
Extreme Mechanics Letters 30 (2019) 100501

Contents lists available at ScienceDirect

ExtremeMechanics Letters

journal homepage: www.elsevier.com/locate/eml

Mechanical peeling of van derWaals heterostructures: Theory and
simulations
Kui Lin, Ya-Pu Zhao ∗

State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o

Article history:
Received 20 March 2019
Received in revised form 13 May 2019
Accepted 14 June 2019
Available online xxxx

Keywords:
van der Waals heterostructures
Mechanical peeling
Density functional theory
Molecular dynamics simulation
Elasto-peeling length

a b s t r a c t

Mechanical peeling is crucial for the assembly process of van der Waals (vdW) heterostructures. We
provide a new theory to describe the peeling of vdW heterostructures based on interatomic potential.
Representatively, we present the peeling of graphene on molybdenum disulfide (MoS2) using a bottom-
up approach. The results show that there are three stages (the initial, stable and jump out of contact
stages) in the entire peeling process. We find that the traditional continuum model is only suitable for
the stable stage, while our theory can describe the entire process from (the initial unstable) contact to
the end of the stable stage. In addition, we discovered a new characteristic length, the elasto-peeling
length Lep =

√
2D/∆γ = 4σ0

√
2πD/H , that is a crucial parameter that reflects the bending (D) and

interfacial properties (∆γ ) of the layered materials during peeling. Finally, the theory as expressed by
the Hamaker constant (H) is presented. Our findings may help to reveal the underlying mechanisms
in the peeling of layered materials at the atomic scale.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The successful peeling of graphene in 2004 [1] has created a
new field of atomic-scale materials. Since then, the study of two-
dimensional (2D) materials has become an important research
topic [2]. 2D materials have unique electronic properties that
make it possible to regulate their band gap by changing the
number of layers [3–5]. Different 2D materials have different
electronic properties. The combination of different 2D materials
results in exotic quantum characteristics that enables their broad
prospects in future technological applications. Van der Waals
(vdW) heterostructures are designed at the atomic scale using
layer-by-layer assembly of different 2D materials [6]. The diver-
sity of the electronic structures of vdW heterostructures leads to
their functional diversity. The materials enable new functional
device designs and have a wide range of applications in the
electronics, energy and biomedical fields such as gate-tunable
devices [7–9], photodetectors [10,11], light-emitting devices [12–
14] and photovoltaic devices [15–17]. However, although vdW
heterostructures have promising applications, they are limited by
the maturity of their structural assembly technology. Therefore,
they have not been widely used at present.

VdW heterostructures are heterogeneous functional materials
that are mainly composed of various 2D materials held together
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by interlayer vdW forces. Numerous kinds of vdW heterostruc-
tures can theoretically be assembled. However, the current as-
sembly techniques are limited to the specific interface of 2D
materials. It is very challenging to assemble two kinds of materi-
als that have different atomic arrangements and different thermal
stabilities. This produces a number of mechanical problems such
as surface reconstruction [5,18–20], different thermal stabilities
and material strain due to the lattice mismatch [21]. Moreover,
the assembly of different 2D materials and the precise control of
the interfacial properties are key to obtaining high quality vdW
heterostructures. Therefore, the limitations of heterostructure as-
sembly technology seriously hinders the production and use of
vdW heterostructures. Currently, the main methods for generat-
ing vdW heterostructures include direct growth and mechanical
assembly. As a direct growth method, chemical vapor deposition
(CVD) has already enabled the growth of many vdW heterostruc-
tures [22] such as MoS2/graphene [23,24] and MoS2/hBN [25,26].
Furthermore, the most versatile vdW heterostructure assembly
technique is direct mechanical assembly [5]. Dean et al. [27]
produced high-quality exfoliated mono- and bilayer graphene de-
vices on hexagonal boron nitride (h-BN) substrates by a mechan-
ical transfer process. Coleman et al. [28] and Nicolosi et al. [29]
have reported liquid-phase exfoliation, which is a very powerful
method for assembling vdW heterostructures and exfoliating 2D
materials. Thus, mechanical exfoliation is a key technology in
the assembly of heterostructures. Based on continuum methods,
Zhang et al. [30] conducted a theoretical study on the peeling
mechanics of various 2D materials. Their theory can describe the
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peel-off force in the stable state. However, the force in the ini-
tial stage is very important for understanding peeling, especially
because the peak peeling force appears at this stage. Therefore,
it is necessary to develop a new theory based on interatomic
potential [31,32] to describe the entire peeling process at the
atomic scale.

In this article, we utilize bottom-up methods to investigate
the peeling processes of vdW heterostructures. As a typical vdW
heterostructure, graphene/MoS2 is chosen for our simulations.
First, the lattice mismatch values, strain energy densities and
potential parameters between graphene and MoS2 are obtained
from density functional theory calculations with dispersion cor-
rections (DFT-D2). Second, we investigate the peeling process
under vertical force loading and a combination of vertical force
and bending moment loadings by using molecular dynamics (MD)
simulations, as shown in Fig. 1. The changes in the total energy,
elastic energy, vdW interaction potential and peeling force are
obtained, and then we compare the peeling forces obtained from
these simulation results with those from traditional continuum
methods. Third, we conduct a mechanistic analysis of the peeling
process and develop a quasi-continuum method to describe the
evolution of the peeling force. Finally, we obtain a characteristic
length that is a crucial parameter that reflects the bending and
interfacial properties of layered materials during peeling. In ad-
dition, to generalize the theory, we express it by the Hamaker
constant. Our study aims to reveal the underlying mechanisms in
the peeling of layered materials at the atomic scale, and we hope
that the related mechanisms can provide new insights into the
mechanical assembly of vdW heterostructures.

2. Methods

2.1. Density functional theory

The optimized structures of graphene and MoS2 were calcu-
lated by density functional theory (DFT) within the Vienna Ab ini-
tio Simulation Package (VASP) [33,34]. The projected augmented
wave (PAW) method was used to describe the interactions be-
tween the valence electrons and the ionic core. We used the
generalized gradient approximation (GGA) with exchange and
correlation functionals, according to the approach proposed by
Perdew, Burke and Ernzerhof (PBE). The electronic wave functions
were expended in a plane-wave basis with a cut off at 400
eV, which was high enough to ensure no Pulay stress occurred
during relaxation. The convergence criteria of the energy and
force for structural relaxation were set to 10−5 eV and 0.01
eV Å−1, respectively. The Brillouin zone was sampled by using
the Monkhorst–Pack methodology with a 5 × 5 × 1 area for
the geometry optimization and binding energy calculations. To
calculate the binding energy between graphene and MoS2, we
chose the vdW correction proposed by Grimme (DFT-D2) [35,36]
due to its good description of long-range vdW interactions. In
the calculations, a 5 × 5 primitive cells of graphene and a 4 ×

4 primitive cells of MoS2 as a typical supercell of MoS2/graphene
heterostructures [37] were used to calculate their respective op-
timized lattice parameters. After optimizing the structures of
graphene and MoS2, we fixed MoS2 as the substrate and moved
graphene at different distances to calculate the interlayer binding
energy. The vacuum space in the direction perpendicular to the
surface was approximately 20 Å to separate neighboring slabs.

2.2. Molecular dynamics simulations

Large-scale molecular dynamics (MD) simulations were car-
ried out using LAMMPS to explore the peeling processes [38]. We
simulated the peeling process of graphene on MoS2 under two

kinds of loading conditions, and the models are shown in Fig. 1.
In the x and z directions, we used nonperiodic and fixed boundary
conditions, and a periodic boundary was applied in the y direc-
tion. The interaction potential parameters between graphene and
MoS2 were obtained based on our Ab initio calculations. MoS2
was treated as a virtual wall. We employed a 12-6 Lennard-Jones
(LJ) potential to simulate the weak vdW interaction between
the C atom and the MoS2 wall. The adaptive intermolecular re-
active empirical bond order (AIREBO) potential [39], which has
been widely adopted to investigate the mechanical properties of
graphene [40,41], was used to model the interactions of the C-C
atoms in graphene. All interactions were calculated with a cutoff
of 12 Å. The MD simulations were performed in an NVT ensemble
(constant number of atoms, volume and temperature) while using
the Nose–Hoover method to regulate the temperature at 0.1 K,
and the time step was 1 fs. To simulate the two kinds of peeling
processes, we moved and then fixed either the first or the first
two column atoms on the tip of graphene at 0.05 Å each time.
Then, 10 ps simulations were performed each time to optimize
the structure.

3. Results and discussion

3.1. Lattice mismatches and the interaction potential between
graphene and MoS2

Through DFT calculations, see Fig. 2(a) and (b), we obtained
the optimized supercells of graphene and MoS2. The optimized
lattice parameters of graphene and MoS2 are 2.466 Å and 3.183
Å, respectively. After considering the vdW interactions between
graphene and MoS2, the DFT-D2 calculation is performed, and
the final optimized lattice parameters of graphene and MoS2 are
2.489 Å and 3.113 Å, respectively, as shown in Fig. 2(c). Therefore,
when graphene is combined with MoS2, it results in a lattice
mismatch that is defined as:

εm =
(
acombine − asin gle

)
/asin gle, (1)

where asin gle and acombine are the lattice constants of the single
material and combined material, respectively. Graphene is elon-
gated with a 0.93% lattice mismatch, and MoS2 is compressed
with a −2.20% lattice mismatch. Additionally, the intrinsic strain
energy density Esed that is caused by the lattice mismatch can be
calculated by:

Esed =
(
EGraphene/MoS2 − Esingle

)
/A, (2)

with the potential of graphene or MoS2 in the heterostructure
represented by EGraphene/MoS2 , that of single graphene or MoS2
by Esingle, and A represents the area of the heterostructure. The
intrinsic strain energy densities of graphene and MoS2 in the
heterostructure are 1.8404 meV/Å2 and 15.5131 meV/Å2, respec-
tively. The binding energy is given according to:

Eb = −
(
EGraphene@MoS2 − EGraphene − EMoS2

)
, (3)

where EGraphene, EMoS2 and EGraphene@MoS2 are the total energies of
graphene, MoS2 and the graphene/MoS2 heterostructure, respec-
tively. The lattice mismatch values, strain energy densities and
related parameters are presented in Table 1, and other unique
parameters are given in Supplementary Table S1. In particular,
due to the accuracy of MD simulation, the influence of intrinsic
strain energy is neglected in subsequent MD simulations. The
effect of intrinsic strain energy is only reflected in the potential
parameters used in our MD simulations.

For the homogeneous deformation caused by the lattice mis-
match, we can use the Cauchy-Born rule to extrapolate infor-
mation from the atomic scale to the microscale [42]. As shown
in Fig. 2(e), ϕ (X, t) can denote the deformation function, which
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Fig. 1. Simulation models for peeling: The top layer is graphene while the bottom layer is MoS2 . The red region indicates the atoms that are subjected to the action
of the vdW force from the bottom. (a) Peeling model under vertical force loading. (b) Peeling model under vertical force and bending moment loadings, which are
caused by the adhesion of the medium. (c) Transfer of a 2D material from one substrate to another.

Fig. 2. (a) Optimized electronic structure and lattice constant (3.466 Å) of graphene. (b) Optimized electronic structure and lattice constant (3.183 Å) of MoS2 . (c)
Lattice mismatch of graphene on MoS2 . The lattice constant of graphene is elongated to 2.489 Å, and that of MoS2 is shortened to 3.112 Å. (d) Red indicates the
binding energy between a C atom and the monolayer of MoS2 as calculated by the DFT-D2 method. Blue, black and dark cyan are the fitting results for the LJ 12-6,
LJ 10-4 and LJ 9-3 potentials, respectively. The insert is a side view of monolayer graphene and MoS2 with spacing D. (e) Cauchy–Born rule for the case of the
homogeneous deformation of graphene.

relates the points X in a reference configuration Ω0 (the equilib-
rium configuration of each single layer) to the points x = ϕ (X, t)

in the current configuration Ωt (the equilibrium configuration of
each layer in heterostructure). The two-point tensor F is thus
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Table 1
Lattice mismatch values, strain energy densities and related parameters for the
Graphene/MoS2 vdW heterostructure.

Graphene MoS2 Graphene@MoS2
(5 × 5) (4 × 4) Graphene MoS2

Lattice constant a (Å) 2.466 3.183 2.489 3.113
εm — — 0.93% −2.20%
Esed (meV/Å2) — — 1.8404 15.5131
Binding energy Eb (eV) — — −1.1045

defined as:

F =
∂ϕ (X)

∂X
=

∂xi
∂XA

ei ⊗ eA (i = 1, 2, 3; A = I, II, III) , (4)

where ei and eA are the bases of the current configuration and ref-
erence configuration, respectively. Therefore, the related atomic
distance r ij in the current configuration Ωt can be obtained from
the corresponding relative atomic distance R ij in the reference
configuration by the deformation gradient F = I + H . Hence, the
Cauchy-Born rule is defined as:

r ij = F · R ij = (I + H) · R ij, (5)

where I is the 2 × 2 identity matrix, and H is the displacement
gradient tensor. For homogeneous deformations, the symmetric
displacement gradient is identical to the Cauchy strain tensor ε
such that:

ε ≡
1
2

(
H + HT )

= H =
∂ϕ (X)

∂X
− I. (6)

No shear deformation occurs under a lattice mismatch in this
case, hence γ = 0 and we obtain:

(
ε1
ε2

)
=

⎛⎜⎜⎝
∂ϕ (X1)

∂X1
− 1

∂ϕ (X2)

∂X2
− 1

⎞⎟⎟⎠ . (7)

Then, the Cauchy strain tensor for graphene εα and MoS2 εβ

in the vdW heterostructures are:

εα
=

(
0.00930

0 0.0093

)
and εβ

=

(
−0.0220 0

0 −0.0220

)
.

(8)

In our calculations, the optimal distance between a monolayer
of MoS2(S atom) and graphene is 3.31 ± 0.02 Å, and the binding
energy is −22.1 meV per C atom. These two parameters are
very close to the values of the first principles predictions at
approximately 3.32 Å and −23 meV in Ref. [43], or 3.30 Å and
−23 meV in Ref. [44]. The changes in the binding energy (per C
atom) between graphene and MoS2 are shown in Fig. 2(d). LJ 12-6,
LJ 10-4 and LJ 9-3 potentials are used to fit the changes in binding
energy. For the LJ 12-6 potential, the energy is given as:

E12−6 (r) = 4ε
[(σ1

r

)12
−

(σ1

r

)6
]

. (9)

The energy and distance parameters are ε = 22.1 meV and
σ1 = 2.96 Å. For the LJ 10-4 potential, the energy is given by (see
Supplementary Note 1 for details):

E10−4 (r) = ε2

[
1
10

(σ2

r

)10
−

1
4

(σ2

r

)4
]

. (10)

The energy and distance parameters are ε2 = 147.3 meV and
σ2 = 3.33 Å. For the LJ 9-3 potential, the energy is given by (see
Supplementary Note 2 for details):

E9−3 (r) = ε3

[
2
15

(σ3

r

)9
−

(σ3

r

)3
]

. (11)

The energy and distance parameters in the LJ 9-3 potential are
ε3 = 21 meV and σ3 = 3.86 Å, respectively.

The LJ 10-4 potential is used to describe the potential of the in-
teractions between particles and planes (single-layers of atoms);
the LJ 9-3 potential is used to describe the interactions between
particles and semicontinuous space. In this case, MoS2 or other
heterostructure materials are multilayered atomic structures with
a certain thickness. As shown in Fig. 2(d), it is clear that the LJ 9-
3 and LJ 10-4 potentials can better describe the phase repulsion
when the distance is less than the equilibrium distance, while
all three potential functions can describe the attraction when
the distance is larger than the equilibrium distance. However,
the peeling process is a process of resisting substrate attraction.
Therefore, we can choose any of them to describe the process.
The subsequent calculations and analyses are based on the LJ 12-6
potential.

3.2. MD simulations of peeling under vertical force loading

Vertical peeling is a classical peeling model. The macroscopic
continuum mechanics model of vertical peeling was established
based on the changes in the interfacial energy during peeling
processes. To investigate microscopic peeling on the atomic scale,
we simulated two different sizes of graphene exfoliation from
MoS2: a1 × b1 (5.04 nm × 2.91 nm) and a2 × b2 (10.21 nm ×

5.89 nm). We simulate a quasi-static peeling process by moving
the first column atoms of the boundary 0.05 Å in the vertical
direction each step and then fixing the height prior to relaxation,
as shown in Fig. 3(a). In peeling processes, total potential energy
is composed of:

φ =
1
2

∫∫∫
Vfilm

σα: εαdV +
1
2

∫∫∫
Vsubstrate

σβ : εβdV

+

∫∫∫
Vfilm

E
(⏐⏐rαβ

⏐⏐) dV − F · u. (12)

The right-hand side is, sequentially, the strain energy of the
film (not limited to graphene), the strain energy of the substrate,
the vdW interaction energy between the film and substrate and
the potential of the external force. The total increase of the first
three terms is equal to the increase of the total energy of the
simulation. The total energy is given by:

Etotal =

⟨
M∑

i,j̸=i

E
(
rα
i,j

)⟩
+

⟨
N∑

i,j̸=i

E
(
rβ

i,j

)⟩
  

Edef

+

⟨
M∑
i

N∑
j

E
(
r αβ

i,j

)⟩
  

EvdW

, (13)

where EvdW is the interaction potential between graphene and
MoS2, and Edef is the deformation energy of graphene and MoS2.
In this simulation, the deformation energy of the substrate is
treated as a constant. Considering the evolution of the peeling
configuration over the entire process, we can divide peeling into
three stages: the initial stage (I), stable stage (II) and jump out of
contact stage (III), as shown in Fig. 3(a). In stage I, the bending
deformation of graphene increased as the peeling process pro-
gressed. Then, the configuration of the curved portion of graphene
remains essentially constant during stage II, which is the stable
peeling stage. Finally, the graphene begins to jump out of contact
with MoS2 and returns to the vertical state under action of the
bending potential energy of graphene. The variations of each
energy component are illustrated in Fig. 3(b) and (c). In Fig. 3(b),
we can see that the vdW interaction energy between graphene
and MoS2 is nearly equal to the total energy, and the difference
between the two energies is the elastic energy of graphene, as
shown in Fig. 3(c). Obviously, the energies are proportional to
the size of the material. According to the variations in the elastic
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Fig. 3. Vertical peeling of graphene from MoS2 . (a) Three stages of the peeling process: (I) initial stage, (II) stable stage and (III) jump out of contact stage. (b)
Evolutions of the dimensionless total energy (green and blue) and vdW interaction energy (red and orange) between graphene and MoS2 calculated for two sizes:
a1 × b1 (5.04 nm × 2.91 nm) and a2 × b2 (10.21 nm × 5.89 nm). (c) Evolution of the dimensionless elastic energy of graphene for the two sizes: a1 × b1 (dark
red) and a2 × b2 (dark cyan).

Fig. 4. The evolution of the dimensionless force, red and blue are the MD simulation results and Rivlin model results, respectively, for (a) a width of b1 = 2.91 nm
and (b) a width of b1 = 5.89 nm. The inserts are the configurations of the corresponding stage.

energy, we can see that it is divided into three phases: the
bending energy increase phase, invariant phase and release phase
of graphene, which correspond to the three peeling stages. All the
energies are expressed by the dimensionless energy E/ε, where
ε is the binding energy between a C atom and MoS2.

By calculating the gradient of the total energy in the vertical
peeling direction z, we can obtain the external force on all the
atoms, which is the peeling force (a conservative force) and is

defined as:

F = −∇Etotal (z) . (14)

In addition, vertical peeling, as a classical peeling model, can
be described by the continuum mechanics model, which was
established by Rivlin [45] and Kendall [46]:

F = ∆γ b. (15)
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Fig. 5. Peeling of graphene from MoS2 under the combined action of vertical force and bending moment loadings. (a) Evolution of the configurations in the three
stages of the peeling process: (I) initial stage, (II) stable stage and (III) jump out of contact stage. (b) Evolutions of the dimensionless total energy (green and blue)
and vdW interaction energy (red and orange) between graphene and MoS2 for two sizes: a1 × b1 and a2 × b2. (c) Evolution of the dimensionless elastic energy
of graphene for two sizes: a1 × b1 (dark red) and a2 × b2 (dark cyan)

where ∆γ is the work of adhesion and b is the interface width.
Here, the work of adhesion is the product of the binding energy
per C atom ε and the atomic number density ρ. Hence, Eq. (15)
becomes:

F = ερb. (16)

The force required to peel a 1 nm wide material is F0 = ερ.
Therefore, the dimensionless force F/F0 obtained by the MD sim-
ulations and the Rivlin model are presented in Fig. 4. According to
the MD simulation results, there is a peak force in the initial stage,
and the Rivlin model can only describe the stable peeling stage.
When the edge of the graphene begins to jump out of contact
with MoS2, the force will change dramatically due to the release
of the elastic energy of graphene. In addition, from Fig. 3(c) and
Fig. 4(a) and (b), it can be seen that the peeling height in stage
I (∆h = z − z0 ≈ 2 nm) is independent from the size of the
graphene. The height is related to the interfacial properties (work
of adhesion) and mechanical properties (bending rigidity) of the
material which will be discussed in the following chapters.

3.3. MD simulations for peeling by adhesion

In practice, a vertical force acting directly on the tip of a thin
film at the atomic scale is very unlikely. Instead, we may be able
to use another medium that has a stronger adhesion to the film to
exfoliate the film from the original substrate. In this case, one end
of the film is under the action of adhesion, which is equivalent
to the effects of the vertical force and bending moment of the
medium. Hence, we consider the peeling of graphene from MoS2
in this loading situation. Fig. 5(a) shows the three stages of the

peeling process, which are similar to those of the vertical peeling
process mentioned in the previous section. The difference is that
both ends of the peeled graphene are in a curved state. Obviously,
the total elastic energy will be composed of the bending elastic
energy of the two ends. Variations in the various energy compo-
nents are illustrated in Fig. 5(b) and (c). The difference between
the total energy and the vdW interaction energy is larger than
that of the case discussed in the previous section because the two
ends of the peeled graphene are in a curved state. Moreover, the
energies are still proportional to the peeling width b.

Although the end of the film is subjected to the action of the
vertical force and bending moment, the work of bending moment
loading is zero due to the rotation angle being zero throughout
the entire process. Hence, by calculating the gradient of the total
energy, we can directly obtain the force on all the atoms. Then,
the dimensionless force F/F0 obtained by the MD simulations
and the Rivlin model are presented in Fig. 6. Under this loading
condition, a larger force is required in the initial delamination
stage, and a longer peeling distance is needed for this stage to
reach completion. As shown in Fig. 6(a), due to the graphene
being too short, the peeling is completed during the initial stage;
hence, there is no stable peeling stage. When the peeling height is
greater than a certain value (∆h ≈ 4 nm), a stable stage occurs.
Similarly, in the stable stage, the configuration of both ends of
the peeled graphene no longer changes. Hence, the force is stable
and equal to the force needed for the adhesion work, as shown
in Fig. 6(b).
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Fig. 6. The evolution of the dimensionless force, red and blue are the MD simulation results and the Rivlin model results, respectively, for (a) a width of b1 = 2.91 nm
and (b) a width of b2 = 5.89 nm. The inserts are the configurations of the corresponding stage.

3.4. Mechanical analysis of the peeling process

From the results of the previous sections, we find that tradi-
tional method (Rivlin model) can only describe the stable peeling
stage. At the initial stage of peeling, the vdW force will gradu-
ally increase from zero to the peak and then decrease until the
configuration is constant. Moreover, the peak force during the
initial stage whose force is several times greater than the stable
peeling force. Hence, we cannot ignore an accurate description of
this stage, and we need to explore a new theory to describe the
peeling process at the atomic scale. Peeling is a moving boundary
problem with large deformation. Because our investigation is a
quasi-static peeling process, the force state of the film can be
carried out via static analysis.

The mechanical models of the two loading methods are shown
in Fig. 7, and Fig. 7(a) and (d) represent the peeling of graphene
under the two loading conditions. The yellow and red represent
no force and the attractive force from the substrate, respectively.
Moreover, between these two regions, there is an extremely small
area with a width of d0 ≈ 0.6 nm in which the atoms experience
a repulsive force. The local force states are shown in Fig. 7(b) and
(e). Blue indicates the distribution of the repulsive force, and red
is the distribution of the attractive force. Generally, based on the
Saint-Venant principle, the distributed forces are equivalent to
the bending moment and force, as shown in Fig. 7(c) and (f).

In the peeling process, the vdW forces are mainly concentrated
in the peeled area near the contact line. Hence, we can treat the
quasi-static peeling of graphene as a curved cantilever film. When
the peeling distance reaches z, the equilibrium condition of the
system is:

d (EvdW + Edef − Fz) /dz = 0, (17)

From Fig. 3(b), we can see that the elastic deformation energy
(including the bending deformation energy and the elongation
deformation energy) is one order of magnitude smaller than the
van der Waals interaction energy. In addition, the relationship
between the various energies and the position of the peak force
at the initial stage are more clearly shown in Fig. 8. It can be seen
that the vdW interaction energy accounts for the vast majority of
the total energy, which is the key to the peak force. Therefore,
the deformation energy is neglected in our theoretical analysis.
The peeling force and vdW force are the balance force during the
quasi-static peeling process. Hence, we have:

F = FvdW = bρ
∫ z

z0

E ′ (r)
sin θ (r)

dr. (18)

where E(r) is the van der Waals potential energy mentioned in
Eqs. (9), (10) and (11); here we choose the LJ 12-6 potential which
is used in MD simulations. θ (r) is the angle between the tangent
of the film (graphene) and the positive direction of the x-axis. We
approximate θ (r) as θm (z), which is the tangential angle at the
middle of the peeled section. It is a function of the tip height z,
hence, sin θm (z) can be regarded as independent within Eq. (18).
Notably, it is very close to the real configuration of the initial
stage (the beginning of stage I) in our simulations, as shown in
Fig. 3(a) I. Hence, from Eq. (18) we can obtain the value of peeling
force:

F = bρ
∫ z

z0

E ′ (r)
sin θm

dr =
bρε

sin θm

{
4
[(σ1

z

)12
−

(σ1

z

)6
]

+ 1
}

.

(19)

Next, we just need to determine the expression of sin θm.
Considering that film peeling corresponds to large deformation
bending, the differential equation of the deflection curve is:

d2z
dx2[

1 +
( dz
dx

)2]3/2 =
M (x)
Db

, (20)

whereM (x) is the moment equation and D is the bending rigidity.
Substituting dz/dx = tan θ into Eq. (20), we have:

d tan θ(
1 + tan2 θ

)3/2 =
M (x)
Db

dx, (21)

and then:
tan θ(

1 + tan2 θ
)1/2 =

∫ x

0

M (x)
Db

dx. (22)

In the case of concentrated loads at both ends, the moment
equation is M (x) = F (L − x), where L is the projected length of
the peeled section. Thus, Eq. (22) becomes:

sin θ =
F
Db

(
Lx −

x2

2

)
. (23)

When x = L/2, we have:

sin θm =
3FL2

8Db
. (24)

Combining Eqs. (19) and (24), we can obtain:

sin2 θm =
3ρεL2

8D

{
4
[(σ1

z

)12
−

(σ1

z

)6
]

+ 1
}

. (25)
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Fig. 7. Mechanical models of the peeling under two different loadings. (a), (b) and (c) correspond to peeling under vertical force loading. (d), (e) and (f) correspond
to peeling under vertical force and bending moment loadings. (a) and (d) show the perspective of graphene during peeling; yellow and red regions represent the
atoms in the equilibrium position and attraction region, respectively; the middle regions of width d0 represent the atoms in the repulsive region. (b) and (e) show
the side view and force distribution of graphene, for which blue is the respective force and red is the attractive force. (c) and (f) are simplified mechanical models
of peeling. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

At the beginning of stage I, especially from the beginning of
peeling to the peak force, the peeling height (∆h ∼ 1 Å) and
the bond length between atoms (1.42 Å) have the same order of
magnitude. Hence, the degree of bending of the graphene is very
small, as shown in Fig. 3(a) I. It can then be assumed that the
expression of L is

L =
(z − σ0)
tan θm

, (26)

where σ0 is the equilibrium position. Combining Eqs. (25) and
(26), we obtain:

tan4 θm

1 + tan2 θm

=
3ρε

2D

{[(σ1

z

)12
−

(σ1

z

)6
]

+ 0.25
}(

z −
6√2σ1

)2
. (27)

Solving Eq. (27) by Taylor expansion at the equilibrium posi-
tion σ0 =

6√2σ1, we obtain:

tan θm =

√
3

21/3

(
3ρε

Dσ 2
1

)1/4 (
z −

6√2σ1

)
−

7 ×
√
3

4
√
2σ1

(
3ρε

Dσ 2
1

)1/4 (
z −

6√2σ1

)2
+ o[z −

6√2σ1]
3.

(28)

By linearly approximating the function near the equilibrium
position, this becomes:

tan θm ≈
√
3
(

ρε

2Dσ 2
0

)1/4

(z − σ0)

Fig. 8. Evolutions of the dimensionless total energy (blue), vdW interaction
energy (orange) and elastic deformation energy (dark cyan) between graphene
and MoS2 calculated for a2 × b2 (10.21 nm × 5.89 nm). The peak force site is
at z = 3.96 Å.

=
√
3
(

∆γ σ 2
0

2D

)1/4 (
z
σ0

− 1
)

. (29)

To verify the accuracy of our theory, we compared the sim-
ulated results with the theoretical values, as shown in Fig. 9.
Obviously, the linear approximation of tan θm is very close to our
MD simulation results especially in the initial peeling stage.
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Fig. 9. Variations in the slope with changing peeling distance. Red circles are
the MD simulation results; Blue is the linear approximation from Eq. (29). Insert
is the local magnification.

Hence, we can substitute Eq. (29) into Eq. (19) to obtain the
expression of the dimensionless peeling force

F
F0

=

b
[(

σ0
z

)12
− 2

(
σ0
z

)6
+ 1

]√
1 + 3

(
∆γ σ2

0
2D

)1/2 (
z
σ0

− 1
)2

√
3
(

∆γ σ2
0

2D

)1/4 (
z
σ0

− 1
) ,

(30)

where b is a dimensionless width. We compared our theory with
MD simulation results as shown in Fig. 10(a) and (b). In addition,
a bending rigidity for graphene of 1.40 eV has been obtained by
previous simulation [47]. The other parameters are obtained in
the previous sections. It can be seen from the results that our
theory can describe the peeling force perfectly, including during
the initial stage, and the peak peeling force can be predicted
accurately. In addition, the value of sin θm approaches 1 as z

increases. Hence, Eq. (30) is degenerate to the classical theory
equation (15).

For peeling under a vertical force and bending moment load-
ings, the boundary conditions are symmetric in the quasi-state
case, as shown in Fig. 7(f). Therefore, we can replace z in Eq. (29)
with (z + σ0) /2 to obtain the force:

F
F0

=

b
[(

σ0
z

)12
− 2

(
σ0
z

)6
+ 1

]√
1 +

3
4

(
∆γ σ2

0
2D

)1/2 (
z
σ0

− 1
)2

√
3
2

(
∆γ σ2

0
2D

)1/4 (
z
σ0

− 1
) .

(31)

Likewise, we compared our theory with MD simulation results
as seen in Fig. 10(c) and (d). Our theory can be seen to describe
the entire peeling process well. Hence, our theory can predict the
force for peeling by adhesion.

3.5. Characteristic length and the theory expressed by the Hamaker
constant

In the vertical peeling process, we found that the projection
length L (x) approaches a characteristic length, named the elasto-
peeling length Lep. When z increases, the tangential angle at the
tip of the film approaches 90◦ (sin θ → 1) and the force is equal
to ∆γ b; from Eq. (23), we can obtain:

Lep =

√
D

∆γ /2
. (32)

Hence, in this case, the elasto-peeling length Lep is approxi-
mately 1.83 nm, which perfectly matches the simulation results
1.74 nm. This characteristic length is physically significant: ∆γ

is the work of adhesion, which is the surface energy of the two
surfaces produced by peeling, and D is the bending rigidity of
graphene. Hence, Lep reflects the bending and interfacial proper-
ties of the layered materials during peeling. See Supplementary
Fig. 1, the larger the bending rigidity or the smaller the work of
adhesion, the larger the elasto-peeling length is. In addition, it

Fig. 10. Evolution of the dimensionless force. Red represents the MD simulation results, and blue represents the theory results. (a) A width of b1 = 2.91 nm and
(b) a width of b2 = 5.89 nm are under vertical force loading. (c) A width of b1 = 2.91 nm and (d) a width of b2 = 5.89 nm are under vertical force and bending
moment loadings.
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has a certain similarity to the elastocapillary length [48–50]. With
this elasto-peeling length, the peeling force from Eq. (30) can be
transformed into:

F
F0

=

b
[(

σ0
z

)12
− 2

(
σ0
z

)6
+ 1

]√
1 +

3σ0
Lep

(
z
σ0

− 1
)2

(
3σ0
Lep

)1/2 (
z
σ0

− 1
) . (33)

The evolutions of the dimensionless force for different elasto-
peeling lengths are shown in Supplementary Fig. 2. The peak
peeling force gradually approaches the stable peeling force as
the elasto-peeling length decreases. Additionally, as the elasto-
peeling length becomes larger, the initial peeling stage becomes
longer.

To make the results as general as possible, the Hamaker con-
stant H = 4πε12ρ1ρ2σ

6
12 can be used to express the theory. The

interaction potential energy per unit area between two homoge-
neous materials with atomic number densities ρ1 and ρ2 can be
obtained by integration (see Supplementary Note 3 for details):

U12 =
πε12ρ1ρ2

3

(
σ 12
12

30r8
−

σ 6
12

r2

)
, (34)

where σ12 and ε12 are potential parameters, and r is the distance
between the two surfaces. Hence, we have⎧⎪⎪⎨⎪⎪⎩

dU12

dr
= 0 ⇒ r0 =

(
2
15

)1/6

σ12

Umin = U12 (r0) ⇒ Umin =
H

16πr20
.

(35)

In our model, the equilibrium distance is σ0 = 21/6σ1 and the
corresponding potential energy is ερ. According to Eqs. (30) and
(35), the force expressed by the Hamaker constant is

F
F0

=

b
[(

σ0
z

)12
− 2

(
σ0
z

)6
+ 1

]√
1 +

3
4

( H
2πD

)1/2 (
z
σ0

− 1
)2

√
3
2

( H
2πD

)1/4 (
z
σ0

− 1
) . (36)

Additionally, F0 = ∆γ = H/16πσ 2
0 is the peeling force for a

1 nm wide film. Then the elasto-peeling length can be expressed
by Hamaker constant as follows:

Lep = 4σ0

√
2πD
H

, (37)

it also has a certain similarity to the persistence length [51,52].
The interlayer interaction potential is adopted as the LJ 12-6

potential. If we adopt either the LJ 10-4 potential or the LJ 9-
3 potential, we need to change the potential energy term. The
premise being that both of these potential energies can describe
the potential energy near the equilibrium position and for re-
gions away from the equilibrium position, as shown in Fig. 2(d).
Supposing a potential function of G (σ0, z):

Γ (H,D, σ0, z) =

√
1 +

3
4

( H
2πD

)1/2 (
z
σ0

− 1
)2

√
3
2

( H
2πD

)1/4 (
z
σ0

− 1
) or

Γ
(
Lep, σ0, z

)
=

√
1 +

3σ0
Lep

(
z
σ0

− 1
)2

(
3σ0
Lep

)1/2 (
z
σ0

− 1
) ,

(38)

thus, the peeling force can be summarized as:

F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b∆γ [G (σ0, z) + 1]Γ

(
Lep, σ0, z

)
loading F

b∆γ [G (σ0, z) + 1]Γ
[
Lep, σ0, (z + σ0) /2

]
loadings F and M

b∆γ G → 0 and Γ → 1.

(39)

Hence, if we obtain the equilibrium distance, the Hamaker
constant or the work of adhesion between two films (they are
interdependent parameters), the bending rigidity of the peeled
film and the peeling width we can predict the evolution of the
peeling force.

4. Conclusions

In summary, by DFT-D2 calculations, the final optimized lattice
parameters of graphene and MoS2 are 2.489 Å for graphene and
3.112 Å for MoS2; the optimum distance between the monolayer
of MoS2 (S atom) and graphene is 3.31± 0.02 Å, and the binding
energy is −22.1 meV per C atom. Additionally, we calculated
the lattice mismatch as well as the intrinsic strain energy of the
graphene/MoS2 heterostructure caused by the lattice mismatch.
In addition, the potential parameters for LJ 10-4, LJ 9-3 and
LJ 12-6 were obtained. Then, MD simulations were performed
to investigate the peeling process under two different loading
conditions. We clarified the evolutions of the total energy, vdW
interaction energy and elastic energy of graphene. By calculating
the peeling force, we found there to be three stages in the entire
peeling process, and the traditional model is only suitable for
the stable stage. Moreover, there is a peak in the peeling force
during the initial stage whose force is several times greater than
the stable peeling force. Hence, we cannot ignore an accurate
description of the initial stage, which drives us to explore the
underlying mechanisms.

Consequently, mechanical models for the two different loading
methods are established to investigate the peeling processes.
Based on a quasi-continuum method, we have developed a new
theory that can describe the entire process from initial contact
to the stable peeling stage. In addition, we have obtained a new
characteristic length, the elasto-peeling length Lep =

√
2D/∆γ =

4σ0
√
2πD/H , that is a crucial parameter that reflects the bending

and interfacial properties of the layered materials during peeling.
Generally, this theory can be expressed by the Hamaker constant.
We only need to know four physical quantities for the layered
materials in the heterostructure to evaluate the evolution of the
peeling force, which are the interlayer spacing σ0, the work of
adhesion between the layers ∆γ (or the Hamaker constant H),
the bending rigidity D (or the elasto-peeling length Lep) and the
width d of the peeled layer. Our findings may help to understand
the underlying mechanisms in the peeling of layered materials at
the atomic scale and assist future mechanical assemblies of vdW
heterostructures.
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