
AIP Advances 9, 085203 (2019); https://doi.org/10.1063/1.5100300 9, 085203

© 2019 Author(s).

Behavior of a liquid drop in a rounded
corner: Different contact angles 

Cite as: AIP Advances 9, 085203 (2019); https://doi.org/10.1063/1.5100300
Submitted: 16 April 2019 . Accepted: 24 July 2019 . Published Online: 05 August 2019

Zhiyi Han (韩志一) , Li Duan (段俐), and Qi Kang (康琦)

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

A low cost and large-scale synthesis of 3D photonic crystal with SP2 lattice symmetry
AIP Advances 9, 085206 (2019); https://doi.org/10.1063/1.5113549

Accelerating terahertz all-optical modulation by hot carriers effects of silver nanorods in
PVA film
AIP Advances 9, 075017 (2019); https://doi.org/10.1063/1.5098386

Selectorless resistive switching memory: Non-uniform dielectric architecture and
seasoning effect for low power array applications
AIP Advances 9, 075119 (2019); https://doi.org/10.1063/1.5097233

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/922521658/x01/AIP/HA_ADV_PDF_AQS_2019/HA_ADV_PDF_AQS_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.5100300
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=adv
https://doi.org/10.1063/1.5100300
https://aip.scitation.org/author/Han%2C+Zhiyi
http://orcid.org/0000-0002-7672-4801
https://aip.scitation.org/author/Duan%2C+Li
https://aip.scitation.org/author/Kang%2C+Qi
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=adv
https://doi.org/10.1063/1.5100300
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5100300
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5100300&domain=aip.scitation.org&date_stamp=2019-08-05
https://aip.scitation.org/doi/10.1063/1.5113549
https://doi.org/10.1063/1.5113549
https://aip.scitation.org/doi/10.1063/1.5098386
https://aip.scitation.org/doi/10.1063/1.5098386
https://doi.org/10.1063/1.5098386
https://aip.scitation.org/doi/10.1063/1.5097233
https://aip.scitation.org/doi/10.1063/1.5097233
https://doi.org/10.1063/1.5097233


AIP Advances ARTICLE scitation.org/journal/adv

Behavior of a liquid drop in a rounded corner:
Different contact angles

Cite as: AIP Advances 9, 085203 (2019); doi: 10.1063/1.5100300
Submitted: 16 April 2019 • Accepted: 24 July 2019 •
Published Online: 5 August 2019

Zhiyi Han (韩志一),1,2 Li Duan (段俐),1,2,a) and Qi Kang (康琦)1,2

AFFILIATIONS
1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road, Beijing, 100190,
China

2School of Engineering Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing,
100049, China

a)Corresponding author e-mail address: duanli@imech.ac.cn

ABSTRACT
The Concus-Finn condition, based on the local microscopic contact angle, can be used to predict discontinuous behavior of a liquid drop
in an ideally sharp corner. However, since ideally sharp corners do not exist in reality, it is important to understand the effect of rounded
corners on the behavior of liquid drops. In this paper, we use theoretical calculations to study the behavior of two-dimensional liquid drops in
rounded corners, including the case in which the contact angles on the two sides of the corner may differ. A new discontinuous behavior was
discovered in our study, which is different from the case in sharp corners. Comparing the situation in sharp corners, our study shows that the
behavior of a drop in a rounded corner depends on the dimensionless volume of the drop, in addition to its dependence on the opening angle
and contact angles that is covered by the Concus-Finn condition. We also use energy-minimization approach to successfully explain why this
discontinuous behavior occurs in rounded corners.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5100300., s

I. INTRODUCTION

Wetting behavior is a field at the intersection of fluid mechan-
ics, statistical physics and physical chemistry.1,2 It plays an important
role in a variety of applied processes such as the control of fluid
transport,3 the design of devices for filtering or sensing,4 industrial
coatings,5 and designing biomimetic superhydrophobic surface.6

Fine details of the wetting behavior of a nano-drop can be obtained
by using molecular dynamics simulation.7,8 The wetting process on a
solid surface has also supplied researchers with a valuable model sys-
tem to study a number of interesting fluid problem.9–13 Also, shape
reconfiguration is central to emerging applications that exploit the
physics of liquids confined by surface tension on the microscale. Sur-
face tension largely determines the surface shape on scales smaller
than the capillary length. In space applications, the capillary length
for a liquid against vapor can be 100cm, whereas it is usually a few
millimeters on Earth.14

Interior corners are common constructs employed in space-
craft fluids systems to passively control large length scale capillary-
dominated liquid in a desired manner.15,16 The behaviors of a liquid

drop in a sharp corner have been previously explored by Concus
and Finn, together with their collaborator17–21 (see Ref. 20 or Ref. 21,
for example, for a summary of their works). And the Concus-Finn
condition can be used to determine the behavior of the droplet in
the corner, based on the local microscopic contact angle, which can
then be used to determine optimal angle to promote liquid manage-
ment.22 The equilibrium morphology and position of a liquid drop
inside a corner under different wettability conditions has been stud-
ied analytically,23 numerically20 and experimentally,24 which shows
the shape of the drop in a corner is a portion of a sphere.

The Concus-Finn condition firstly published by Concus and
Finn17 states that the surface of the liquid drop in a sharp corner
with opening angle 2α is unbounded for:

α + θ <
π
2

(1)

where θ is the contact angle. In other words, there is no equilibrium
free surface of liquid drop existing for this condition given by Eq. (1).
For the case where α + θ > π/2, there exists an equilibrium free sur-
face in a sharp corner. Several years later, Concus and Finn applied

AIP Advances 9, 085203 (2019); doi: 10.1063/1.5100300 9, 085203-1

© Author(s) 2019

https://scitation.org/journal/adv
https://doi.org/10.1063/1.5100300
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5100300
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5100300&domain=pdf&date_stamp=2019-August-5
https://doi.org/10.1063/1.5100300
https://orcid.org/0000-0002-7672-4801
mailto:duanli@imech.ac.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5100300


AIP Advances ARTICLE scitation.org/journal/adv

FIG. 1. The Concus-Finn diagram (modified from19,21): regions in parameter space
corresponding to different behaviors at a sharp corner with opening angle 2α.

their earlier derivations to a corner region for the case in which the
contact angles on the two sides of the corner have different values.19

New boundary conditions were developed that incorporate the dif-
ference in contact angle between the two solid surfaces of the corner.
These conditions were represented graphically as seen in Fig. 1. In
this figure, the horizontal axis and the vertical axis represent the val-
ues of the contact angle for each surface, θ1 and θ2, respectively. The
rectangle R in the θ1-θ2 plane cuts off triangular regions D+

1 , D−1 ,
D+

2 , D−2 in the π × π square, as indicated. For the points lying in

the region R, which is inclined across the square π × π area where
π − 2α < θ1 + θ2 < π + 2α and |θ1 − θ2|<π − 2α, the liquid drop is
a blob in the shape of a portion of a sphere in contact with the edge
(the vertex of the sharp corner). For the points lying in the region of
D+

1 where θ1 + θ2 < π − 2α, the liquid drop can’t remain as a blob in
the edge and will spread arbitrarily far along the edge (spread out to
infinity in the edge). For the points lying in the region of D−1 where
θ1 +θ2 > π+ 2α, the liquid drop forms a spherical bridge. By the way,
Luo et al.25 have got the same result during investigating a stable
intermediate wetting state of a water drop being placed on a corner.
For the points lying in the region of D+

2 where θ2 − θ1 > π − 2α and
D−2 where θ1 − θ2 < π − 2α, the drop forms a spherical cap con-
tacting only one of the solid surfaces (resting on a single surface)
of the sharp corner and the another solid surface being contacted
in a vacuous sense.21 Those phenomena can be illustrated by some
representative configurations in Fig. 2.

The Concus-Finn condition is universal for various system
geometries, providing they have ideally sharp corners. And the
behavior of a liquid drop in a sharper corner has been studied exten-
sively, including the dynamics of drop migration,26–28 the effect
of contact angle hysteresis29–36 and wetting or dewetting behav-
ior in corners.37,38 However, due to either design or fabrication,
the interior corners are not perfectly sharp but rather possess a
degree of roundedness. Also, the impact of corner imperfections
such as corner roundedness has not been fully characterized analyt-
ically.15 Actually, even slight roundedness can prevent the spread-
ing of liquid drops in otherwise wettable corners, so it is critical to
systematically and quantitatively analyze the impact of the degree of
roundedness on wetting behavior.

FIG. 2. Representative configurations
for varying contact angle data (modified
from20,21).
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The behavior of a liquid drop in a rounded corner has been
explored preliminarily in the case of θ < π/2 − α, which shows
that the spreading of the drop stops at a finite length and does not
proceed indefinitely.39 And the spreading of the droplet is strongly
influenced by the smoothness of the corner.40

In this paper we focus on the behavior for equilibrium con-
figurations of liquid drops in rounded corners considering that the
contact angle varies from 0 to π, including the case when the con-
tact angles on the two sides of the corner are different. Our goal is to
illustrate the behavior of a drop in a rounded corner by using rele-
vant examples to show the differences and connections between the
situation in a rounded corner and in a sharp corner. In addition, our
study focuses on two-dimensional drops due to the complexity of
the equilibrium morphology of three-dimensional drops exposed to
rounded corners. There are still many wetting phenomena in some
two-dimensional structures.23,41,42 The restriction to 2D simplifies
the problem and is the first step towards understanding the influence
of spatial situation.

II. BEHAVIOR OF A DROP IN A ROUNDED CORNER
A. Discontinuous behavior of a 2D drop in a rounded
corner

Small changes in contact angle, geometry or volume of the drop
can result in large changes, possibly discontinuous, of the equilib-
rium fluid configuration, which is called discontinuous behavior.20

The gravity is absent or can be neglected, which is the situation we
discuss here. Based on the classical Young equation for an equi-
librium free surface of a liquid drop in contact with solid support
surfaces, a new discontinuous behavior has been discovered in our
work.

As illustrated in Fig. 3, for simplicity, a rounded corner is
defined by a circle of radius r that is smoothly connected to the walls
of the corner (the walls are tangent to the circle at the connection
point). We use solid surface 1 and solid surface 2, respectively, to
denote the left side solid surfaces and right side solid surfaces of the
rounded corner. The solid surface 1 (blue) consists of straight wall 1
and rounded wall 1. Also, the solid surface 2 (red) consists of straight

FIG. 3. A rounded corner with two different substrates (two different solid surfaces),
which consist of straight walls and rounded walls. The rounded walls smoothly
connected to the straight walls.

wall 2 and rounded wall 2. We let θ1 represent the equilibrium con-
tact angle on the solid surface 1 and use θ2 to stand for the one on the
solid surface 2. In addition, we assume that the walls are isotropic,
smooth substrates without hysteresis.

The interfacial energy of the system, E, is given by

E = σSlv + (σsl1 − σsv1)Ssl1 + (σsl2 − σsv2)Ssl2 (2)

In this equation, we let σsl1 represent solid-liquid interfacial
tension on the solid surface 1 and use σsl2 stand for the one on the
solid surface 2. Also, we use σsv1 and σsl2 to represent the solid-vapor
surface tension of these two solid surfaces, respectively. And Ssl1 and
Ssl2 are the solid-liquid interfacial areas of these two solid surfaces,
respectively. Additionally, σ and Slv are liquid-vapor surface tension
and area of the liquid-vapor free surface, respectively.

A stable equilibrium configuration occurs when the interfacial
energy E minimizes, under the condition of fixed liquid volume V.
The volume V enclosed by the capillary surface is held constant:

V[x] ≡ ∫
V

dV = C (3)

We can treat the volume-conservation constraint as an auxiliary
condition by introducing the Lagrange multiplier μ into an aug-
mented functional,

F[x] = E[x] − μ ⋅ V[x] (4)

The surface equilibrium conditions arise from the first varia-
tion of the energy functional. The first variation of the augmented
functional to be zero δF = 0 is the same as the one of the energy
functional δE = 0 because of the volume-conservation constraint δV
= 0. The equilibrium condition requiring δE = 0, but to obtain the
stability condition we also need δ2E > 0. The equilibrium free sur-
faces so determined are surfaces of constant mean curvature meeting
the solid surfaces with contact angle. Usually, these free surfaces of
liquid drops exposed to rounded corner constraints in three dimen-
sional space are very complex. But in two dimensions, it is possible
to derive an analytical expression of the energy minimum. We note
that at given fixed liquid volume, a plethora of solutions exists, each
formed with liquid-vapor interfaces having constant curvature – that
is, a simple circular arc, in the plane – satisfying the Young equation
at the solid surfaces. In this 2D geometry, discontinuous behavior
occurs when |θ1 − θ2| exceeds a critical value. Fig. 4 is a special exam-
ple to show this discontinuous change in behavior. As illustrated in
Fig. 4(a), a tiny change in θ1 results in a tiny change of the equilib-
rium configuration if |θ1 − θ2| doesn’t exceed a critical value, which
is called continuous behavior. Otherwise, a tiny change in θ1 results
in a large change of the equilibrium configuration if |θ1 − θ2| exceeds
a critical value, which is also means discontinuous behavior, as illus-
trated in Fig. 4(b). Finally, the drop only contacts the solid surface 2
and the solid surface 1 is contacted in a vacuous sense.

B. Liquid bridge in a rounded corner
We also found conditions under which an equilibrium circu-

lar bridge in a 2D rounded corner would be possible in zero gravity
(Fig. 5). The shape of the drop is a truncated disk. To maintain a liq-
uid bridge with circular morphology, the drop should only contact
the straight walls, not the rounded walls. Once the drop contacts the
rounded walls, the liquid bridge with circular morphology cannot
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FIG. 4. (a) Continuous behavior: a tiny increment of θ1(δθ1),
results in a tiny displacement of contact line (δx). (b) Discon-
tinuous behavior: a tiny increment of θ1 results in a large
displacement of contact line.

exist. We assume that the radius of the truncated disk in Fig. 5 is R.
The volume V of the drop confined between the straight walls is:

V = (θ1 + θ2 − π − sin θ1cos θ1 − sin θ2cos θ2)R2 (5)

To maintain an equilibrium liquid bridge in a rounded corner,
the drop only contacts the straight walls, not contacts the rounded
walls, which means the geometrical relationships in Fig. 5 must be
satisfied. We have:

rcotα + Rsin θ2 < −Rcos θ2cotα2 (6)

because
α1 + α2 = 2α (7)

sinα1 =
−R cos θ1

l
(8)

sinα1 =
−R cos θ2

l
(9)

FIG. 5. An equilibrium liquid bridge in a rounded corner. The drop only contacts
the straight walls, not contacts the rounded walls.

So we get:

cotα2 =
cos θ1 + cos θ2cos 2α

cos θ2sin 2α
(10)

Substitute Eq. (10) into Eq. (6) and we have:

R
r
> −

2cos2α
cos θ1 + cos θ2cos 2α + sin θ2sin 2α

(11)

Substitute Eq. (11) into Eq. (5) and we have:

V ≥ (θ1+θ2 − π − sinθ1cosθ1 − sinθ2cosθ2)

× [
2cos2α

cos θ1 + cos θ2cos 2α + sinθ2sin2α
]

2

r2 (12)

Which is the condition to maintain an equilibrium circular bridge in
a 2D rounded corner.

By the way, in 3D space, the shape of the drop is a trun-
cated sphere because the spherical morphology is only possible if
the drop can maintain a stable liquid bridge in a corner.20,23 Simi-
larly, to maintain an equilibrium spherical bridge in a 3D rounded
corner also requires the drop only contacting straight walls. The
corresponding condition becomes:

V ≥
π
3
(cos3θ1 − 3 cos θ1 + cos3θ2 − 3 cos θ2)

× [
2 cos2α

−cos θ1 − cos θ2 cos 2α − sin θ2sin 2α
]

3

r3 (13)

If the volume V tends to infinity, both Eq. (12) and Eq. (13) will be
reduced to θ1 + θ2 > π + 2α, which is also the condition to form a
stable liquid bridge in a sharp corner.19,21

C. Boundary conditions of regions in π × π square
The behavior of a drop in a rounded corner depends on the

radius of rounded corner and on the volume of the drop, in addi-
tion to its dependence on the opening angle and contact angles
that is covered by the Concus-Finn condition.39 In two dimen-
sions, in order to decrease the number of parameters in the Eq. (2),
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the dimensionless volume of drop is defined as V∗ = V/r2. And
the dimensionless interfacial energy, E∗, defined by the following
equation, will be used

E∗=
E
σr

= S∗lv - S
∗

sl1cosθ1 - S∗sl2cosθ2 (14)

Where S∗lv = Slv/r, S∗sl1 = Ssl1/r, S∗sl2 = Ssl2/r, cosθ1 = (σsv1 −

σsl1)/σ and cosθ2 = (σsv2 − σsl2)/σ, by the Young equation. Theo-
retical results of drop position and morphology can be obtained by
minimizing E∗ under the condition of fixed drop volume V∗. Com-
bined with the conditions for forming the liquid bridge in a rounded

FIG. 6. Regions in parameter space cor-
responding to different behaviors at a
rounded corner with opening angle 2α
and dimensionless volume V∗. (a) α =
π/4; (b) α = π/3. The dimensionless vol-
ume V∗ = 10000, 10, 3.5, π, 1. The
black dashed lines in every parameter
space represent Concus-Finn condition,
just like the thick solid lines in Fig. 1.
And the red solid lines represent bound-
ary conditions of different behaviors in a
rounded corner.
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FIG. 7. Limiting configuration of D−2 when V∗ = 1, θ1 > θ2 = 152.46○, the drop
only contacts the rounded wall 2.

corner (Eq. (12)), we can get new boundary conditions about differ-
ent behaviors, which is represented graphically as seen in Fig. 6.

The results in Fig. 6 are very different from the results in Fig. 1.
We use R̃ instead of R because the region R̃ in Fig. 6 is no longer a
rectangle. From Fig. 6, we can see when the dimensionless volume of
the drop is very large, for example, V∗ = 10000, the behavior of the
drop in rounded corner is similar to the one in sharp corner, except
there is no region of D+

1 because only in the case θ1 = 0 or θ2 = 0 will
the drop spread indefinitely along a rounded corner. We can also
image if V∗ → ∞, the boundary conditions of different behaviors
are reduced to the Concus-Finn condition. With the decrease of V∗,
the region D−1 is shrunk and the regions D+

2 , D−2 are enlarged. The
regionsD+

2 ,D−2 in Fig. 6 indicates that discontinuous behavior occurs
since |θ1 − θ2| exceeds a critical value, as illustrated in Fig. 4(b). In
a sharp corner, this critical value is π − 2α, which is one of results
that Concus-Finn has already got21 as aforementioned in Section I.
But in a rounded corner, this critical value depends not only on the
opening angle 2α, θ1 and θ2, but also on the dimensionless volume
V∗. The region D−1 will disappear when V∗ decreases to π. If V∗

< π, for example, V∗ = 1, the regions D+
2 , D−2 are further enlarged

and they border each other, as shown the last graph in Fig. 6(a) and
Fig. 6(b). This is because when θ1 or θ2 is sufficiently large, a tiny
difference between θ1 and θ2 can cause the little drop to contact only
one solid surface of the corner. An example of these drop configura-
tions is shown in Fig. 7. Strictly speaking, the drop only contacts the
rounded wall 2.

III. ENERGY PROFILES
We can compute directly the extremum of interfacial energy

at a given droplet volume, opening angle and contact angles for a
rounded corner. Sometimes we can only get a minimum of E∗ when
δE∗ = 0. And sometimes we can obtain three extrema of E∗ when
δE∗ = 0, which means there are triple equilibrium states. In these
three extrema of interfacial energy, two of them are minimums (δ2E
> 0) and one is maxima (δ2E < 0). Otherwise, only one minimum of
interfacial energy can be obtained. Fig. 8 shows a special example of
drop configurations when three extrema can be obtained.

All configurations in Fig. 8 meet contact angle conditions and
have constant mean curvature surfaces, which means they all satisfy

FIG. 8. Three equilibrium configurations: (a) A stable equilibrium configuration
with minimum of energy. (b) An unstable equilibrium configuration with maxima
of energy. (c) A stable equilibrium configuration with minimum of energy.

the local balance of forces. Fig. 8(a) illustrates a stable equilibrium
position of the drop when the energy minimum is obtained. We can
see that the contact line on the left is on the straight wall 1. Fig. 8(b)
illustrates an unstable equilibrium position when the energy maxi-
mum is obtained. We can see that the contact line on the left is on
the rounded wall 1. Fig. 8(c) illustrates another stable equilibrium
position when the other energy minimum is obtained. We can see
that the contact line on the left is at the boundary between rounded
wall 1 and rounded wall 2, therefore the drop only contacts the solid
wall 2. Both configurations in Fig. 8(a) and Fig. 8(c) correspond to
a stable equilibrium. Between these two positions, there exists an
unstable equilibrium (Fig. 8(b)) with a maximum of energy. Both the
energetic approach and the one based on the balance of forces show
that sometimes a rounded corner wall can result in triple equilibrium
states.

We investigate the energy profile numerically for a given fixed
volume and opening angle as a function of θ1 (or θ2) to indi-
cate that there is a region where three extrema exist as illustrated
in Fig. 9. And we can see the Energy minimum 1 monotonically
increases with θ1 until θ1 reaches a critical value (in Fig. 9, this crit-
ical value is 105.75○) where the energy is discontinues and decrease
suddenly. Beyond this value, the energy is constant. In fact, dis-
continues behavior occurs when θ1 exceeds this value. Since θ2 is
constant in Fig. 9, we can assert that discontinues behavior occurs if
|θ1 − θ2| exceeds a critical value just as same as the one aforemen-
tioned in Section II. Now we can say that discontinuous behavior is
accompanied by discontinuous changes in energy while continuous
behavior is accompanied by continuous changes in energy. If θ1 is
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FIG. 9. Total interfacial energy E∗ as a function of θ1, for a given θ2 = 45○,
α = 45○, V∗ = π. If 82.46○ < θ1 < 105.75○, there are three extrema (Energy
minimum 1, Energy minimum 2 and Energy maximum). Otherwise, only Energy
minimum 1 exists.

below a certain value (in Fig. 9, this certain value is 82.46○), there is
only one equilibrium state where the Energy minimum 1 is reached.
In addition, Energy minimum 2 represents another stable state where
the drop only contacts the solid wall 2 as illustrated in Fig. 8(c), and
Energy maximum represents an unstable state where the contact line
on the left is on the rounded wall 1 as illustrated in Fig. 8(b).

We now consider the case in which the opening angle is vari-
able for a given fixed volume, θ1 and θ2. From the energy profile
numerically plotted in Fig. 10, we see that there is still a region

FIG. 10. Total interfacial energy E∗ as a function of α, for a given θ1 = 105○, θ2 =
45○, V∗ = π, If 1.92○ < θ1 < 45.95○, there are three extrema (Energy minimum
1, Energy minimum 2 and Energy maximum). Otherwise, only Energy minimum 1
exists.

where three extrema exist. There is also a critical value (in Fig. 10,
this critical value is 45.95○) of α where the energy is discontinues
and decrease suddenly. The energy increases monotonically with α
except at this critical value. Discontinues behavior occurs when α
exceeds this critical value. Similar to the case in Fig. 9, if α is below a
certain value (in Fig. 10, this certain value is 1.92○), there is only one
equilibrium state where the Energy minimum 1 is reached. From the
previous discussion, it can be concluded that discontinuous behavior
is accompanied by a sudden decrease in energy.

IV. CONCLUSION
In this work, we have used theoretical calculations, dimensional

analysis to study the behavior of two-dimensional liquid drops in
rounded corners for the case in which the contact angles on the
two sides of the corner have different values. A new discontinuous
behavior was discovered in our study, which is very different from
the case in sharp corners. Comparing the situation in sharp corners,
our study shows that the behavior of a drop strongly depends on the
radius of rounded corners and the volume of the drop, in addition to
its dependence on the opening angle and contact angles that is cov-
ered by the Concus-Finn condition. Furthermore, we found that dis-
continuous behavior is accompanied by a sudden decrease in energy
through the energy-minimization approach. Continuous changes in
energy result in continuous behavior, while discontinuous changes
in energy lead to discontinuous behavior. We now have a thor-
ough physical picture of how geometrical and volumetric parame-
ters affect the behavior of liquid drop in two dimensions. The two-
dimensional results could help us to study the three-dimensional
situation in further work. We hope the outcome of this work will
motivate further analytical and experimental studies on the behav-
ior of liquids coupled with geometric constraints, for developing
applications in space liquid management or in microfluidics.
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