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Abstract

We consider free surface waves propagating on a ferrofluid jet under a radial magnetic field. The waves
investigated are axisymmetric solutions of the Euler equations, formulated in cylindrical coordinates, for an
incompressible and inviscid ferrofluid flowing irrotationally, which satisfy the generalized Young-Laplace
equation with magnetic stresses included and the kinematic condition on the free surface. The main objec-
tive of the present study is to solve a basic question on the theoretical side, i.e. the local well-posedness
issue. We establish local existence and uniqueness of solutions for the initial value problem in Sobolev
spaces, which are achieved based on analyses of the radially symmetric Dirichlet-Neumann operator and
energy method.
© 2019 Published by Elsevier Inc.
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1. Introduction

A ferrofluid is a colloidal liquid made of ferromagnetic nano-particles suspended in a carrier
fluid and coated with surfactant to stop them from aggregating in the solution. In the presence
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of an external magnetic field, random ferrofluid particles experience attractive magnetic forces
and become highly magnetized. Ferrofluids receive growing attention due to their significant ap-
plications in various areas, such as industry [21] and medicine [23]. In addition, ferrofluids have
been employed to study intriguing phenomena and fundamental aspects of fluid mechanics, e.g.
to obtain insight into colloidal forces and their role in the stabilization of colloidal suspensions,
which has led to new applications for ferrofluid-based emulsions [20].

In the current paper, we are interested in the following set-up: a ferrofluid jet is exposed to
an azimuthal magnetic field generated by a current-carrying rod with the center along the jet
axis. The induced axisymmetric body force has a stabilizing effect and allows disturbances to
develop on the jet surface [5,6]. Rannacher & Engel [22] confirmed via a linear stability analysis
that the jet can indeed be stabilized and derived the cylindrical Kortwege-de Vries equation
describing axisymmetric weakly nonlinear disturbances in the long-wave limit. They identified
soliton solutions to this model and showed that solitons are of elevation waves (with a central
hump) if 1 < B < % and feature a depression profile (with a central dip) for % < B <9, where B
denotes the magnetic Bond number. Recently, Bourdin ef al. [9] reported the first experimental
observation of such axisymmetric waves and found a good agreement with the KdV predictions.
Blyth and Pérdu [8] subsequently revisited this problem by solving the fully nonlinear equations
numerically. Guyenne & Pdrdu [14] presented a new numerical method to simulate the time
evolution of axisymmetric nonlinear waves on the surface of a ferrofluid jet. It is also worth
mentioning that for B < 1 the jet is unstable [4].

Although many numerical and experimental results have been obtained, as far as we know,
there is no result on the well-posedness of axisymmetric ferrofluid jet, which is fundamental but
has not been investigated. This paper is devoted to establish a local well-posedness result of the
Cauchy problem for full Euler equations without vorticity. We first recall some well established
results for fully nonlinear water-wave equations (without magnetic field). The small data problem
was first addressed by Nalimov [19], but the first breakthrough in dealing with the local well-
posedness issue with general data is due to Wu [25,26]. If vorticity is considered, Christodoulou
& Lindblad [10] and Lindblad [18] established local existence and uniqueness results. Beyer &
Gunther [7] took into account the effects of surface tension and Lannes [15] treated the case of
non-trivial bottom topography. The interested reader is referred to Ambrose & Masmoudi [1,2],
Coutand & Shkoller [11], Shatah & Zeng [24] and references therein for more results.

1.1. Mathematical formulation

We consider the inviscid, incompressible and irrotational flow of a liquid jet attached to the
surface of a cylindrical metal rod of radius b > 0. The liquid is of unit density and flows in the
z-direction of a cylindrical coordinate system (r, 6, z). Additionally, we assume axisymmetric
condition so that all variables are independent of 6. The fluid occupying the region S1 = {b <
r < R+ n(z,t)} is subject to a static magnetic field, and the surrounding domain S; = {r >
R + n(z, 1)} is a vacuum. Following [13], we denote by H;, B; and H,, B, the magnetic and
induction fields in the fluid and in the vacuum respectively, and the relationships between them
can be expressed as

Bi=poH +MH;)), By=puoH,

where 1 is the magnetic permeability of free space and M is the prescribed magnetic intensity
of the ferrofluid. Furthermore, we assume
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H,

M; (H;) =ml(|H1|)|H1| ,

where m is a prescribed nonnegative function, so that in particular M; and H; are collinear.
According to Maxwell’s equations the magnetic and induction fields are respectively irrota-
tional and solenoidal. Therefore we can introduce magnetic potential functions ¥y, ¥, with
Hi=-V,, ¥1,Hy=—-V, , ¥, and then

Vx,y,z : (l/«(|vx,y,zwl|)vx,y,zwl) =0, in Sy,
Ax,y,z‘ﬂZ =0, in Sz,

where

mi(s)

u(s) =1+
is the magnetic permeability of the ferrofluid relative to that of free space. Ferrofluid flow is

supposed to be irrotational, so that the velocity field v can be written as the gradient of a scalar
velocity potential ®. The Euler equations for the ferrofluid are

Vi+ (V- Vi y)V=—Vyiy.p+ oM - Vx,y,z)Hl»

where p is the pressure, and therefore the irrotationality gives

[Hy|
1
@+ 5150 ~ o / m0di + p = co, ()
0

where ¢ is a constant. The magnetic boundary conditions are
H -t=H,-t, B;-n=B;-n,

where t and n denote tangent and normal vectors to the free surface respectively, which can be
rewritten as

Vo = Yilr=R+n@zn =0, Yo — w(Vay V1 DVinlr=R4n(2) =0.
The generalized Young-Laplace equation gives the dynamic boundary condition
Ko
P+ (Mm)? =y,

where y > 0 is the coefficient of surface tension and « is the mean curvature of the free surface.
It follows from (1) that

1 Ho
@ + = Viy D1 — oV Ve y 1) + y& — = (I Vay 291 1) — D2 (W10)* =co
2 2 r=R4+n(z,t)
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with

N

v(s):/ml(t)dt.

0

Finally, the kinematic boundary condition reads

(0 + V- Viy)(r—=R—n(z,1)=0,

that is
-1+ &, — D1,

r=R+n(z,1)

The conditions at r = b are impermeability conditions for both fluid and magnetic field

The constant cg is selected so that

J J

2nr 2mr
is a solution to the above equations; we therefore set co = — MOU(ZNLR) + %. Upon noticing that n
and @ are independent of 6 for axisymmetric waves, one finds that | = Y = —%, hence one

can decouple the hydrodynamic problem from the magnetic problem, see [13]. Finally, it boils
down to solve

O+ ;@ + D=0, inb<r<R+7(0), @)
®, =0, onr=>
and
-+ &, —P.n, =0, onr=R+n(z1),
3;¢+%(¢3+¢§)—Mo(v(m>—"(ﬁ))ﬂm:o’ onr=R+n(z1)),
3)
where
1 1
== 3+( 1——):=K1+K2
R+11)2 \(R+mR+n?2 R
and

s

v(s):/ml(t)dt.

0
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In order to prove the local well-posedness of system (2)-(3), it is useful to reduce the above
system to the following Zakharov-Craig-Sulem formulation

n: —Glnln =0,

) 4)
o+ 2 = G — v (gt ) + 0w (35) + 7 er +12) =0,

where ¥ (z,t) =: ®(z, R + n(z,t),t) and G[n] is the Dirichlet-Neumann operator (see (16) for
details).

1.2. Main result

Theorem 1. Choose to > 1 and N > 5. Let U° satisfy (8) and EN(U®) < oo. There exist T > 0
and a unique solution U € E? to system (4) with initial data U, where EN(U) and E]TV are

defined by (21) and (30) respectively.

Remark 1. Although y is supposed to be positive in this paper, we can still obtain the local
well-posedness for y = 0 if we assume that a(U% > 0 with a(UO) defined in (23). It can be

achieved by a similar argument due to R Eemel) (2n(l+n0)) > 0.

Remark 2. Using the estimates obtained in the current paper and the argument of Chapter 4 in
[16], one can also obtain the following stability result without any essentially difficulties.
If U’ solves the system (4) with initial data U'°, then U — U’ satisfies for all 0 <t < T,

EV(U - UH0) < Cley, eV W - U"Y),
where cy = supy<, <7 EN (U (1)) and cyr = supyc, <7 EN (U’ (1)).
1.3. Comments
We will adopt the framework of Lannes (see [ 15—17]) to prove the local existence and unique-
ness of solutions to the Cauchy problem of system (4). Consider the classical 2-D gravity

water-wave equations in domain {(z,7) € R?: b <r < R + n(z, 1)}, following Zakharov [27]
or Craig & Sulem [12], the system can be written as

ne =0y,
12 Glvinu) _ n: ®)
‘(/fl+gr]+2wz 20"”7%) _yaZ <\/@) ’
where g is the acceleration due to gravity, G[n]y¥ :=,/1 + n% (®r —n;P;) |r=R+y, and the ve-

locity potential ® satisfies

@, +®,, =0, inb<r<R+n(z1),

(6)
q)|r=R+r; ZWa cI)r|r=b=0~
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To obtain the local well-posedness of system (5), it is necessary to reduce it to a quasilinear form.
It is well known that the linearization of (5) around n =0 and ¥ =0 is

ne —gl0ly =0,

Vi + (8 —ydn=0.
However, to deal with the fully nonlinear problem, we must linearize the system around a non-
trivial state, thus the situation becomes much more complicated. Lannes’ key observation is that
system (5) can be rewritten in a similar form by introducing ‘good’ unknowns 7y = %7 and
V() = 0%y — Z0%n where o = (ap, o D'isa multiple index. It follows that

0N (a) + 9: (V1)) — GInl¥ () + subprincipal terms = lower order terms,

7
V@) +V - 0¥« — y9;:K[n:10;1() + subprincipal terms = lower order terms, @
where
Gy +n:y:
Z=——7—, V=y,—-Z

are the vertical and horizontal velocities at the surface respectively, and

1

Klnl= ———.
(1+n2)2

The remaining part is standard since the quasilinear system (7) can be handled by symmetrization
and energy estimates. For our problem, the velocity potential ® satisfies (2) rather than (6), so
we should establish the properties of the Dirichlet-Neumann operator in the radial symmetric
case. On the other hand, G[n] is no longer a self-adjoint operator in this case, therefore a new
self-adjoint operator needs to be introduced, and subsequently, the linearization formulas and
symmetrizers also need to be modified.

The paper is organized as follows. In Section 2, we establish the properties of the Dirichlet-
Neumann operator in the axisymmetric case. In Section 3 and Section 4, we focus on the
linearization formulas and subsequently derive a quasilinear system for high-order derivatives
of unknowns. Finally, we complete the proof of Theorem 1 in Section 5.

Since our interest is the local well-posedness of the Cauchy problem, without loss of general-
ity, we assume o =y = R = 1 in the rest of the paper.

2. Preliminary results

In this section, we explore the Dirichlet-Neumann operator in the axisymmetric situation via
investigating a boundary value problem for a linear elliptic PDE as [3,15]. It is noted that, in
contrast to [3,15], the elliptic operator 9, (rd,e) + 9,(rd;e) is of variable coefficients rather than
constant coefficients. Throughout this section, we assume that the following assumption is always
satisfied

Jho>0, inf(1—=>b+n)=ho. 8)
zeR
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2.1. Elliptic estimates on strip

Since the velocity potential satisfies (2), it is natural to study the following boundary value
problem

0,0, ®P)+0,(r0, ) =0, b<r<l+n,

€))
Qlr=tyy =V, o P)=p=0.

We introduce the flat strip S = R x (0, 1), and due to the assumption (8), one can define a
diffeomorphism S mapping S onto the fluid domain 2 as follows

S—Q
(z,) > (z,r +o(z,1r),
with
o=mMm@)—=b)r+b>b.

Following the arguments of Lemma 2.5 of [15], with a slight modification, one can easily obtain
that problem (9) is equivalent to the following boundary value problem

V-P[nlV¢ =0, inS, (10)
dlr=1=1V, =(0,1) - PnIV|r=0=0,
with ¢ = ® o § and the matrix P[n] given by
140,060 —0;0
Pln]:= (@ +o0) 5 1+3.0)2 | -
—0:0 14+9,0
We can also write P[n] as [r + b(1 —r)] 4+ Q[n], where
oo —0d;0 140,060 —0;0
QOln] = 9 —do+(d0)2 | TN 5 1+0,0)% | - (1T)
—0z0 T+o0 —0z0 T+o,0

In the subsequent analyses, we use the condensed notation

Ay =Bs + (Cs)s>g
to say that Ay = By if s <s and Ay =By + Csif s > 5. Forall 1 < p < o0, | - |, denotes the

classical norm of L”(£2) while || - ||, stands for the canonical norm of L”(S). For all s € R,
H?(R) is the classical Sobolev space defined as

HR) = {u e S lulys = (1 = 0.) ful < oo} .

We also define the Sobolev space
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. 1
T3 (R) = {u e L2 (R), d.u HS_E(R)}

1. || | Lo s denotes the norm of L>([0, 1]; H* (R))

53
and || - ||co,r stands for the norm of L*°([0, T']; L>°(R)). Denoting V = (9, 9,) T, we next state
some properties of Q[n].

endowed with the norm |u| . 1 = [0,u]
H "2 H

Proposition 2. Let 1y > %, s >0, and n € Ho' 0 HFYL(R) be such that (8) is satisfied.

(1) One has

IOl <€ (5" Inll oo + 190l ) (nlloers + 190 o)

and when 1 is also time dependent,

18 Qnllloe,7 < € (5" Inlloe, + 190lloe,r ) (14 1loo, 7+ VA0l ow,7)

(2) Forall j >1andhe H*T N HSTY(R)/, if we denote by Q) [n](h) the j-th derivative of
n +— Q[n] in the direction h, then

0P [n1 ()| Lo ps
<C (hg" Il o + 1Vl 0 )
J J
< Y thil s [TVl gross + (Amllooms + 1Vl ooms) T | Vil o+ s
k=1 1#k k=1
(3) The matrix [r + b(1 —r)] + Q[n] is coercive in the sense that
VO eR? |0 <Ckinl(b(1 —r)+r1+ Q) © -6,
with

1

1
kn]:= Z(l + llolleo) + bho (I'+119;0 (o) -

Proof. (1) and (2) can be obtained from the following tame product and Moser’s estimate (see
Proposition 2.1 in [3]),

1
|f8lms <C (Iflmoolglas + (1 f1as18lao)ss1) »  for o> 3 ands >0,
and for all F € C*(R",R™) such that F(0) =0,

|F)|ms < C (luloo) lulms, 5 20.

It is not difficult to check that ([b(1 —r) +r]+ Q[n])® - O = ]f:;fa |BO|2, where
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_(1+0,0 00
a7 M),

Upon noting that

B_]_L 1 E)Zo
T 90 \0 1480 )"

and
10| < |BO||B g2 g2 »
one can obtain (3).

Next, we consider the following boundary value problem

{v.([r+b(1—r)]+Q[n])W=v-g, inS, 12

ulp=1=0, —@O,1)-PnlVul,=o=-(0,1)-glr=0-

In the following, we set

M) i=C (g Il e ot + 1Vl o= )
where C(-) is a non-decreasing function of its arguments.

Proposition 3. Let 1) > %, s >0and ne HO2 N HTY(R) be such that (8) is satisfied. Then for
allge C([0,1]; HS (]R))z, there exists a unique variational solution u to (12) and satisfying the
estimate

IA°Vulla < MIn] (IA°gl2 + (nllzeems + 1Vl gl A gl2)s>r+1) -

Proof. A standard argument shows the existence of solution. We next give detailed proof of the
inequality, which is similar to the proof of Proposition 2.4 in [3] with some modifications. Let
x(-) be a smooth and compactly supported function such that x(§) = 1 in a neighborhood of
& =0, and defined Aj, := A * x (h|id;|). Letting A%“u be a test function, one can get

/([r +b(1 =r)]+ Q) Vu - VA u = /g VAZu,
S S

which implies that

/A‘;l([r-kb(l =]+ QD Vu - Vuy, =/g-Vvh
S S

with v, := Aju and thereby
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/([V +b(1 =)+ QD Vv, - Vo, = f (g- Von = [A}, Q[nIVu - V) .
S S

From the third property of Proposition 2, one can obtain

k=M IAG Vull < (ITAY, QInIVullz + 1Al -

Using the commutator estimates of Corollary 2.1 in [3], and letting 4 — 0, one has

KT~ AVl <CIA gl 4 11 QT oo o1 1A V|2
+ CUI QI o s AP Vul|2) s rp+1 5

and therefore

1A Vulla <CKInl, 1 QM oo o+ 1) (1A gll2 + 1A° ! Vel

(13)
+ (1@l L ms 1AVl 2)s51041) -
In particular,
IVull < Cklnlliglla, 1A Vullz < C*Inl, QN oo gro+1) 1 Al . (14)
One can finally obtain the estimate from (13), (14) and Proposition 2.
Next, we define u” as the solution to the boundary value problem
V-(r+b(1=r)1+QnHVu’=0, inS, 15)
Wh=t=u, —0,1)-PnVu’l,==0,

and also define u' as

Vrelo 1, u'(r)=x(r = Dlid:)u,
where x is a smooth and compactly supported function such that y (0) = 1.

Corollary 4. For ty > % and s >0, let n € Ht2 N HSTY(R) be such that (8) is satisfied. Then

1
for all u € HT2 (R), there exists a unique solution u’, and

1A VU ll2 < Ml (1Bulzs + (nllzems + 1Vl ms)|Bul go)sr11)

lide|

where B 1= T
1+1i9; |2
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Proof. Seeking u” with the form u” = v + u yields
g y

V- ([r+b(1 =1+ QDVv ==V ([r +b(1 —r)]+ QInVu',
V=1 =0, —(0,1)- P[n]Vvl,—o=(0,1)- P[n]Vu'|,=o.

From Proposition 3, one has
1A Vollz < MO (I1A°Vul Il + (Ul + 1Vl m) AV [2)si041) -
Now, the corollary follows from the following fact (see Proposition 2.2 in [3])
C11Bulps <A Vu'll2 < Co|Bulps
2.2. Dirichlet-Neumann operator

The standard Dirichlet-Neumann operator is defined as

Gy ==/ 1+ 02(®r — 0P )| r=144 - (16)
Since G[n] is not self-adjoint in the axisymmetric situation, we introduce a new operator (j[r;] as

Glnl:= A +mGnl. a7)
We remark that the definition of the operator Gln] is natural. Actually, unlike the classical situa-
tion, the elliptic operator takes the form of 9, (rd,e) + 0,(rd;e) in the radially symmetric case. It
follows that the Neumann operator (corresponding to the Neumann boundary condition) on the

free surface should be r 3, (e)|(14y) instead of 9,,(®)|(14). Furthermore, corresponding to system
(10), QN[n]w can be written as

Gnly = (0, 1) - P[nIVly=1,

where ¢ §olves (10), i.e. div(P[n]¢) = 0. We next focus on the properties of the self-adjoint
operator G[n].

Proposition 5. Let 1y > % andne H 0+2(R) be such that (8) is satisfied. Then
1) g~[r]] is self-adjoint, namely,

Vu,ve HXR), (u Glnlv) = . Glylu).
2) Vu,ve H? (R), the following inequality holds

[, Gnlw)| < e, GOl v, Glnlw)?

Please cite this article in press as: Z. Wang, J. Yang, Well-posedness of axisymmetric nonlinear surface waves on a
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Proof. The proposition can be obtained from the following identity

(w, Glnlv) =/([r +b(1 =] + OV’ - Vo
S

(18)
=/([r +b(1 =M+ QI 2Vu - ([r +b(1 — )]+ QD) 2 Vi,
S

where ([r + b(1 — r)] + Q[n])% stands for the square root of the positive definite matrix ([r +
1
b(1—r)]+ Q2.

Proposition 6. Let 1y > % andne H 0+2 pe such that (8) is satisfied.
1) Forallu e I-'IH%(R), 0<s<t+1, jeNandhe (HSV’UH(R))j, one has
o J
iG]y < MUnIBulss [ il o
k=1

Hereafter, the notation a Vv b stands for max{a, b}. '
(2) Forallu e HOSTI(R), 0 <s <o+ %, 1<I/<j,andhe (H’°+2(]R))j, one has

) G(hyu

et SMONBul ol [T g
k£l

Remark 3. One can also obtain the estimates for s >ty + 1 from the following proof and (2) of
Proposition 2. In particular, when j = 0, for any s > 0 one has

i
y < MVl 1Bulms [T lhel goon -
k=1

G

‘HS_

Proof. One can obtain (1) by using (2) of Proposition 2, Corollary 4, and slightly modifying the
argument of Proposition 3.3 in [3]. (2) can be obtained by following a similar argument given in
B.2.2 in [17], and using the estimate (see Lemma 14 of [17])

IA°QV M 2 < Mkl .y [Tl g, for 1 <1<
k£l

Proposition 7. Let 1y > % andne H ’UH(R) be such that (8) is satisfied, and k[n] be as defined
in Proposition 2. For all u € H% (R), one has

(. Gt ) < MInYBul3 and ki1~ [Bul3 < € (u, Glu ).
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Proof. The first inequality can be obtained from (18) and Corollary 4. The proof of the second
inequality is completely similar to Proposition 3.4 of [3], thus we omit the details here.

Proposition 8. Let 1) > % T >0andne CL([0, T1; HOF2(R)) be such that (8) is satisfied.
Then, for all u € Cl([O, TI; H% (R)) and t €10, T],

[([0r- G ] u )| < MINOT (o7 + 1900, 7) 1Bu ()3
Proof. First of all,

(u, [0, GInllu) = 8, (u, Gnlu) — 2(u, GInldu) .

Due to Green’s identity, one gets

(u [0, Glnllu) =3, / ([ + b0 = )]+ Ol Ve’ - Vi
S
2 / (Ir +b(1 =]+ QDY (@)’ - Vi’
S

- f 5, QINIVa - Vi’ —2 / (Ir +b(1 = )]+ QDY (B)’ — du”) -V’
S S

Thus,

|(u, [3;, GInTlw) | <113 Qoo | VU113
+ L+ 10Mlloo) [V (@Bru)” = 3u°) |, IV 2.

Consider the system

V-([r+b(=n]1+QhVw =V -g,
wl=1=0, —(0,1)- P[n]Vw|,—0=—(0, 1) - g0,

where w := (8,u)” — 9,;u” and g =0, Q[n]]Vub. It follows from Proposition 3 that

|V (@) = 3,u”) ||, < 13 Q0o Va2
Finally, one can get the proposition from Corollary 4 and Proposition 2.

Proposition 9. For all V. € HOT'(R) and u € H? (R), one has

(Vaeu, Ginlu ) < MOV Iypr.1Bul3

Please cite this article in press as: Z. Wang, J. Yang, Well-posedness of axisymmetric nonlinear surface waves on a
ferrofluid jet, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.05.030




YJDEQ:9857

14 Z. Wang, J. Yang / J. Differential Equations eee (eeee) eee—see
Proof. Green’s identity gives

(vt Gtnie) = [ @+ 1 = b1+ QT - V(o).

S

and hence
(Vo Gtorhe) = [+ = byr1-+ QUap Vi 19, Vo

S

+ [ V" [Q[n]. Vo 1u

S
n / Vi’ - (V) ([r + (1 — byr] + QlnDu’ .
S

Integrating by parts yields

/ Vi’ - (V) ([r + (1 —b)rl+ Q) Vi
S

— / 0.V + VO)Vi - ([r + (1 — byr] + Q) Vid’
S

_ / @ VIV - ([r + (1 = b)r] + QD) Vi
[Va,, VI - ([r + (1 — b)r] + QD) Vu

V (Vau’) - (Ir + (1 = b)r] + QIn)Vu'’.

M\ 0)\0)

From the above facts, one can obtain

(vacu.Gnie) = [+ = byr1+ QLoD V9. Voo
S

1 b b
+§/w 1QIn]. Vo, Ju
S

/ @ V)Vu’ - ([r + (1 = b)r] + QIn) Vi,
S

1
2

which implies
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(V2. Gl ) S 1V Iy (1 + 1 QL) V3.

From Corollary 4, one completes the proof of the proposition.

Proposition 10. Let 1y > %, s =21 and n € HS+% (R) be such that (8) is satisfied. For all €
S (R), the mapping

0> Glnly € HF2(R)

is well-defined and differentiable in a neighborhood of 1 in H*3 R), and

Vhe HTIR), dGy = —Glnl(hZ) — o.(h(1 + V).

where

1
;:=Tﬁ(g[2w+gzm) and V=0 —Zn,.

Proof. Differentiating (10) with respect to n yields

V. PVv=-V-d,P()V,
Ve =0, 0.1 PVol—g=—(0.1)- (d,P(1)V4) =0

where v is the derivative of the solution to (10) with respect to » in the direction s. Next we
dyo (h)
b._

prove that the function v’ := Tra,0 Or® solves

V-PVv==V-dyP(WVé,

(19)
Vot = g l=ts 0.1 PVolmg ==, 1) (dy P)VS) =0
It is not difficult to check that
V.-PVV =V.PVp,

where

b (020) (o 5 (520) (o ()

1+0,0

Noticing that

1+0,0 —0,0
P=(r+o) 5 14,002 |

—0z0 T+o,0
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one can obtain the expression of d, P (h) as

1+0,0 —0,0
dyo (h) 9o @0’

z 14+0,0
3, (dﬁcr (h)) —3, (dﬁa (h))
+(r+o)
20:0)8:(dyo ) B (dyo 1) | (5072
—0; dga(h)) 1F9,0 BT 1+5:;

A straightforward calculation yields
P=—d,P(h).

Upon noting that d,o (h)|,=1 =h and 9,0 |,=1 = n— b, one has

b
g =—9 -1.
V=1 l—b—i-ﬂ rPlr=1

On the other hand, it follows from d;0 (h)|,—o = 0 that

8, (dyor ()

0,1)- PV’ |pg = ———
(0, 1) vlr=0 0+ 8,00°

(r + )1+ (9:0) ) blr=o = (0, 1) - (d, P () V@) |, 0.
Hence v” solves (19) and therefore v — v” solves

V- PV (v—12")=0,
(v = V") =t = =15 blr=1, (O, D)- PV (v =2") |20 =0.

The definition of the Dirichlet-Neumann operator G [17] implies

b = h
0,1)- PV —=v)|p=1 = g[ﬂ] _mar(mr:l .

Noting that G[n]y = (0, 1) - PV¢|,1, one has

dyG(Y = (0, 1) dy P (V|1 + (0, 1) - PVl

Since 0,¢|,=1 = (1 + n— b)Z, the following identity holds

dyG (MY = (©0,1) - dy P(Vly=1 + (0, 1) - PYV|=t = GInl(hZ).
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Noting that

39,0 =(0, 1) - (PV ( e (1) a,¢>>
14+ 0,0

dyo (h) dyo (h)

BVEIN BT
dyo (h) dyo (h)

=P |:8Z (m) 8r¢ + <1+ 8r0'> 8Z8r¢]

dyo (h) dyo (h)

+ P |:8r <1+8r‘7> 0r¢ + <1+ 3r6> ar3r¢i|

and

Py203,0,¢ = =0, P20y ¢ — 9:(P110;¢) — 0;:(P120,¢) — 9,(P210:9)

one can get

P0ddrplr=i =— (1 + 1) —b+mZ—2(1+nnZ
—o.((1+n=b) A+ mv) +0: (0,0 +m( —b+Z)
+u, (2=b+20) v+ u (1 + 2. (A -b+n)Z)
== =b+Z-(1+1-b) 1 +niv:

+ (1)1 = b+ ). (QZZ> 0.1+ m (1~ b+ ndZ,
and therefore

. A+ +n)
O, -PVVmi=—A4+mn h;Z+—————hZ—hZ
- =z l=b+n

— (14 Dhd s, + (1 + mhad, (ng)

A+ +n)
=—(+mnhn Z+ mhl —hZ

— (L+mhd.V.

On the other hand,
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O, 1) dy P()Vl=1 == 8 (1 + k) e + (1 + 1D Z

A +mA+1)
+2(+mhyn Z - ————hZ

l-b+n
A+m1+n?)

—9, ((1 +Q)h)z.
Hence, one has
(0, 1) dy P()Vlmy + (0, 1) PV |y = =0, (14 V),
which implies the proposition.
3. Linearization formulas

In this section, we give the linearization formulas. For all & = («o, ozl)—r e NI+ we denote
by d%0 the time derivatives and 9! the spatial derivatives. Let 7o) = 0%n, Y(o) = 0% — Z0%n
with Z = gl/{_t;:’]zw and V = v, — Zn,. We introduce the energy £V (U) as follows

N =g+ Y (Il + 1Bv@I3) - (20)

aeNH! |o|<N

For all T > 0, we denote by E ITV the functional space

EN = {U eC ([o, T1: HO*2 x HZ(R)), sup ENU@)) < oo] . Q1)
0<t<T

Denoting m" (U) = C(M[n(1)], EN (U(t))), we have the following linearization formula.
Proposition 11. Let 1y > % and N € N. Moreover, assume that N >ty +to vV 2 + % and U =

(n, 1//)T is such that EN(U) < oo and satisfy (8). Then for all o € NI ywith 1 < x| < N, one
has

801 (g!/f) =g¢(a)+Rm |O{| <N_ 17
9 Gy) :gw(a) - az(zn(a)) + Q(a)llf@) + Ry, |a|=N,

where 1)) = 0%, Y(q) = 0%y — Z3*n with Z = glﬁizzw V=v:—Zn, ¥ig) = Woy, Yan)

with &/ =a—ej,

1
1 = 1 -
GV = Ton +ng(a)1/f(&> = T4n E ajdG@imy iy (22)
Jj=0
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and Ry satisfies
|Ral g1 <™ (U).
Proof. It is easy to know that

Gy
1+

<mMU).
Hl

Gy —

On the other hand, one has
3Gy = Gy +dG@* MY + Gy Vs + Ra

with

l ~

Ry =Y a;jdG0*my — GV | + R,
Jj=0

and R}, is a sum of terms of the form

djg~ (atl /TR 8LJ77> 88‘(//

where j € N, 1= («!,---,1/) € N/ and § € N satisfy

j
DI +18I=N, 0<|S|<N-2 and [/[<N.
i=1

Applying the same arguments of Proposition 9.3 in [16] and utilizing Proposition 6, one can get
|Ral 1 <m™ (U).

On the other hand, it is easy to see that

1
T 0+ mne) = 8:(Vnw)| < m (V).
+ n H!

Finally, one can deduce Proposition 11 from the above facts and Proposition 10.

Lemma 12. Let tg > % and N € N. Moreover, assume that N > to+tyV 2+ % and U = (n, W)T
satisfies (8) and EN (U) < oo. Letting o = B+ 8 with |8| = 1, foralla € Nt with 1 < |a| < N,
one has

9P (Van (9,0°y — 29,8°n)) ~V .Y + (V8.Z) 3%y — V(3P Z}8,8°n,
9% (28° (Gy)) ~23* (Gy) + 18P, 2)9° (Gy) ,
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where {Bﬁ, w}= Zj’:o ﬂ,ajwaﬂ’ with ,3Vj = B —ej, and a ~ b means that
1B(a —b)l, <mN ().

Proof. Adopting the same arguments of Lemma 4.15 in [16] or Lemma 9 in [17], one can obtain
the lemma from Propositions 6 and 10.

4. Quasilinearization

Let
AlU 0 oy (e 0
= a— ﬁaz (K[ﬁz]@') 0 ’ wi= 0 Va,
and
ColU]= 0 ~T 9@ ’
K@ln:] 0
where
J J
2™ (271(1+n)>+(8’+¥3z)Z (23)
and
- 1
(1+n?)2

and for any F = (fo, f1) ',

1

K [n:1F = =0 | Y (dK(3;n:)d. f; + dK (. f;)d;1:)
j=0

One then has the following proposition.

Proposition 13. Let 19 > % and N € N. Moreover, assume that N >ty +to vV 2 + % and U =

(., ¥) T satisfies (8) and EN(U) < oo. Then

3 Uy + AU ) = (Res So) ', |l < N,
atU(ot) + -A[U]U(ot) + B[U]U(a) +Ca U(&) = (Rou Sot)—r s |Ol| =N,

where U gy = (N(g)» I/f<5t>)—|— and

IRy |1 + 1BSgla <mM(U).
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Proof. It follows from Proposition 11 that

1 =
M) — GV @ + 0:(Vnw) — mg(aﬂﬂ(&) =Ry. (24)
It is easy to check that

3,0°y + Va.n (8,0°y — 23.9°n) — Z3°(Gy)

s J J B (25)
9 ( ”<2n<1+n>)+”(2n)+“+”> =0

Following (9.17) of [16], one obtains

9%k ~ —0; (K[n:10:0%n) + K@ [n:1n@ . (26)

%. (26) can be rewritten as

where K[n,] = ;
(14732

1n:0:0%n

1
3%y ~ ———3. ((1 +nK[n.10,9%)) + ——————
T4n o (1401 +m2)}

+ Kwln:1ng) -

Noticing that

3,9%
9y~ — 2T
I+ +n?)2
one has
1 ~
3% ~ —maz (K[nzlaza“ﬁ) + K@ n:1n) - @7

where K[n.] = (1 + n)K[n:] = —=2+. On the other hand,
(1412)2

((rimm) () =57 (0 i) o)
A (v———— ) =v =) ) == =0 m
27(1+17) 27 27 2r(1+n)) (14+n)?

(28)
o ()
~— mi a“n.
2w (1+1n)? 2 (1 +n)
Since 9; 1) = 0*(GY), from (25)—(28) and Lemma 12, and noting that
V9P, 2)0.9°n + (9P, 2)0° (Gy) ~ 0P, Z}(V3,0°n + 8° (Gy)) ~ 0,
one can obtain
1 ~
8t‘ﬁ(a{) +Z31W(01) + (Cl - maz (lc[nz]az‘>> N + K(a)[nz]n(&) ~0, (29)
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where

J
. - (
2w (14 n)? 2 (141n)

)+(at+zaz);.

Finally, we can finish the proof by using (24) and (29).
5. Proof of Theorem 1

We first discuss the initial condition for our problem, which is similar to that of the water-wave
equations without magnetic field. Since £V (U) involves time derivatives, we must specify in
what sense the initial energy £V (U 9) holds. We must choose initial values U (Oa) for (Ua))li=0

when ag > 0, in terms of U° and its spatial derivatives. Similar to [17], we achieve this via a
finite induction. When o9 = 0, we take

U(Oa) — (8017707 80(1,00 _ ZOBQUO)T ,
Gy +n2y?

1+(n?)?
N4+ with By < n (1 <n < N). When ag = n, we choose

where 20 = . We assume that U(g)|;=0 = U(Oﬁ) has been chosen for all 8 = (8o, 1) €

Uteyli=o = @iy drrian + 920" )T| _

t=0

where o’ = (g — 1, 1) T, and we therefore are led to set up initial conditions for 3, U, (a'y» Which
can be achieved by using Proposition 13. Next, we define the initial energy by

ENU) =190 o+ Y (||n?a>||§,l + ||%w?a)||§) (30)
aeNI+H |jo|<N

with U &) constructed above.
5.1. Mollified quasilinear system

Let x : R — R be a smooth and compactly supported function, which equals one in a neigh-
borhood of the origin. For all 0 < ¢ < 1, we denote by J* the mollifier J* = x (¢]id,]). Consider
the following system

an—J'Gy =0, a1
1 2 G+ zlﬁz)z J J —
3t¢+§~]1 (1//z - 1+nn_§ )+J[ <—V(—2n(l+n))+V(E)+K)—O.

Since J* is a smoothing operator, from the Cauchy-Lipschitz theorem of ODE, we know (31)
has a unique maximal solution U' = (n*, ¥*) | with the initial data (n°, ¥°)T on a time interval
[0, Ty ]- Fora € N+ and 1 <la| < N, if we set U, = (1l Yy > Where

> Tmax

néa) — 80lnt , w([a) — aﬂtl//.t _ Ztaﬂl l,
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and

R U L AV
gt 7 27z
= 1+ (n,)?

then it is easy to check that
Ul + ' (AIU N+ BIU'N) Ul + T CalUNU 5 = (J R, I'Sa + ST, (32)
where S, = —(1 — I8 Z 1+ (25, T'19%(GY).
5.2. Symmetrizer and energy
We denote a symmetrizer of system (32) by
S[U1=S'[U1+ 8.1,
where
s'1Ww1=diag (((1+ma o, (Kin:lozs) ). Glnl)
SV =diag (1 + DK@ln:1e, )
The energy F'(U) can be defined as

Fly= Y F U,

0<el<!
forall 1 </ < N, where
o 1 1 .
FHU) ZE (S [U]U(w,U(@) , ifa#0,
Fow) =M (Inlys + W, Gl01p)) . ifa=0,

for Uw) = (N« ¥(@))- The following lemma implies that 7/ (U) is equivalent to the energy
EI).

Lemma 14. Assuming U solves (4) on [0, T] and satisfies (8), for all 0 < j < N, we have
ENU) <MF/U) and  F/(U) < MnE ). (33)

Proof. The definition of F/(U) implies

Fwoy= Y [(a+mane - Km0, 10) + (G0 Vo )]

NN

+ M1 (Il + (. Glo1))
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Firstly, it is easy to check that

M 1101013 < (RUne 1m0y, 020 ) < MInlIozne B

and

1 -1 2 1 2
(1 +mane). nw) | < M 119zn1@ 2 + S MUl -

On the other hand, from Proposition 7

M B Y 13 < (Gl Yo ) < MIIBY@3.
Thus, one obtains (33).
5.3. Energy estimates

Taking the L?-scalar product of (32) with S! Uéa) + Sé U<‘&>, and noting that

(J' AU g, S'U(g)) =0

and
(J* AUy, S2U5)) + (J'CaU gy, S'Ue) =0,
one can get
J 5
(W + (Ul S2UL ) ) = Yo Aj + Bi+ Ba,
j=1
where
1 1 1
Av=5 (10810 Uiy ). A== (48U S'UL,).
) 2
As= (Ui 01 (S3U4))). Aa==(J'BU{ 83Ul ).
2
As=— (JLCan&w SaUéaz))
and

B = ((Ra, )T, S'U, +S§U<‘&>) . By= ((o, ST, S\, +S§U<‘&)) .
Estimate of A. First, we have

241 = (3 (1 + M) @y, 1)) + (101 G, Vi) + (3K 10y, 020 )
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where we denote (7, l/féa)) as (1), ¥(«)) for simplicity. It is easy to get that
(8 (A + ) 1@y 1)) | < " ()
and
(800, 1) )| < w @)
From Proposition 8 one obtains
(19 6@, i) | < m¥ @),
Hence, we have |A{| < m" (V).
Estimate of A>. One has
Az == ((1 4+ many. '3 (Vi) + (0: e, 70 (V) )
— <Q¢(a), J! (Kazl/f(a)))

It is easy to get

(az(lﬁazma)), J'9; (Kn(a))) ~ (az(’aazma))’ a (Zazm‘”))
~ (zaz(léazn(a)), J‘8zn<a>)
~ (aZ (Ko, (Vi) J‘azn(w)
- (8Z(Zn<a>)), lﬁazl‘azmm)
~_ (az(zma))), Jt (8z(i€8zn<a>>))
- (az (Kd:n@), J'9; (K?’/(a)))

which implies
(9 (Ko@), 70: (V) ) ~ 0
where a ~ b means that
la —bl <m"(U).
By Proposition 9, one can get
(VG Vot )| <m¥ ).

Thus |A2| < mV (D).
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Estimate of As. It is easy to obtain |A3] < m" (U) from the definition of S2 and £V (U).

Estimate of A4. By definition

As=(J'9; (Vnw), 1+ DK@n@) — (JL(Kaz)W(a)» Q(a)lﬁ@)) .

It is easy to check that

1(7°9: (V) » (1 + ME@ne)| < 70 (Vi) |, |4+ DKwng

, <mV(U).
On the other hand,
‘(J‘(ZZ%)W(a), g(a)lﬁ(&))‘
=|(a+1DD 72090, A+ DD (VI Gaia) )| < m¥ (W)
Thus, we obtain the estimate for A4.

Estimate of As. This can be obtained by combining
G ¥l <m™(U) and |(1+ K@@l <m™ ).
Estimate of By. It is noted that
Bl = (J‘Ra, ((1 Fa—a, (/Cazn(a)))) + (I'Se. V@) -
From Proposition 13, one can get
‘(JLRa» ((1 +n)a—0; <I€azn(a))>>‘ < mN(U)»
and from Proposition 5, one has
(7S Gre))| < 1B Sall2BG Y@y ll2 < m™ (U) .
Therefore, |B;| < mY (V).
Estimate of B;. It follows from the definition of S&, Proposition 5 and Remark 3 that
|Bal = |(J* S, G| < IBIS, 121B Yo 2 < m™ (V).
From the above inequalities, for all 1 < |o| < N we have
d t t 277t N L
= (U + Wy S2U) <mV U,

If « = 0, we rewrite the system as
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n — J'GIOly + J'N(U) =0,
(34)
Y+ J0 (1 _azz)n+JlN2(U):O,
where N1(U) and N> (U) are given by
N(U) =G0y — GInly,
1 2 Gy + ny)?
Na(U) =5 (IVWI - T)
(latea) (2)) o
\owrn)  "\ag)) TET T IE
Taking the L? product of (34) with ((1 — 9,;)n, G[0]y) yields
d N
E}'O(U) < MIUIN @) gl gy + MIHIBN2 (D) 1121189 |2 < m™ (U).
Hence
dt ~X £
d
oo+ | lZ Uy, SeULg) | <mM(UY).
o|=N
Defining
FNWUY =FNUH +MFNIUY + Y (U, SaU,),
la|=N
one then has
4 gN wH <mUY. (35)

dt

Upon noting that

1
> | Wiay SSUGDI < S FN U + Mgl FY 1w,
la|=N

one arrives at
1 -
EFN(U% <FNWYH < MimFN UY).

Due to Lemmas 14, (35) is surely the energy estimate. Finally, by a standard compactness argu-
ment (see [16,17]), one can obtain Theorem 1.
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