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Solute transport and interface evolution in dissolutive wetting
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Dissolutive wetting, i.e., droplet wetting on dissolvable surfaces, is essential for various natural phenomena and industrial
applications such as the formation of sinkholes, enhancing shale gas recovery, drug design, MEMS, and so on. It is difficult to
predict the evolution of concentration field and solid-liquid interface owing to the coupled effects of wetting, diffusion, and
convection. This study makes substantial progress by proposing a new theory based on Onsager’s variational principle and
finding two modes of solute transport, i.e., shifting and lifting modes. Furthermore, we investigate the influence of wetting and
dissolution coupling on the interface shape using a phase diagram. Using our theory, we can predict and inversely predict the
interface evolution.
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List of variables
c Concentration
cs Saturation concentration
c0 The initial concentration near origin
kB Boltzmann constant
uc Characteristic convective velocity
uf Height-averaged flow velocity
vmole Mole volume of the solute
Ca Capillary number
Cn Shape factor
D Diffusion coefficient
F Potential energy
Ha Concentration boundary-layer thickness
Hl Lower height of the droplet
Hu Upper height of the droplet

L Characteristic length
NA Avogadro number
Pe Pélect number
R Droplet radius
S Spreading coefficient
T Temperature
V Droplet volume
α Convective intensity
ϕ Mean volume concentration
γ Surface tension
η Solvent viscosity
θ Contact angle
θle Lower equilibrium contact angle
θue Upper equilibrium contact angle
τD Dissolution characteristic time
τD Diffusion characteristic time
ξ Dissipation coefficient at the contact line
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Φ Energy dissipation
Φη Viscosity dissipation
Φξ Dissipation at the contact line
Ω Surface area of a solute molecular

1 Introduction

Dissolutive wetting, i.e., droplet wetting on dissolvable
surfaces, is a multidisciplinary area of research essential for
natural and industrial phenomena on microscale to macro-
scale level [1,2]. It plays a significant role when acidic li-
quids are used to expand rock cracks for enhancing shale gas
recovery [3], fabricating microelectromechanical systems
and electronic devices via wet etching [4,5], and printing
functional skin on material surfaces at the microscale level
[6]. At the mesoscale level, dissolutive wetting plays an
important role in the dissolution of drugs [7], controlling
weld pool shape in welding, and erosion of materials [8,9].
The abovementioned examples involve the interactions be-
tween a fluid and dissolvable surface. In addition, this in-
vestigation can help in analyzing and predicting changes on
planetary surfaces, such as the formation of sinkholes [10],
karst topography [11], and scalloping morphology at mac-
roscale level [12, 13]. Despite its wide applications, there is a
lack of suitable theoretical models to explain the phenomena
of dissolutive wetting.
During the dissolutive wetting process, the droplet spreads

over the dissolvable solid surface while the solute diffuses

into the liquid (see Figure 1), unlike nondissolutive wetting
[2,14,15]. While the solute diffuses into the droplet, the so-
lid-liquid interface changes continuously [8]. However, the
properties of the liquid depend on the distribution of the
solutes, and the amount of solutes on the droplet surface
determines the properties of the interface. Furthermore,
chemical and surface tension gradients lead to internal con-
vection in the droplet [16]. In addition, the dissolutive wet-
ting process has two stages due to the difference in the
relaxation times between wetting and diffusion [17,18].
Nevertheless, previous studies have primarily been pro-
ceeded by experiments [19,20] and theoretical analyses have
been inadequate [21-23] owing to the complex coupling of
wetting, diffusion, and convection in dissolutive wetting.
Previous studies have focused on the triple-phase contact
line and evolution of the contact angle. Studies based on the
interface shape and concentration field are lacking; however,
predicting the interface shape and concentration field is key
to the application of dissolutive wetting in industries.
Herein, we propose a new theory based on Onsager’s var-

iational principle and find two modes of solute transport.
Other forms of solute transport are combinations of these two
modes. Furthermore, this theory explains the influence of
wetting and dissolution coupling on the interface shape via a
phase diagram and can be used to predict the solid-liquid
interface shape. We have conducted experiments to verify the
existence of the two concentration evolution modes and to
verify the correctness and reliability of the proposed model.

Figure 1 (Color online) Schematics of the model and the experimental setup. (a) In the initial state, a droplet with radius R0 is produced by an injector. (b)
In the transient state, the droplet spreads on the dissolvable substrate: the top (c) and side (d) views of the droplet. H, R, θ, and h are the instantaneous height,
radius, contact angle, and height profile of the droplet, respectively. The subscripts u and l of all symbols represent upper and lower, respectively.
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2 Experimental section

We extract velocity information inside a droplet via particle
image velocimetry (PIV), wherein particles with a diameter
of 6 µm are diluted to 0.004 wt% with a solvent. In our
experiments, a solvent droplet with a volume of 1 µL is
deposited on a solid solute surface. The wetting properties of
the droplet are investigated by conducting contact angle
measurements. There are two types of solute substrate. One
is made by heating a sugar solution comprising glucose and
water (5:1 by mass) to 250°C and then casting it in a mold.
The other is made using polyvinyl alcohol (PVA). We make a
PVA thin layer via repeated suspension coating and drying;
then the surface is treated with plasma. The fluorescence
intensity is used to measure the concentration distribution.
The mass ratio of dye powder, i.e., rhodamine B, to solvent is
5×10−6. The evolutions of the flow and concentration field in
the droplet are recorded via an inverted fluorescence mi-
croscope. For PVA, in the concentration experiment, fluor-
escence at a concentration of 5×10−6 by mass can also be
added to the substrate. We remove the solvent using blotting
paper and measure the shape of the hole via probe scanning
(see Figure 3).

3 Results and discussion

The distribution of the flow field is the key variable. We
compare the convective velocity and diffusion velocity using

the Pélect number, Pe=ucL/D, where uc is the characteristic
convective velocity, L is characteristic length, and D is dif-
fusion coefficient. Pe is a combination of the Reynolds
number and Schmidt number. Therefore, Pe relates to the
flow state of the liquid and presents the comparison between
viscous diffusion and mass diffusion. According to the PIV
results of the typical dissolving couples, as shown in
Figure 2(a), we find that Pe>1 with a height-averaged ve-
locity of the order of 10−5 mm s−1; therefore, the influence of
convection on the mass transfer should be considered. In
addition, a closer contact line indicates a faster convective
speed, and height-averaged fluid velocity has a linear rela-
tion with the position along the r direction. The positive
velocity shows that the solute is transported toward the edge
of the droplet. When the droplet volume is changing, the
height-averaged flow velocity (uf) can be written in the fol-
lowing form according to the results of the PIV experiments
and ref. [24]:

u R
R

V
V r= 4 , (1)f

where R and V are the instantaneous radius and volume of the
droplet, respectively. The above equation reflects the fact
that the height-averaged velocity is determined by wetting
and diffusion.
For dissolutive wetting, the Capillary number,Ca R= / ,

is a function of the contact angle (θ), where γ is the surface
tension of the solvent and η is the viscosity of the solvent.

Figure 2 (Color online) (a) The height-averaged fluid velocity measured over 6 s. The green triangles, red circles, and black squares are experiments with
droplets on a glucose surface. The blue diamonds are the experimental results of droplets on PVA. The numbers represent the ratio of glycerol to water in the
droplet. (b) The relation between the spreading velocity and contact angle is shown by a log-log plot. The experimental data can be expressed as R 2.8.
The open circles show the position of the turning point that divides the two stages of dissolutive wetting. (c) The relation between the spreading radius and
time shown by a log-log plot. The turning points inside circles divide the process of dissolutive wetting into two stages. (d) The relation between the geometry
parameter Cn and the volume concentration c shown by a log-log plot.
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Usually, Ca<<1 when a water droplet spreads on a solid
substrate and the driving force of wetting is the surface
tension. The relation between Ca and θ is as follows [25]:
Ca . (2)
The influence of the solute concentration on the viscosity

is so small that a change in the viscosity during dissolutive
wetting can be disregarded [26]. The surface tension near the
contact line is nearly invariable because the concentration
near the contact line reaches saturation quickly. Therefore,
the scaling exponent χ can be obtained by fitting the ex-
perimental data of the wetting velocity R with respect to θ
(see Figure 2).
We use a lubrication hypothesis to simplify the shape of

the droplet shown in Figure 1 [27]. Usually, for a droplet on a
hydrophilic surface, the height is generally smaller than the
radius in dissolutive wetting. In addition, considering the
small Bond number, the effect of gravity on the droplet shape
can be ignored. The height profiles of the upper and lower
droplets are given by a parabolic function and power func-
tion in cylindrical coordinates, respectively:

h r t H t r R t
h r t H t r R t

( , ) = ( )[1 / ( )],
( , ) = ( )[1 / ( )],

(3)n n
u u

2 2

l l

H t t R t

H t n
n t R t

( ) = 1
2 ( ) ( ),

( ) = 2 +
4 ( ) ( ),

(4)
u u

l l

where Hu and Hl are the upper and lower heights of the

droplet at the origin, respectively. The air-liquid and solid-
liquid interfaces are described by different functions because
the two interfaces are not symmetrical in most experiments.
The assumptions about the interface shapes are concise and
do not suffer from a loss of generality.
To derive the time evolution equation of the system, we use

Onsager’s variational principle. The Rayleighian is defined
as:

F= + , (5)
where Φ is the energy dissipation of the system and F is the
potential energy. The time evolution equation of the system
is determined by the condition that the Rayleighian is
minimum with respect to R [23].
The system dissipation comprises the viscosity dissipation

Φη and dissipation at the contact line Φξ, which is given as
follows:

= + . (6)

The viscosity dissipation is written as:

h
u r r

R C
V R RV

V

=
3
2

2 d

= 3
4 4 , (7)

R
f

n

0
2

2 4 2

where Cn is the shape factor of the liquid. We can obtain Cn
using theoretical and experimental methods (see Supporting
Information). Some typical values of Cn are shown in Figure
2. The other part of the dissipation function at the contact line

Figure 3 (Color online) The experimental and theoretical results for the solid-liquid interface shape. (a), (b) The shape of the solid-liquid interface
measured via probe scanning. (c), (d) The shapes of the solid-liquid interfaces. The red lines are the theoretical results that only consider dissolution. The blue
lines are the theoretical results that also consider evaporation. RI is the radius where the droplet stops its first stage of spreading.
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is

RR= , (8)2

where ξ is the dissipation coefficient at the contact line.
The interfacial energy and chemical potential constitute

the potential energy of the system. The energy of the inter-
face is

F R R V nV= +
2 + 4 + 2 , (9)s

SL le
2

LV ue
2

2 LV
4 u

2
l
2

where θue and θle are the upper and lower equilibrium contact
angle, respectively. Unlike nondissolutive wetting, when the
solute molecules move into a droplet, they combine with the
solvent molecules and form new structures [28]. When the
dry solute diffuses into the liquid, the water molecules sur-
round the solute [14], which results in a change in the in-
terfacial energy of the solute. This induces a change in the
free energy when the solute molecules separate from each
other and combine with water molecules. Therefore, the
separation and reconstruction of the solute molecules induce
a change in free energy during the diffusion process. We
simplify the relation between the chemical potential density
and concentration into a linear form because only a little
solute is dissolved ((Vl/Vu)

2<<1). Therefore, the free energy
density induced by the solute dissolving is

f = , (10)d

where Γ=(kBT+SΩ)NA/vmole shows the change in the free
energy induced by diffusion per unit concentration per unit
volume, vmole is mole volume of the solute, NA is the Avo-
gadro number, Ω is the surface area of a solute molecule, S is
the spreading coefficient, kB is the Boltzmann constant, T is
the temperature, and ϕ=Vl/V is the volume concentration of
the solute.
Using eqs. (7)-(10), we obtain the evolution equation of the

system:

( )k R k k C RV
V1 + = 2 1 + 3

8 + 2
3 , (11)n

cl
cl LV ue

2
u
2

ue
2

cl
2

d
2

where k C= / 3 ncl is used to compare the effects of Φη

and Φξ. n= / 2 +l u and lower contact angle is much
smaller than the upper contact angle; therefore, can be
replaced by the contact angle θ. Two terms on the right side
of eq. (11) reflect the influence of the interface and dis-
solution energy on the droplet spreading. In our experiments,
dissolutive wetting can be divided into two stages [17]. In the
first stage, the droplet spreads quickly so that the upper
contact angle is much larger than the upper equilibrium
contact angle. The spreading velocity is much faster than the
diffusion velocity and convective velocity; therefore, dis-
solution is disregarded. In the second stage, the spreading
velocity decreases and the influence of dissolution becomes
obvious. Therefore, there are differences between the wet-

ting scaling exponents of the two stages, i.e., there is a
turning point between the two stages (see Figure 2). In ad-
dition, in the second stage, the curve of the liquid-vapor
interface changes slightly, i.e., the upper contact angle nearly
equals the upper equilibrium contact angle (θu→θue). Fur-
thermore, mass transport primarily occurs in the second
stage; accordingly, we focus on the second stage. In addition,
the surface energy is less than the free energy induced by
diffusion. Therefore, the first term on the right side of
eq. (11) can be ignored. We further simplify eq. (11) such that

( )k R k C RV
V1 + = 3

8 + 2
3 , (12)n

cl
cl
2

d
2

where V V= /d l is the characteristic time spent in dissolu-
tion and depends on the type of solute and solvent. The above
equation shows that a linear relation can be established be-
tween the two self-similar processes in the second stage of
dissolutive wetting. The above equation is solved as:

( )

R
R

V
V

m k k C

= ,

= 1 + 3
8 + 2

3 .
(13)

m

n

0 0

cl
1 cl

2
d

2

The scaling m shows that the evolution of the droplet radius
depends on the change in free energy, extra friction of the
contact line, and normal hydrodynamic friction in the second
stage of dissolutive wetting. Considering eqs. (2) and (4),
eq. (13) can be written as:

R m
m t= (3 1) + 1 , (14)

m
m m

(3 1)
+1

where ( )R V= const /m
m

0 0 LV . The above equation is the

governing equation of dissolutive wetting. For dissolutive
wetting, the chemical potential, viscosity dissipation, and
dissipation at the contact line determine the droplet spread-
ing scaling. Considering eqs. (1) and (12), the height-aver-
aged velocity can be written as:

u r
t

m
m

m m

= ,

= 1 1
4 + (3 1) ,

(15)
f

where α represents the intensity of the convection in the
droplet.
The evolution of the concentration field is described by the

convection-diffusion equation as follows:

c c D cu+ = , (16)2

where u=(ur, uz), and ur and uz are the velocities in the r and z
directions, respectively. We can obtain the concentration
field of dissolutive wetting by solving eq. (16). In most cases,
the solute is primarily transported in the r direction and the
flow field can be expressed by the height-averaged velocity
uf. Therefore, eq. (16) can be simplified such that
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c
t

u c
r D c

r
c

r r
c c
H+ = + + . (17)f

2

2
s

a
2

The above equation is converted into a dimensionless form
by introducing the following new variables:

c c
c t t

t r r
R= , = , = , (18)

s d

where RI is the radius wherein the droplet stops spreading in
the first stage. Therefore, we have
H c
D t

Pe
A

c
r

d c
r

c
r r c

+

   = + + 1 , (19)

a
2

d

2 2

2

where Pe=ufRI/D and d=RI/Ha. The d
−2 term can be neglected

because the droplet is thin. We can further simplify eq. (19)
such that

c
u t R

c
r

D c
u H+ = (1 ) . (20)

f

d d

f a
2

Solving the above equation, we obtain the evolution of the
concentration field:

c
c
c= 1 +

1

e + e
, (21)

0
s

+ + ( / ) +12

where Ψ=α(ζ−ας), D H= /d a
2, ζ=lnr′, ς=lnt′, A B= ,

A=RI/Ha, and B D H= /d a
2. In the above equation, the sym-

bols with superscripts (′) are dimensionless variables, and c0
and cs are the height-averaged concentration near the origin
and saturation concentration, respectively. Their units are
mass/volume. Ψ=α(ζ−ας) represents the influence of con-
vection on the concentration distribution, and

D H= /d a
2 represents the influence of diffusion. Ha is

the concentration boundary-layer thickness and D is the
diffusion coefficient. B is the ratio of the dissolution time to
the characteristic time of diffusion and indicates the diffusion
intensity in the droplet, which is considerably larger than the

one in general and can be obtained by fitting the experi-
mental data at the initial time. From the expression of Ψ, we
can see that the solute transport along the radius depends on
the characteristic convective velocity αRI/τd. The process of
solute transport is self-similarity with a scaling exponent of
α. The factor Ψ shows that the concentration field evolution
is similar to the transmission of a wave under the effect of
convection. Π depends on the ratio of the characteristic time
of diffusion H D= /D a

2 to the characteristic time of dis-
solution τd. c0 is the height-averaged concentration at r=0,
and β indicates how sensitive the concentration distribution
is to the convective velocity. According to eq. (21), the dif-
fusive and convective effects are the key mechanisms that
dominate the distribution of the concentration. Eq. (21) has
two extreme solutions, and other solutions are a combination
of these two solutions.
When the solute transported by convection is much

stronger than that transported by diffusion, i.e., when Π<<Ψ,
eq. (21) can be simplified such that

c
c
c= 1 +

1

e + e
. (22)s

0

( / ) +12

Figure 4(a) shows the results of eq. (22). The solute
transported by convection is considerably stronger than that
transported by diffusion; therefore, the solute is transported
to the contact line and accumulates at the rim of the sessile
droplet. The concentration near the contact line keeps in-
creasing until it reaches saturation. The height-averaged
concentration decreases elsewhere away from the contact
line. We call this solute transport mode the shifting mode.
When the effect of diffusion dominates the mode of the

concentration distribution, i.e., Π>>Ψ, we can simplify
eq. (21) such that

c
c
c= 1 +

1

e + e
. (23)

0
s
+ ( / ) +12

Figure 4 (Color online) The theoretical results of the concentration field evolution. (a) Calculated evolution of the concentration of the shifting mode. The
parameters are c0=0.06 g mL

−1, α=0.2, τd=13 s, RI=1.3 mm, B=165, and D=7.2×10
−4 mm2 s−1. (b) Calculated evolution of the concentration of the lifting

mode. The parameters are c0=0.05 g mL
−1, α=0.1, τd=60 s, RI=0.65 mm, B=250, and D=5.2×10

−5 mm2 s−1.
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The formation of the above equation is similar to the equa-
tion that ignores the influence of convection [18], which
distinguishes it from the shifting mode, i.e., the lifting mode.
The results can be explained such that the low surface ten-
sion gradient limits the height-averaged fluid velocity;
therefore, diffusion is more obvious than convective trans-
port.
We performed experiments to verify the existence of these

two concentration evolution modes. The experimental results
of Figures 5(a), (b) and (c), (d) agree with the shifting and
lifting modes, respectively. The experiments for water dis-
solving glucose are shown in Figure 5(a) and (b). In this case,
the diffusion coefficient of glucose to water is 7.2×
10−4 mm2 s−1. The surface tension of the solvent is approxi-
mately 6.9×10−2 N m−1, viscosity of the liquid is approxi-
mately 0.8×10−3 Pa s, and characteristic length is approxi-
mately 1 mm. Therefore, the dimensionless numbers are
Pe~100, Ca~10−6, α=0.2, β=25.69, and Π/Ψ~0.01. These
results agree with the shifting mode. The concentration near
the contact line increases quickly. On the contrary, the con-
centration around the center of the droplet remains low.
Concentrations in the other regions decrease over time.
Figure 5(b) shows that the higher the height-averaged con-
centration is the closer it is to the contact line. In addition, the
saturation concentration region expands from the contact line
to the center of the droplet. The experimental results for
water dissolving PVA (Figure 4(c)) show that the transport
direction of the solute is from bottom to top in the droplet. In
this case, the diffusion coefficient of glucose to water is 5.2×

10−5 mm2 s−1, surface tension of the solvent is approximately
6.9×10−2 N m−1, viscosity of the liquid is approximately 0.8×
10−3 Pa s, and characteristic length is approximately 1 mm.
Therefore, Pe~10, Ca~10−7, α=0.1, β=12.84, and Π/Ψ~80.
The results verify the existence of the lifting mode. In the
experiments, we also find different solid-liquid interface
shapes after removing the droplet on the substrate surface. A
qualitative perspective is that the saturation concentration
region expands from the contact line to the center of the
droplet. The depth around the center of the droplet is deeper
than elsewhere (see Figure 3(a)). The shape of the solid-
liquid interface resembles a bowl. The experimental results
for water dissolving PVA (see Figure 3(c)) show that the
transport direction of the solute is from bottom to top in the
droplet. The high concentration on the edge of the droplet
suppresses the substrate from receding so that the shape of
the solid-liquid interface resembles to that of a pan.
To examine the coupling effect of wetting and dissolution

on the solid-liquid interface shape, we integrate Fick’s first
law over time to calculate the shape of the solid-liquid in-
terface [29]:

h D c c
H

t= d . (24)
t

l s 0

s

a

When t is much smaller than the characteristic time τd, the
above equation can be simplified such that

h r t D c c
H

t r
R( , ) = ( ) , (25)

B

l 0
d s 0

a s 1 d

1

where β1=α
2+1. The constant parameter τdD(cs−c0)/(Haρsβ) is

Figure 5 (Color online) The experimental and theoretical results of the concentration field and the solid-liquid interface shape. The graphs in the first row
show the results for water dissolving glucose, and other graphs show the results for water dissolving PVA. (a), (c) The distributions of the concentration at
different times. (b), (d) The evolutions of the concentration in different positions.
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the characteristic depth of the hole. The depth of the hole has
a scaling relation with time, and the scaling law is β1, which
considers the effects of convection and diffusion. When t is
close to the characteristic time τd, the above equation can be
simplified such that

h r t D c c
H

t r
R( , ) = ( ) , (26)

B

l 0
d s 0 2

a s d

1

where ( )( ) ( )B t r R= + / / 1 + /2 1 d
/2 2

. The influence

of the solute deposition induced by convection on the solid-
liquid interface shape starts to appear. Eqs. (25) and (26)
show that the physical parameters, except α and β, decide the
amplitude of the function and are independent of the function
type. The power function indicates that the depth of the hole
decreases along the radial direction due to the competition of
convection and diffusion. The shapes of the solid-liquid in-
terfaces for different values of α and β are shown in
Figure 6(a). The solid-liquid interface shape can be described
by power function. The powers of power functions nega-
tively correlated with α. The dashed lines express the inter-
face shapes are parabola, quartic curves, sextic curves,
respectively. The powers of the points between the dashed
lines are fractional. For example, when α=0.25 and β=4, the
power value is 2.4. The orange area shows where the shape
change of the solid-liquid interface is slight enough to be
ignored. With an increase in β, the shape of the solid-liquid
interface is sensitive to α, which indicates the convective
intensity. When β is sufficiently large (on the right side of the
red line), the solid-liquid interface shape depends on the α
and the influence of β can be ignored in most cases. The red
line in Figure 6(a) can be expressed as lnβ=0.66(lnα)2
+2.18lnα+1.72. Therefore, we can obtain the relation be-
tween the solid-liquid interface shape and dissolution time
using a numerical method. For example, when water droplet
dissolves the glucose surface, the parameters α and β are 0.2
and 25.69, respectively. This point is on the right side of the
solid red line in Figure 6(a); therefore, the solid-liquid shape
depends on the parameter α. Figure 6(b) shows the results of
four dissolution couples. We find that the relations between

the solid-liquid interface shape and dissolution time for the
different couples are similar; therefore, we can obtain the
formation time of the solid-liquid interface via the interface
shape. When the diffusion coefficient is sufficiently small,
the concentration boundary layer is very thin. Therefore, the
effect of convection on the diffusion near the solid-liquid
interface can be ignored.

4 Conclusion

In summary, we use Onsager’s variational principle to obtain
the evolution equation of dissolutive wetting, which shows
that the height-averaged fluid velocity is proportional to the
spreading velocity and inversely proportional to the
spreading radius. Furthermore, we solved the convection-
diffusion equation based on the results of the height-aver-
aged fluid velocity. The theoretical results indicate that the
diffusive effect and convective effect determine the dis-
tribution of the concentration. The solute transport has two
modes, namely the shifting and lifting modes. With the
weakening of the convective effect, the mode of transport
changes from shifting to lifting. We also find that the con-
vective intensity α and parameter β can be used to reflect the
shape of the solid-liquid interface. We can inversely predict
the solid-liquid interface according to the phase diagram,
which illustrates the coupling influence of wetting and dis-
solution on the interface shape. With a decrease in the con-
vective intensity, the solid-liquid interface shape more
closely resembles a pan. Our theory brings a physical image
to the problem, together with a detailed explanation.
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