of separations between the beads; (c,d) Orientation
distribution of far beads in the polymeric coating calculated in the (x, z) and (x, y) planes (see Figure 1a)
for different degrees of polymerization, N. The density is normalized to the average density at given N;
(e) Screening of the central bead of a three-bead complex by two far beads located symmetrically
around the complex (see the sketch); (f) Hydrodynamic radius of the central bead of the complex as a
function of the degree of polymerization calculated by using Equation (2). In (e,f), the horizontal dash
lines denote the value of the hydrodynamic radius anear

bead due to shielding by near beads only; abead is
expressed in terms of the physical radius a0 = 0.153 nm. Compare with Figure 1e.

To understand the hydrodynamic screening by far beads, we considered first a simplified model
system, consisting of a three-bead complex with two “far” beads placed symmetrically at a distance r
from the complex and at an angle θfar with respect to the direction of flow (the sketch in Figure 4e);
as before, the flow was induced by applying an electric field Ex = 8 × 10−2 V/nm in the x direction.
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The placement of far beads was chosen such as to avoid complications with balancing collisions of
the solvent from both sides of the complex. All far and near beads in this system were frozen and
disallowed to fluctuate. We then calculated the hydrodynamic radius of the central bead in the complex
as abead(θfar) = F(θfar)/[6πµv(θfar)], where F is the drag acting on the central bead, v is the ambient
velocity at a given z position and µ the viscosity. The result is shown in Figure 4e, which demonstrates
that abead increases with increasing r and saturates at anear

bead, where anear
bead is the hydrodynamic radius

due to screening by near beads only (in our case, the near beads were oriented perpendicular to the
flow, i.e., θ = 90◦, see Figure 3c). We shall call a shielding radius (or shell), rs, a distance at which the
effect of far beads becomes negligible, i.e., at which abead(θfar) ≈ anear

bead. As one may expect, the effect
of far beads becomes weaker as they are rotated to be perpendicular to the flow (θfar = 90◦), and the
shielding radius decreases correspondingly.

To relate the structural information about the polymer coatings (Figure 4a–d) with their
hydrodynamic properties, we proceeded as follows. We assumed that the far-bead screening is
additive and ignored collective effects, which allowed us to average the hydrodynamic radius over
the orientation and spatial distribution of far beads in a polymer coating. Splitting this average into
the regions within and outside of the screening shell, and formally extending the integration over r to
infinity for generality, we have arrived at (Section S3 in Supplementary Materials).

abead(N) = anear
bead −

∫ π/2

0
dθfar

∫ ∞

0
dr [anear

bead − abead(r, θfar)] Pfar(r, θfar; N), (2)

where Pfar(r, θ; N) = (1/2)nfar(r; N) sin(θ) is the distribution function of far beads (Section S2
in Supplementary Materials), assuming that the orientation distribution of beads is
homogeneous (Figure 4c,d).

Figure 4f shows the dependence of abead on N obtained by using Equation (2). Although the
predicted abead differs from the abead obtained by using the NSB equation (Figure 1e), the qualitative
behaviour is similar. The hydrodynamic radius is further reduced by far beads and decreases as N
increases. This decrease is stronger in the mushroom region (N < 14; similarly as in Figure 1e), where
the number of far beads rises quickly with increasing N.

The discrepancies with the NSB model can be due to a number of reasons. Firstly, to demonstrate
the effect of far beads, abead in Figure 4 has been calculated only for a near-bead complex oriented
perpendicular to the flow (θ = 90◦). Averaging over θ shall further reduce abead, bringing it closer to
the NSB values (this has not been done due to computational limitations). Further, we have neglected
the collective effects and the contribution from ‘partially exposed’ beads and bead complexes, which
are likely to reduce abead as well. It will be interesting to account for these effects in future work.

4. Conclusions

We have studied the hydrodynamic properties of polymeric coatings by using molecular dynamics
(MD) simulations and the continuum Navier-Stokes-Brinkman (NSB) model. By matching the
velocity profiles from the MD and NSB approaches, we inferred the effective hydrodynamic radius of
polymer beads, abead. The obtained abead is about one order of magnitude smaller than its physical
(Lennard-Jones) radius, in agreement with the previous studies [25,34]. Furthermore, we showed
that abead decreases with increasing the degree of polymerization of coated polymers at a decreasing
slope (Figure 1e).

We rationalized the reduced hydrodynamic radius by linking the structural and hydrodynamic
properties of polymer coatings. We observed that, at short distances, the polymer structure is unaffected
by the polymer length (Figure 2). In this case, by studying the hydrodynamic shielding by near
beads explicitly by MD simulations, we demonstrated that two near beads contribute the most to the
reduction of the hydrodynamic radius (Figure 3d). Using the distribution function of a polymer coating
and the hydrodynamic information from the near-bead model, both obtained by MD simulations, we
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found that the effective hydrodynamic radius due to the near-bead shielding is anear
bead ≈ 0.18a0, where

a0 is the physical (Lennard-Jones) radius, and is independent of the polymer length or grafting density.
The hydrodynamic shielding by far beads turned out to be more intricate. Using MD simulations,

we showed that the effective hydrodynamic radius is practically unaffected by far beads if they are
beyond a ‘shielding radius’ (which depends on the orientation and size of a screening object; Figure 4e).
Making use of this fact, and using a number of simplifying assumptions, we suggested a simple model
relating the structural properties of polymer coatings and the hydrodynamics of far-bead screening.
This model predicts a further reduction of the effective hydrodynamic radius and brings about its
dependence on the degree of polymerization N (Figure 4f). Although the resulting hydrodynamic
radius is sill larger than the one obtained by the NSB model, its dependence on N seems to be
captured properly.

The reported shielding effects may have a broad impact on the understanding of the
hydrodynamic properties of polymer coatings. Indeed, we demonstrated a subtle correlation between
the hydrodynamic and structural properties, particularly that the hydrodynamic radius is larger in
the mushroom region and smaller for the brush configurations of polymer coatings. It has been
shown by Hill [25] that the bead’s hydrodynamic radius of charged polymers is three times larger
than that of neutral polymers. Our work suggests that this might in fact be related to different
structures adapted by these polymers, in particular that the polyelectrolytes prefer ‘stretched-up’
configurations [13], in contrast to neutral polymers. Thus, it may be interesting to explore further such
hydrodynamics-structure relations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/6/1038/
s1, Figure S1: Solvent density of systems with and without polymers, Figure S2: Velocity profiles from the
MD simulations and the NSB model, Figure S3: Gyration radius of polymers, Figure S4: Velocity and density
distributions around bead complex, Figure S5: Distribution of far beads around central bead, Figure S6: Fluid
viscosity, Section S1: Gyration radius of polymers, Section S2: Averaging over bead orientations, Section S3:
Averaging over far beads, Section S4: Navier-Stokes-Brinkman model, Table S1: Parameters of molecular dynamics
simulations, Table S2: Force field parameters, grompp.mdp, poly.gro, poly.itp, force.itp, top.top: Parameter,
coordinate and topology files of MD simulations.
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