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Abstract
Transient response analysis is an indirect method for the measurement of the aerodynamic force experienced by hypersonic
vehicles in impulse wind-tunnel facilities; a transfer function is identified by a calibration experiment in advance and is then
used to recover the target aerodynamic force. Theoretically, the transfer function is unique for a given measurement system.
However, the calibration experiment may involve unpredictable factors and noise that are inevitable in practical applications,
which will result in systematic errors. In this paper, a new calibration method, weighting by cross-validation (WCV), is
proposed to reduce the systematic errors. In WCV, a series of on-site calibration experiments are carried out to obtain a
set of transfer functions prior to the wind tunnel test. The transfer functions are cross-validated against each other to create
a cross-validation table of relative measurement errors. The aerodynamic force is then calibrated using the average and
standard deviation of the cross-validation errors. The working mechanism of the WCV method is demonstrated by analogy
of measurements with a set of non-standard rulers. The effectiveness of the WCV method has been verified by tests in the
JF-12 shock tunnel. Studies show that the WCV method improves the measurement accuracy significantly. In addition, the
concept of the WCV method is general and can also be applied to other indirect measurement problems to reduce systematic
errors, especially when no exact/standard measurement tools are available.

Keywords Aerodynamic force measurement · Dynamic system · Impact response · Cross-validation · System identification

Introduction

Impulse facilities such as shock tunnels are playing impor-
tant roles in developing new hypersonic vehicles. However,
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the measurement of the aerodynamic forces of test models
in impulse facilities remains a challenge [1–3] because the
test time is very short, usually in the order of milliseconds.
Sudden aerodynamic loading causes vibrations of the force
measurement system, and the test time runs out before the
system reaches a state of force equilibrium. Early research
has relied on damping mechanisms and/or inertial compen-
sation to reduce the influence of vibrations. For example,
Jessen and Groenig suggested strengthening the stiffness
of the force measurement system [4]. Joshi and Reddy [5]
and Raju and Reddy [6] used accelerometers to compensate for
the vibrations, and Naumann et al. proposed a free flight tech-
nique to reduce the vibration effect [7, 8]. More recently, tran-
sient response analysis has been widely used to recover the
aerodynamic forces from impacted balance signals [9–14],
in which the force measurement is considered a dynamic
process. A transfer function is identified by a calibration
experiment prior to the wind tunnel test and is then used
to recover the target aerodynamic force. The calibration
experiment may be a hammer knocking or a wire cutting.

Theoretically speaking, the transfer function is unique
for a given measurement system. However, the calibration
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experiment might involve unpredictable factors and noise
in practical applications (see Section 2). Here, an unpre-
dictable factor is defined as an influence factor that is known
but the specifics are unpredictable. For example, only some
(i.e., NOT all) low-frequency vibrations may be excited in
a single knocking test [16]. Unpredictable factors result in
systematic errors.

In other words, different calibration experiments may
result in different transfer functions. This means it is
difficult to obtain an ideal transfer function for force
recovery. Note that the role of the transfer function in a
transient response analysis is similar to a ruler in length
measurements. A force measurement with an exact transfer
function is just similar to a length measurement with a non-
standard ruler. The error due to the measurement tool is a
systematic error that affects the final measurement result.

In this study, we suggest conducting a series of on-
site calibration experiments to obtain a set of transfer
functions (as a set of rulers) prior to every wind tunnel
shot. The transfer functions are cross-validated against each
other to determine the weight of each transfer function. A
cross-validation table of the relative measurement errors is
developed. The aerodynamic force is then calibrated using
the average and standard deviation of the cross-validation
errors. This calibration method is referred to as weighting
by cross-validation (WCV).

The working mechanism of the WCV method is demon-
strated by using the analogy of obtaining measurements
with a set of non-standard rulers. The effectiveness of WCV
is verified by tests in the JF-12 shock tunnel. The results
of the study show that WCV improves the measurement
accuracy significantly. The method is also a promising cal-
ibration method for other indirect measurements when no
exact/standard measurement tools are available.

Dynamics of Force Measurement System

Usually, the force measurement system used in impulse
facilities consists of a test model, a stress/gauge balance,
and a crescent sting (see Fig. 8 in reference [15]). All
parts of the model-balance-sting system are made of solid
metal and are connected tightly to form a single object.
This system is usually considered to be a linear dynamic
system. The measurement signals are analyzed as follows.
Since the measurement system is linear, the balance outputs
y(t) and the aerodynamic inputs f(t) have the following
relations:

an

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · · + a0y(t) = bm

dmf (t)

dtm

+bm−1
dm−1f (t)

dtm−1
+ · · · b0f (t).

Thus the transfer function in the frequency domain H(s)
satisfies

H(s) = Y (s)

F (s)
= bmsm + · · · + b1s + b0

ansn + · · · + a1s + a0
, (1)

where Y (s) = L(y(t)), F(s) = L(f (t)), and n ≥ m. By
using the convolution formula of the Laplace transform, we
obtain the following formula under the assumption of zero
initial conditions in the time domain:

y(t) =
∫ t

0
h(t − τ) · f (τ)dτ .

Once the test model is installed with a given force balance
and crescent sting in the wind tunnel, the transfer function
should be invariant. It can be identified using calibration
experiments such as a knocking test with an impact hammer
(to simulate an impulse input), or a wire-cutting experiment
with a mass (to simulate a step input) (see [11] for an
example). Subsequently, the aerodynamic input is obtained
by a deconvolution with the balance signals of the wind
tunnel test.

The CalibrationMethod

The aim of the calibration is to determine the transfer
function H(s) of the force measurement system by
observing the inputs fc(t) and outputs yc(t) of the
calibration experiments using the formula

H(s) = L(yc(t))

L(fc(t))
. (2)

Theoretically speaking, the transfer function is unique
for a given measurement system. Only one calibration
experiment is sufficient to determine the transfer function.
This has been a common approach in the past, and has been
described in the literature. However, practical applications
indicate that different calibration experiments may result in
different transfer functions, although the differences might
not be very large. In fact, the calibration experiment might
involve unpredictable factors and noise. For example, finite
element analyses (FEA) and knocking experiments have
shown that the vibrations of a model-balance-sting system
involve a series of natural frequencies but only some of them
were excited in a single knock (refer to [16] for details).

Note that the role of a transfer function in a transient
response analysis is similar to using a ruler for length
measurements. That is, a transfer function may be
considered a ruler of the force measurement but the
measurement tool is not exact and all rulers contain errors.
Clearly, the error will be passed on to the final measurement
results in the force recovery process. This type of error is
systematic.
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The problem is that several rulers exists, and any of
them may contain errors. A natural and easy method
is to recover the aerodynamic force from the transfer
functions one by one and use the average as the final result.
However, averaging only removes random errors and not
the systematic errors. This is an interesting finding and is
further discussed in the following section (particularly, see
Table 2 in Section 2). Note that this situation is different
from the situation in which several measurements are made
using an ideal ruler with random errors. In that case, the
error can be almost eliminated if we use the average of the
measurement results.

Therefore, in this study, we suggest conducting a
systematic on-site calibration for every wind-tunnel run
and use a new method, referred to as WCV, to reduce the
systematic errors and improve the measurement accuracy.

Note that calibration experiments are much cheaper than
wind-tunnel tests; therefore, the WCV method will not
result in much additional cost.

The cross-validation here means that all calibration
results (i.e., transfer functions) need to be validated against
each other. For the i-th calibration experiment, the inputs
fc

(i)(t) and outputs yc
(i)(t) determine the transfer function

H(i)(s) (see Formula (2)). For another experiment (e.g.,
j-th), the inputs fc

(j)(t) can be derived from the outputs
yc

(j)(t) and the transfer function determined by the i-th
experiment H(i)(s). We denote the average of the derived
force load as f

(i)
j . Although the input of the j-th experiment

is now derived, in the case of wire-cutting experiment, the
input is considered known because it is easy to obtain from
the weight of the suspended mass, denoted by fj . Therefore,
the difference between the true load fj and the derived load

f
(i)
j can be considered the prediction error. Usually, we use

the relative value εij = f
(i)
j −fj

fj
for further calibration. Thus

we can create a calibration table (see Table 1) that contains
the relative errors of each cross-validation.

The average error identified by the i-th transfer function
μ is defined as εi· = 1

n

∑n
j=1 εij and the standard

deviation of the i-th transfer function is defined as σi =√
1

n−1

∑n
j=1(εij − εi·)2.

Table 1 Cross-validation table for calibration

1© · · · j© · · · n© μ σ

1©⇒ ε11 · · · ε1j · · · ε1n ε1· σ1

· · · · · · · · · · · · · · · · · · · · · · · ·
i©⇒ εi1 εij εin εi· σi

· · · · · · · · · · · · · · · · · · · · · · · ·
n©⇒ εn1 · · · εnj · · · εnn εn· σn

The total average error εtot is further defined as εtot =
1
n
|∑n

i εi·|. Note that the total average error εtot is a key
parameter and it should not be large if this set of transfer
functions is self-consistent (i.e., the results do not conflict
with each other).

After the calibration experiments, the wind tunnel test is
carried out. The aerodynamic force loads, denoted by f̂i ,
can be recovered from the output signals of the force balance
and the previously identified transfer functions H(i)(s), i =
1, 2, · · · , n.

In a simple way, one can use the average value of f̂i

(i = 1, 2, · · · , n) as the final measured force load, i.e., f̂ =
1
n

∑n
i=1 f̂i . However, as mentioned above and demonstrated

in the next section, this method does not reduce the
systematic errors. Therefore, a calibration equation based on
the cross-validation table is defined as follows.

f̂ =
n∑

i=1

f̂i ∗ Wgi ∗ Wli (3)

where Wgi = 1
1+εi· is called the weight of global calibration

and Wli = ln(σi )∑n
j=1 ln(σj )

is called the weight of local fine-

tuning.
In summary, the steps of WCV are as follows.

Step 1. Prior to every wind-tunnel run, perform a series of
wire-cutting calibration experiments to obtain a set
of transfer functions H(i)(s) as rulers.

Step 2. Create a cross-validation table (see Table 1) using
the transfer functions obtained in step 1 and
check its self-consistency according to the total
average of the relative errors εtot. Continue if the
error is consistent; otherwise, perform additional
calibration experiments and return to step 2.

Step 3. Determine the calibration weights, Wgi and Wli ,
for each wire-cutting experiment.

Step 4. Run the wind tunnel test and obtain the signals of
the aerodynamic loading response y(t).

Step 5. Calculate the recovered force load f̂i for every
transfer function.

Step 6. Ensemble the force loads using equation (3) with
the calibration weights obtained in step 3.

The working mechanism behind WCV is presented in the
following section.

The Concept of WCV

Weight of Global Calibration

Suppose we have a set of non-standard (i.e., not ideal) rulers,
and need to measure the distance between two points with
these rulers. Without loss of generality, suppose we have
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five rulers; only the third can provide the exact result (but
it is not known before the measurement) and the first and
second rulers always provide lower measurement values,
e.g., xtick1 = 0.8 ∗ xactual and xtick2 = 0.9 ∗ xactual

respectively. The fourth and fifth rulers always provide
higher measurement values, e.g., xtick4 = 1.1 ∗ xactual, and
xtick5 = 1.2 ∗ xactual respectively. Let the rulers measure
each other for a nominal length of 1 m and we obtain 25
measured values xij . These values are displayed in a cross-
measurement table (see Table 2). In addition, suppose the
actual distance between the two given points is 0.95 m. The
distances measured with the five rulers are quite different;
the results are listed in the last column of Table 2.

Table 2 shows that the measured results may vary
significantly with non-standard rulers. The last column
indicates that averaging the measured values provides a
reasonable result (i.e., 0.9697 in this case). However, the
average distance still has a relative error (2.07%) given that
the actual value is 0.95. Note that the bias of this set of rulers
is symmetric about zero, but the average measurement value
still has a considerable bias.

One can verify that this bias does not change much even
if more rulers are used. For example, the average distance is
0.964 when measured with a set of 41 non-standard rulers:
xtick = k ∗ xactual, k = 0.80, 0.81, 0.82, · · · , 1.19, 1.20. It
is apparent that the error is larger if the bias of the rulers is
asymmetric about zero. All these facts indicate that this bias
is a systematic error, and cannot be removed by repeating
the measurement process. Recall that increasing the number
of calibration experiments results in a larger number of
transfer functions H(i)(s), similar to the larger number of
rulers in this example. This does not help to improve the
measurement accuracy because the average value still has
systematic errors. This motivates us to design a method to
reduce the systematic errors.

First, the measured values in the cross-validation
(Table 2) are normalized to relative errors (see Table 3),

where εij = xij −x∗
j

x∗
j

and x∗
j = 1.0. Then the average of each

row εi· is used for the calibration. If εi· > 0, the values
measured with the i-th ruler are likely (in the sense of

Table 2 Measured values of a nominal distance of 1.0 m for each ruler
and an actual length of 0.95 m with a set of non-standard rulers

0.8 0.9 1.0 1.1 1.2 [0.95]

0.8 1.0000 1.1250 1.2500 1.3750 1.5000 1.1875

0.9 0.8889 1.0000 1.1111 1.2222 1.3333 1.0556

1.0 0.8000 0.9000 1.0000 1.1000 1.2000 0.9500

1.1 0.7273 0.8182 0.9091 1.0000 1.0909 0.8636

1.2 0.6667 0.7500 0.8333 0.9167 1.0000 0.7917

Average 0.9697

average) larger than the actual values. For example, in
Table 3, the errors in the first row are all non-negative
and the average (i.e., 0.25) is positive. This means that the
measurement obtained by the first ruler is always larger.
Therefore, the first ruler 0.8 can be regarded as a shortened
ruler, i.e., its unit width is larger than that of a standard ruler.
Similarly, the fifth ruler 1.2 is a lengthened ruler.

In Table 3, the average of the relative errors 0.0207 is a
small number. This means that the cross-validation results
are self-consistent and this set of rulers is suitable for the
measurements.

Therefore, we suggest using a scaling factor Wgi = 1
1+εi·

to reduce the difference and let the calibrated value be:

x̂calibrated = Wgi ∗ xmeasured.

The scaling factor Wgi reflects the global property of an
individual ruler in the sense of the average. Thus it is
called the weight of global calibration. With the calibration
coefficients Wgi, i = 1, 2, · · · , 5, the measured distances
in the last column of Table 2 can all be calibrated to the
actual value 0.95 in this case. The result indicates that WCV
completely remove systematic errors if the ticks of the rulers
are uniform and the bias of the rulers is symmetric about
zero.

Weight of Local Fine-Tuning

In practical force measurement applications, the situation
might be even worse: the identified transfer function may
not be scaled linearly. This is comparable to an unequal
distribution of the ruler’s tick marks. It is evident that a
nonlinear distribution of the tick marks will result in larger
errors.

If the degree of nonlinearity of a ruler is large,
the relative errors of cross-validation are more scattered
and the measured values are more unreliable. We can
use the standard deviation of the relative errors (σi =√

1
n−1

∑n
j (εij − εi·)2) to represent the nonlinearity degree

of the i-th ruler. It is apparent that the standard deviation
satisfies 0 < σi < 1 and usually 0 < σi < 0.2. In
fact, a large nonlinearity degree means that the measurement
results have more uncertainties and the ruler is unreliable
and should be abandoned. In practical applications, one can
use a small number σ0 (0.2 for instance) as the tolerance
limit so that σi < σ0. Then, if σi ≥ σ0, the ruler (or the
transfer function) is considered invalid and is discarded.

The nonlinearity degree σ can be used to define another
scaling factor Wl to balance the weight of each ruler’s
measured value in the final result. We define

Wli = ln(σi)∑n
j=1 ln(σj )

(4)
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Table 3 Relative errors when
using the non-standard rulers
and the calibrated values of the
actual distance of 0.95 m

0.8 0.9 1.0 1.1 1.2 Calibrated

0.8 0.0000 0.1250 0.2500 0.3750 0.5000 0.2500 0.95

0.9 0.1111 0.0000 0.1111 0.2222 0.3333 0.1111 0.95

1.0 0.2000 0.1000 0.0000 0.1000 0.2000 0.0000 0.95

1.1 0.2727 0.1818 0.0909 0.0000 0.0909 0.0909 0.95

1.2 0.3333 0.2500 0.1667 0.0833 0.0000 0.1667 0.95

7020.0egarevA 0.95

in our applications. Of course, the user may define Wli by
another decreasing function of σi , such that 0 ≤ Wli ≤ 1
and

∑n
i=1 Wli = 1.

The definition of Wli involves a weight scaling function
s(σ ) that determines how quickly the weighting should
decrease with the increase in σ , which is s(σ ) = − ln(σ ) in
equation (4). In fact, equation (4) can be rewritten as Wli =

− ln(σi )∑n
j=1 − ln(σj )

. The scaling factor Wl is called the weight of

local fine tuning because the nonlinear distribution of the
tick marks is a local property of the ruler.

The weight scaling function should be carefully designed
to provide larger weight the better ruler. Several types
of functions including logarithmic, exponential, linear, and
polynomial functions have been considered (Fig. 1). Note
that the parameter σi satisfies 0 < σi < 0.2 in most cases.
Therefore, the scaling function should decrease convexly,
have a significant (e.g., 80%) decrement from 0 to 0.2,
and steadily approach a positive value as σi → 0.2. On
the other hand, keep in mind that Wli is defined only for

local fine tuning, the decrement factor should not be too
large (e.g., s(0.2)/s(0.001) < 5) to avoid over-weighting.
Figure 1 shows that s(σ ) = − ln(σ ) and s(σ ) = e−5σ 0.5

are
good function candidates. The logarithmic function − ln(σ )

is applied in this study for its simplicity (i.e., it does not
involve additional parameters and the minus sign can also
be eliminated).

Suppose the measurement value is a random variable
distributed normally with mean μ and variance σ 2.
According to the empirical rule in statistics, for the
measurement with the i-th ruler (or the i-th transfer
function), the observation lies in the interval [μ − 2σ,μ +
2σ ] with 95.45% confidence. Thus the radius of the
measurement confidence interval (of 95.45%) without local
tuning is r = 2

∑n
j=1 σi . With the weight scaling function

s(σ ), the scaled radius satisfies

r ′ = 2
n∑

i=1

σi · s(σi)/

n∑
j=1

s(σj ).

Fig. 1 Candidates for the
scaling function
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Fig. 2 Division of a sample of
balance signals
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It is apparent that r ′ ≤ r (and r ′ < r in practice) because the
scaling function s(σ ) is a decreasing function. This means
that the weight scaling results in measurement results with
a narrower confidence interval.

Experimental Verifications

Calibration methods are usually verified with historical
data or theoretical formulas of standard test models in the
literature. However, for a high enthalpy wind tunnel, this
verification method may experience difficulties. In fact, the
working conditions (such as the parameters of free stream,
boundary conditions, and measurement system) may differ
from wind tunnel to wind tunnel. Even for the same
test model, test data from different wind tunnels cannot
be directly compared and correlated. For example, it is
common that the actual Mach number and unit Reynolds
number could be quite different in practice although the
nominal Mach number of test flows in two wind tunnels is
the same. Moreover, theoretical formulas of standard test
models are derived using simplifications and assuming the
use of an ideal gas. Actual factors such as the real gas and
viscosity effects are ignored.

In this study, the proposed method is verified by
comparing it with wave system fitting (WSF) [16], which is
a verified method. WSF decomposes the balance signal to
separate the vibration waves using the following model.

x(t) = f +
m∑

i=1

Ai sin(2πωit + ϕi) + ε. (5)

where the first term f (aerodynamic force) is a constant
and represents the direct current (DC) component of the
signal, the second part represents the low-frequency signals,
and the last term ε contains high-frequency signals and
random noise. The parameter m in equation (5) is a
choice for the number of low frequency waves to be
removed. The amplitudes Ai , frequencies ωi , and initial
phases ϕi are computed by a global optimization algorithm.
WSF separates and removes low-frequency vibration waves
without influencing the DC component and it not affected
by the completeness of the cycle of the sample signal.

Note that both WCV and WSF compute the target
aerodynamic force with balance signals from the same wind

tunnel tests. Thus the working conditions are the same
and the results have better comparability than those from
different wind tunnels.

More specifically, the proposed method is verified with
experiments conducted in the JF-12 shock tunnel [17]. This
is a detonation-driven wind tunnel, capable of duplicating
pure airflow conditions of Mach numbers 5 to 9 at altitudes
from 25 to 50 km with a test duration of more than 100
ms; this shock tunnel was developed by Jiang et al. [17].
Due to the relatively long test duration, in addition to the
impact-response dominated signals, the test signal curve of
the JF-12 shock tunnel includes an extra part of the periodic
signals of natural vibration (see Fig. 2). The periodic signals
are more informative and thus easier to analyze, and were
investigated in our previous studies [15, 16]. The results
are reliable and the accuracy is within 2%. This gives us
the opportunity to evaluate the performance of the proposed
WCV method.

In this study, only the first part of the balance signal is
used to calculate the target force using the WCV method.
The second part is used for the verification of the WCV’s
performance (see Fig. 2).

The test model is a sharp cone of 10 degree half-angle
with length 750 mm. The support system and the strain
gauge balance are the same as in References [16] and [15].
For detailed schematic of the test model and sensor, we refer
the readers to [15].

Three wind tunnel experiments were carried out; the
working conditions include the angle of attack α, total
temperature T0, total pressure P0, and Mach number M are
listed in Table 4.

Linearity Verification of the Force Measurement
System

Before applying the proposed WCV method, it must be
confirmed that the dynamics of the measurement system

Table 4 Working conditions of the three wind tunnel tests

Shot no. α (degree) T0 (K) P0 (MPa) M

#20150428 5.2 1889 2.38 7.05

#20150430 5.2 2336 2.34 7.06

#20150507 13.8 2338 2.44 7.04
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is linear. The structural joints and boundary supports may
affect its linearity [19]. Therefore, further investigations are
required to confirm the linearity of the dynamics.

Two kinds of experiments were carried out to perform
the transient response analysis: hammer knocking and wire
cutting (Fig. 3). The hammer knocking tests are used for
a qualitative analysis to verify the linearity of the force
measurement system and the wire-cutting experiments are
used for a quantitative analysis to determine the transfer
function of the system for the force measurement.

The hammer knocking test is used to simulate an impulse
input signal. However, it is far from a perfect impulse,
which makes it difficult to determine the transfer function.
In this study, a global optimization algorithm, i.e., low-
dimensional simplex evolution [18], is used to determine
the coefficients of the transfer functions. The optimization
model is as follows.

min
ai ,bj ,n

∥∥∥y(t) − y
Ĥ(s)

(t)

∥∥∥

where ai , bj , and n are the coefficients of the transfer
function Ĥ (s) to be determined as in equation (1).

A series of knocking tests were performed. The first 3
knocks are in the axial direction, the next 3 knocks are in
the normal direction, and the last 3 knocks are in lateral
direction (Fig. 3(a)). The optimization results show that a
fifth-order transfer function fits the axial response, and a
sixth-order function fits the normal and lateral responses.
Increasing or reducing the order of the transfer function
results in larger fitting errors. The cross-prediction results
(Fig. 4) also confirm these findings. Thus the conclusion
is that the dynamics of the force measurement system in
the JF-12 is linear, and has a fifth-order function in axis
direction, and sixth-order functions in normal and side
directions.

Calibration Experiments inWind Tunnels

Note that the results of the hammer knocking inevitably
involve human factors. For example, it is very difficult for a
person to execute a perfect knock normal to the test model
in exactly the same manner for each test. Therefore, hammer
knocking is used only for a qualitative analysis. In con-
trast, the results of the wire-cutting experiments are more

Fig. 4 Cross-prediction results of knocking tests

objective and we use them for the quantitative measure-
ments and calibrations. Theoretically, the proposed WCV
method can be used to calibrate the measurement of six-
degree-of-freedom forces. Note that the aim is to test the
effectiveness of WCV. Therefore, the most reliable result,
i.e., the normal force, is used for method verification. Only
normal forces are considered in this section for method
verification.

Prior to each wind tunnel experiment, six wire-cutting
experiments are conducted with two different suspended
weights (1 kg and 6.5 kg, see Fig. 3(b)). The resulting
signals of the balance outputs are shown in Fig. 5(a). Six
transfer functions were identified by integral transformation
with the step inputs and balance outputs of the wire-cutting
experiments. The relative errors εij are obtained by cross-
validation and are listed in Table 5, where the vertical

component of the weights f ∗
j is known and εij = f

(i)
j −f ∗

j

f ∗
j

. In

Fig. 3 Experimental settings for
the linearity verification. The
Arabic numerals denote the test
numbers and the knocking in
different directions (left) or
using different mass weights
(right)
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Fig. 5 Balance signals of the
impact response

Table 5, the errors in the first row are all non-positive and the
average (−0.1042) is negative. This means the prediction
based on the transfer function obtained from the first wire-
cutting experiment always results in a lower value than the
actual value. Therefore, the transfer function H(1)(s) can
be regarded as a lengthened ruler. Similarly, the transfer
function determined by the third wire-cutting experiment
H(3)(s) can be regarded as a shortened ruler.

The key parameter, the total average of relative errors
is 0.0049 (Table 5). It is small enough to indicate that the
cross-validation results are self-consistent and this set of
rulers (i.e., transfer functions) can be used for the wind-
tunnel measurement.

For the first two shots (i.e., #20150428 and #20150430),
the angles of attack are the same (α = 5.2 degree) and the
model-balance-sting system remains unchanged. Therefore,
the transfer functions of the impact response should be
identical and the two shots can share the same calibration
table. For the third wind-tunnel run (#20150430), the angle
of attack is changed to 13.8 degrees. The calibration
experiments are conducted separately and the calibration
table is reconstructed (omitted here).

After the determination of the transfer functions, the
wind tunnel experiment is conducted. The balance signal is
divided into two parts as shown in Fig. 2; the first part (0
to 50 ms in this study) is impact-response dominated and

Table 5 Table of cross-validation for calibration

1© 2© 3© 4© 5© 6© μ σ

1©⇒ 0 −0.1193 −0.182 −0.1335 −0.1536 −0.0368 −0.1042 0.0707

2©⇒ 0.1345 0 −0.0708 −0.016 −0.0388 0.0939 0.0171 0.0799

3©⇒ 0.2214 0.0758 0 0.0591 0.0346 0.1773 0.0947 0.0861

4©⇒ 0.1538 0.016 −0.0561 0 −0.0232 0.1117 0.0337 0.0816

5©⇒ 0.1811 0.0401 −0.0337 0.0236 0 0.1378 0.0582 0.0834

6©⇒ 0.0379 −0.086 −0.1508 −0.1004 −0.1212 0 −0.0701 0.0733

Average 0.1215 −0.0122 −0.0822 −0.0279 −0.0504 0.0807 0.0049 0.0792
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Table 6 Predicted normal forces of wind-tunnel runs with the transfer
functions obtained from wire-cutting experiments (Unit: Newton)

Shot #20150428 Shot #20150430 Shot #20150507 Average

f̂1 96.82 98.69 288.79

f̂2 109.11 101.03 291.43

f̂3 97.1 88.78 334.68

f̂4 99.89 85.52 319.00

f̂5 95.28 97.74 300.55

f̂6 102.54 104.53 300.78

f̂ 100.38 96.66 305.41

fref 107.5 102 288.94

Error −6.63% −5.23% 5.70% 5.85%

second part (50 to 160 ms) is natural-vibration dominated.
They are analyzed separately as follows.

The first part is used to calculate the aerodynamic forces
using WCV. With the transfer functions obtained from
the wire-cutting experiments H(i)(s) (i = 1, 2, · · · , 6),
it is easy to compute the average of the force inputs f̂i

by deconvolution. The results are listed in Table 6. The
calibrated force f̂ is then calculated using equation (3). In
Table 6, it is observed that the recovered force ranges from
95.28 N to 109.11 N for Shot #20150428, from 85.52 N to
104.53 N for Shot #20150430, and from 288.79 to 334.68
for Shot #20150507 if we use a conventional transient
response analysis method. The uncertainty relative errors
are 12.9%, 18.6%, and 15.0% respectively.

The second part contains periodic signals and is more
informative. It is analyzed by the WSF method (for details,
see Ref. [16]) and the fitted aerodynamic force is used as
the reference value fref to evaluate the performance of WCV
(shown in Table 6).

The errors of the WCV calibrated values are −6.63%,
−5.23%, and 5.70% respectively. The average of the
absolute errors is 5.85% (see the last row of Table 6). The
accuracy is acceptable for practical engineering applications
and is much smaller than the uncertainty relative errors.

Discussion

The proposed WCV method is designed to calibrate force
measurements for general impulse facilities; this method
is suitable for situations when neither steady signals nor
periodic signals are available. The shock tunnel JF-12 with a
relatively long test time was used to test the performance of
the WCV method. It is worth noting that the WCV method
is also useful for the JF-12 shock tunnel or other impulse
facilities with relatively long test times. In fact, the JF-12

data contain an additional part of the periodic signals of
natural vibration only for normal-sized test models. For
large/heavy models (e.g., larger than 4 m and heavier than
500 kg), the periodic signals are not available and the impact
signals must be used to recover the aerodynamic forces.

Although the WCV method is originally proposed for
aerodynamic force measurements of hypersonic vehicles
in impulse facilities, the concept of the WCV method is
general and is applicable to other indirect measurement
problems that require the reduction of systematic errors,
especially when no exact/standard measurement tools are
available; examples include the indirect measurement of
thermal conductivity in silicon nanowires [20] and soot
size distributions in compression ignition engines [21].
The workflow is the same: obtain a set of rulers (not
necessarily transfer functions) by conducting a series of
calibration experiments, create a cross-validation table of
relative errors, and assign the measurement result of each
ruler a proper weight based on the cross-validation table (see
equation (3)).

Conclusion

A calibration method to reduce the systematic errors,
weighting by cross-validation (WCV), for force measure-
ments via transient response analysis has been proposed. In
the WCV method, a series of on-site calibration experiments
are performed, and a cross-validation table of relative mea-
surement errors is created. The aerodynamic force is then
calibrated using the average and standard deviation of the
cross-validation errors. The identified transfer functions are
cross-validated against each other to determine the weight
of each calibration experiment. The calibration experiments
are much cheaper than wind-tunnel tests and do not result in
much additional cost.

The working mechanism of the WCV method is demon-
strated by using the analogy of obtaining measurements
with a set of non-standard rulers. This differs from the situ-
ation in which several measurements are obtained using an
ideal ruler with random errors. In the latter case, the error
can be nearly eliminated if the average of the measurements
is used.

The effectiveness of WCV has been verified by the signal
analysis of tests conducted in the JF-12 shock tunnel. Due
to the relatively long test duration, the test signal curve
includes an additional set of periodic signals of natural
vibration in addition to the impact-response dominated
signals. The periodic signals are much more informative
when the WSF is used for the analysis. This provides us
an opportunity to evaluate the performance of the proposed
WCV method. Our results indicate that WCV improves the
measurement accuracy significantly.
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Although the WCV method is originally proposed for
aerodynamic force measurements of hypersonic vehicles
in impulse facilities, the concept of the WCV method is
general and is applicable to other indirect measurement
problems to reduce systematic errors. Research is underway
to use WCV in other applications.

Acknowledgments This work has been supported by the National
Natural Science Foundation of China (Grant No. 11532014).

References

1. Laurence SJ, Butler CS, Martinez Schramm J, Hannemann K
(2018) Force and moment measurements on a free-flying capsule
in a shock tunnel. J Spacecr Rocket 55(2):403–414

2. Meng B, Han G, Luo C, Jiang Z (2018) Numerical investigation
of the axial impulse load during the startup in the shock tunnel.
Aerosp Sci Technol 73:332–342

3. Qiu H, Min F, Zhong S, Song X, Yang Y (2018) Hypersonic
force measurements using internal balance based on optical
micromachined Fabry-Perot interferometry. Rev Sci Instrum
89(5):035004

4. Jessen C, Groenig H (1989) A new principle for a short-duration
six component balance. Exp Fluids 8(3–4):231–233

5. Joshi MV, Reddy NM (1986) Aerodynamic force measurements
over missile configurations in IISc shock tunnel at M∞ = 5.5.
Exp Fluids 4(6):338–340

6. Raju C, Reddy NM (1990) Aerodynamic force measurements over
missile configurations in IISc shock tunnel at M∞ = 3.85 and
9.15. Exp Fluids 10(2):175–177

7. Naumann KW, Ende H, Mathieu G, George A (1993) Millisecond
aerodynamic force measurement with side-jet model in the ISL
shock tunnel. AIAA J 31(6):1068–1074

8. Tanno H, Komuro T, Sato K, Fujita K, Laurence SJ (2014) Free-
flight measurement technique in the free-piston high-enthalpy
shock tunnel. Rev Sci Instrum 85:045112

9. Simmons JM, Sanderson SR (1991) Drag balance for hyperveloc-
ity impulse facilities. AIAA J 29(12):2185–2191

10. Smith AL, Mee DJ, Daniel WJT, Shimoda T (2001) Design,
modelling and analysis of a six component force balance for
hypervelocity wind tunnel testing. Comput Struct 79(11):1077–
1088

11. Mee DJ (2003) Dynamic calibration of force balances for impulse
hypersonic facilities. Shock Waves 12(6):443–455

12. Satheesh K, Jagadeesh G (2009) Analysis of an internally
mountable accelerometer balance system for use with non-
isotropic models in shock tunnels. Measurement 42(6):856–862

13. Vadassery P, Joshi DD, Rolim TC, Lu FK (2013) Design and
testing of an external drag balance for a hypersonic shock tunnel.
Measurement 46(7):2110–2117

14. Pallekonda RB, Nanda SR, Dwivedy SK, Kulkarni V, Menezes
V (2018) Soft computing based force recovery technique for
hypersonic shock tunnel tests. Int J Struct Stab Dyn 18(5):1871004

15. Wang Y, Liu Y, Luo C, Jiang Z (2016) Force measurement using
strain-gauge balance in a shock tunnel with long test duration. Rev
Sci Instrum 87:055108

16. Luo C, Wang Y, Wang C, Jiang Z (2015) Wave system fitting: a
new method for force measurements in shock tunnels with long
test duration. Mech Syst Signal Process 62–63:296–304

17. Jiang Z, Yu H Experiments and development of Long-test-duration
Hyper velocity Detonation-driven Shock Tunnel (LHDst), AIAA
Paper, 2014-1012

18. Luo C, Yu B (2012) Low dimensional simplex evolution: a new
heuristic for global optimization. J Glob Optim 52(1):45–55

19. Lin RM, Ng TY (2018) A new method for the accu-
rate measurement of higher-order frequency response func-
tions of nonlinear structural systems. ISA Trans. Online first.
https://doi.org/10.1016/j.isatra.2018.05.015

20. Pennelli G, Nannini A, Macucci M (2014) Indirect measurement
of thermal conductivity in silicon nanowires. J Appl Phys
115:084507
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