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Abstract: Frequency is an important factor influencing the fatigue behavior. Regarding to the dwell
fatigue, it corresponds to the effect of rise and fall time, which is also an important issue especially for
the safety evaluation of structure parts under dwell fatigue loading, such as the engines of aircrafts
and the pressure hulls of deep-sea submersibles. In this paper, the effect of rise and fall time (2 s,
20 s, 110 s, and 200 s) on the dwell fatigue behavior is investigated for a high strength titanium
alloy Ti-6Al-2Sn-2Zr-3Mo-X with basket-weave microstructure. It is shown that the dwell fatigue
life decreases with increasing the rise and fall time, which could be correlated by a linear relation in
log–log scale for both the specimen with circular cross section and the specimen with square cross
section. The rise and fall time has no influence on the crack initiation mechanism by the scanning
electron microscope observation. The cracks initiate from the specimen surface and all the fracture
surfaces present multiple crack initiation sites. Moreover, the facet characteristic is observed at some
crack initiation sites for both the conventional fatigue and dwell fatigue tests. The paper also indicates
that the dwell period of the peak stress reduces the fatigue life and the dwell fatigue life seems to be
longer for the specimen with circular cross section than that of the specimen with square cross section.

Keywords: dwell fatigue; fatigue life; effect of rise and fall time; effect of specimen shape; high
strength titanium alloy

1. Introduction

The dwell fatigue in titanium alloys has drawn great attention [1–6] since it was detected in
Rolls-Royce RB211 engines on Lockheed Tristar aircraft in the early 1970s [7,8]. It has been shown that
the dwell period at the peak stress significantly reduces the fatigue life of titanium alloys in comparison
with the fatigue life under the conventional fatigue loading and that the crack initiation region has the
characteristic of cleavage or quasi-cleavage facets [9–11].

Loading frequency is an important factor influencing the fatigue behavior of metallic materials.
The lower frequency usually increases the crack growth rate [12,13] and reduces the fatigue strength or
fatigue life [14,15]. Regarding to the dwell fatigue, it corresponds to the effect of rise and fall time,
which is also a very important issue especially for the safety evaluation of structure parts under dwell
fatigue loading. As an example for the deep-sea submersibles, it frequently dives, works, and floats
during the service life, and correspondingly its key component—the pressure hull is subjected to a
relative long time (~tens of minutes) loading and unloading by the changing sea water pressure for
each mission. However, the existing studies are mainly focused on the effect of dwell period on fatigue
life, crack initiation, and crack propagation, and there is no report on this issue.
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Further, the component parts are generally of very different size and shape with the specimens
tested in laboratory. The specimen size and shape usually have great influence on the fatigue life or
fatigue strength in conventional fatigue [16–18]. For dwell fatigue of titanium alloys, it has been shown
that the smaller round bar specimens showed shorter fatigue life than that of the larger round bar
specimens [19]. However, there are few reports available for the effect of specimen shape on the dwell
fatigue behavior.

In this research, the axial loading dwell fatigue test with different rise and fall times is first
performed for the specimen with circular cross section and the specimen with square cross section
of a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X which could be used in the key components
of deep-sea equipment such as submersibles. Then, the effect of rise and fall time and the effect of
specimen shape on the dwell fatigue behavior are investigated. The dwell fatigue behavior is also
compared with the conventional fatigue behavior for the specimen with circular cross section.

2. Materials and Methods

The material used here is a high strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X cut from a forged
flat plate parallel to the rolling direction. The tensile strength and yield strength are 1072 MPa and 978
MPa, respectively, which are obtained by the tensile test on three cylindrical specimens with diameter
of 5 mm. The microstructure of the material is basket-weave, as shown in Figure 1. Two kinds of
specimens are used, one is the specimen with circular cross section (C-specimen), and the other is the
specimen with square cross section (S-specimen), as shown in Figure 2. In this paper, the size of the
cross-sectional area is the same for both the C-specimen and the S-specimen in order to minimize the
effect of size of the specimen. The experimental section surfaces of all the tested specimens are ground
and polished to eliminate the machine scratches before fatigue test.
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Figure 1. Microstructure of Ti-6Al-2Sn-2Zr-3Mo-X alloy.

The conventional fatigue test and the dwell fatigue test are conducted on a same Landmark
servohydraulic test system (MTS Systems Corporation, Eden Prairie, MN, USA) at room temperature
in air, the loading waveforms of which are shown in Figure 3. The maximum stress (i.e., peak stress) is
929.1 MPa for both the conventional fatigue test and the dwell fatigue test, which is 0.95 of the yield
stress. The stress ratio R is −1. For conventional fatigue test, different rise and fall times 2 s, 20 s, and
200 s (i.e., different frequencies 0.25 Hz, 0.025 Hz, and 0.0025 Hz) are used. For dwell fatigue test,
different rise and fall times 2 s, 20 s, 110 s, and 200 s are used, and the dwell time is 60 s for the peak
stress. The fall time equals to the rise time for all the dwell fatigue tests.
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Figure 2. (a) Specimen with circular cross section (in mm) for conventional fatigue test and dwell
fatigue test; (b) specimen with square cross section (in mm) for dwell fatigue test.
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The fracture surfaces of failed specimens are observed by a scanning electron microscope (SEM)
(JEOL, Tokyo, Japan).

3. Results and Discussions

The variation of fatigue life with the rise and fall time is shown in Figure 4 for both the conventional
fatigue test and the dwell fatigue test. The loading information and the associated fatigue life of
specimens are given in Table 1. It is seen from Figure 4 that the fatigue life is scattered at a fixed rise
and fall time. The rise and fall time has important influence on the dwell fatigue life. The dwell fatigue
life decreases with the increase of the rise and fall time, which is very similar to the effect of rise and
fall time (i.e., frequency) on the conventional fatigue life. A possible explanation for this is that the
dislocations have more time to overcome obstacles via thermal activation under the larger rise and fall
time than that under the smaller one [14], which increases the amount of plastic strain accumulation
and results in the shorter fatigue life. Figure 4 indicates that it will be very dangerous for the dwell
fatigue life evaluation of specimens or structural parts under longer rise and fall time by using the
dwell fatigue life data under shorter rise and fall time. Further, it is found that the effect of rise and fall
time on the fatigue life under both dwell fatigue test and conventional fatigue test could be correlated
by a linear relation in log–log scale, i.e.,

lgN f = −0.0831× lgt + 2.9392, for dwell fatigue of C− specimen, (1)

lgN f = −0.0959× lgt + 2.8965, for dwell fatigue of S− specimen, (2)

lgN f = −0.0986× lgt + 3.1319, for conventional fatigue of C− specimen. (3)
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Figure 4. Variation of fatigue life with the rise and fall time for both the conventional fatigue test and
the dwell fatigue test, in which the lines denote the linear regression results of the fatigue life with the
rise and fall time in log–log scale.

Table 1. Loading information and the associated fatigue life of specimens in Figure 4.

Specimen
No. Specimen Type Maximum

Stress/MPa
Stress

Ratio R
Rise

Time/s
Fall

Time/s
Dwell
Time/s

Fatigue
Life/cyc

1 C−specimen 929.1 −1 2 2 60 1016
2 C−specimen 929.1 −1 2 2 60 813
3 C−specimen 929.1 −1 2 2 60 709
4 C−specimen 929.1 −1 20 20 60 884
5 C−specimen 929.1 −1 20 20 60 628
6 C−specimen 929.1 −1 20 20 60 607
7 C−specimen 929.1 −1 20 20 60 545
8 C−specimen 929.1 −1 110 110 60 641
9 C−specimen 929.1 −1 200 200 60 499
10 C−specimen 929.1 −1 200 200 60 624
11 C−specimen 929.1 −1 2 2 0 1141
12 C−specimen 929.1 −1 2 2 0 1316
13 C−specimen 929.1 −1 20 20 0 1197
14 C−specimen 929.1 −1 20 20 0 1163
15 C−specimen 929.1 −1 20 20 0 838
16 C−specimen 929.1 −1 200 200 0 832
17 C−specimen 929.1 −1 200 200 0 728
18 S−specimen 929.1 −1 2 2 60 665
19 S−specimen 929.1 −1 2 2 60 833
20 S−specimen 929.1 −1 2 2 60 737
21 S−specimen 929.1 −1 20 20 60 656
22 S−specimen 929.1 −1 20 20 60 524
23 S−specimen 929.1 −1 20 20 60 580
24 S−specimen 929.1 −1 200 200 60 479
25 S−specimen 929.1 −1 200 200 60 478

The correlation coefficients are −0.68, −0.91, and −0.81 for Equations (1)–(3), respectively.
According to the research in reference [20], the correlation is significant for the dwell fatigue of
C-specimen, highly significant for the dwell fatigue of S-specimen, and significant for the conventional
fatigue of C-specimen.

Equations (1)–(3) indicate that the slope of the fatigue life with the rise and fall time under the
dwell fatigue test is very close to that under the conventional fatigue test, namely that the effect of rise
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and fall time on the dwell fatigue life might be approximately obtained by that on the conventional
fatigue life.

Figure 4 also indicates that the dwell fatigue life is shorter than the conventional fatigue life for
the same rise and fall time, i.e., the dwell period of the maximum stress reduces the fatigue life of
titanium alloys. This might be due to that the creep induced by the maximum stress during the dwell
period in room temperature increases the strain accumulation compared with the conventional fatigue
test [14,21], which accelerates the damage in specimens and results in the shorter fatigue life under
dwell fatigue test.

SEM observations indicate that all the tested specimens fail from the specimen surface and all
the fracture surfaces present multiple crack initiation sites for both the conventional and the dwell
fatigue tests. Moreover, it is found that some crack initiation sites have the facet characteristic (A-3 and
D-3 in Figure 5) for both the dwell fatigue of C-specimens and S-specimens at different rise and fall
times. This indicates that the rise and fall time has no influence on the crack initiation mechanism of
the dwell fatigue. The facet characteristic (A-3 in Figure 6) is also found at some crack initiation sites
under the conventional fatigue test at different rise and fall times, indicating that the dwell period has
no influence on the crack initiation mechanism compared with the conventional fatigue test.
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Figure 5. Fracture surface morphology of failed specimens under dwell fatigue test. A-1 ~ A-3:
C-specimen with Nf = 1016 for rise and fall time 2 s; B-1 ~ B-3: C-specimen with Nf = 709 for rise and
fall time 2 s; C-1 ~ C-3: S-specimen with Nf = 833 for rise and fall time 2 s; D-1 ~ D-3: S-specimen
with Nf = 665 for rise and fall time 2 s. A-2, B-2, C-2, and D-2 are close-ups of A-1, B-1, C-1, and D-1,
respectively; A-3, B-3, C-3, and D-3 are close-ups of the crack initiation regions where the arrows point
to in A-2, B-2, C-2, and D-2, respectively; the arrows pointing to in A-3 and D-3 denote the facets.
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Specimen with Nf = 1141 for rise and fall time 2 s; B-1 ~ B-3: Specimen with Nf = 728 for rise and fall
time 200 s. A-2 and B-2 are close-ups of A-1 and B-1, respectively; A-3 and B-3 are close-ups of the
crack initiation regions where the arrows point to in A-2 and B2, respectively.

For the effect of specimen shape on the dwell fatigue life, the linear regression result of the dwell
fatigue life with the rise and fall time is compared for the C-specimens and S-specimens due to the
scatter of the fatigue life. It is seen from Figure 4 that the dwell fatigue life is related to the specimen
shape and it seems to be longer for the C-specimen than that of the S-specimen. SEM observation
indicates that the main cracks for S-specimen usually initiate from the edges or very near the edges of
the experimental section. Therefore, it is thought that the edges of the experimental section for the
S-specimen favor the crack initiation and lead to a shorter fatigue life compared with the C-specimen.
However, the specimen shape has no influence on the crack initiation mechanism from the SEM
observation. Both the dwell fatigue of C-specimens and S-specimens fail from the multiple crack
initiation sites of the specimen surface and some crack initiation sites present the facet characteristic
(A-3 and D-3 in Figure 5).

4. Conclusions

This paper investigates the effect of rise and fall time on the dwell fatigue behavior of a high
strength titanium alloy Ti-6Al-2Sn-2Zr-3Mo-X for the specimen with circular cross section and the
specimen with square cross section under axial loading. It is shown that the dwell fatigue life is related
to the rise and fall time, which decreases with increasing the rise and fall time. Moreover, the effect
of rise and fall time on the dwell fatigue life could be correlated by a linear relation in log–log scale,
the scope of which is very close to that of the effect of rise and fall time on the fatigue life under the
conventional fatigue test. The crack initiation mechanism of the present titanium alloy is independent
of the rise and fall time and the specimen shape. The dwell period of the peak stress reduces the fatigue
life, but has no influence on the crack initiation mechanism compared with the conventional fatigue
test. The paper also indicates that the specimen shape has influence on the dwell fatigue life, which
appears to be longer for the specimen with circular cross section than that of the specimen with square
cross section. The present results are essential for understanding the dwell fatigue behavior of high
strength titanium alloys.
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