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A B S T R A C T

The presence of an axial load changes the system stiffness of an infinite beam on a tensionless Winkler foun-
dation, which also determines the solution form of the beam deflection. Five different closed form solutions
depending on the axial load are analytically derived in this study. The beam deflections are systematically
studied when it is subjected to various axial and transverse concentrated loads. Because the contact zone of a
tensionless contact is not known a priori, it can cause a significant mathematical difficulty in solving various
tensionless contact problems. In recent tensionless contact researches, the major efforts have been developing
the efficient but complex algorithms to determine the contact zones. Five transcendental equations governing the
contact zones, which are straightforward for numerical computations, are also analytically derived. The five
closed form solutions can serve as a guide line for the further study of the beam tensionless contacts with more
complex loading scenarios. Furthermore, the model of a beam on the Winkler foundation subjected to an axial
load is also demonstrated to be applicable to various and different problems.

1. Introduction

The tensionless contact is variously called receding contact (Keer
et al., 1972), unbonded contact (Weitsman, 1969), unilateral contact
(Dempsey et al., 1984) and one-way contact (Attar et al., 2016), which
all emphasize its asymmetric property of contact. The tensionless
foundation as indicated by its name reacts to compression only. As a
flexural structure can bend upwards and thus separate from a ten-
sionless foundation, the foundation reaction force depends on the sign
of displacement. At least two different governing equations, which are
connected by the transverse conditions at the separation points (Kerr,
1976), are needed for the contact and non-contact zones. From the
mechanics point of view, this causes a discontinuity of the contact
constitutive law, which mathematically introduces the non-smoothness
characteristics and nonlinearity into the problem (Attar et al., 2016).
Unlike the geometrical nonlinearity of an elastic foundation (Ansari
et al., 2010, 2011), this non-smoothness induced nonlinearity causes a
significant difficulty in the tensionless contact problems. As a result, the
key problem in the tensionless contact is to determine the contact zone
(s). Recent studies on tensionless contact have been focusing on de-
veloping more general and efficient methods of finding the contact
zones for the complex loading scenarios (Ma et al., 2009a, 2009b;

Nobili, 2012, 2013), the nonlinear foundation or foundation with sev-
eral parameters (Nobili, 2012, 2013; Sapountzakis and Kampitsis,
2011a, 2011b, 2013) and dynamics (Bhattiprolu et al., 2014; 2016;
Attar et al., 2016). Almost all studies have to develop complex algo-
rithms to solve the beam tensionless contact problems. Few exceptions
are, for example, the Weitsman′s (1970) analytical solution to an in-
finite beam resting on the tensionless Winkler foundation, and Noblili′s
(2013) Green function method on a finite beam resting on both the
tensionless Winkler and Pasternak foundations. Weitsman′s (1970)
analytical solution has been serving as a cornerstone for various studies
on the beam tensionless contact, such as a finite beam under an
asymmetric loading or with a gap distance between the beam and
foundation (Zhang and Murphy, 2004, 2013), or under two con-
centrated loads (Nobili, 2013), or resting on the Reissner foundation
(Zhang, 2008), etc. Furthermore, Weitsman′s (1970) analytical solution
is also a benchmark solution to validate the newly developed methods
or algorithms on the beam tensionless contact (Nobili, 2013; Zhang and
Murphy, 2004, 2013). However, Weitsman′s (1970) analytical solution
is for the zero axial load case only. The other four cases are presented
with the closed form solutions in this study. The closed form solutions
provide a much simpler and more efficient way of studying the beam
tensionless contact than most of the algorithms.
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Historically, the study on the beam tensionless contact is closely
related with the stress and stability analyses of railway tracks (Chen and
Chen, 2011; Choros and Adams, 1979; Kerr, 1974; Kerr and El-Aini,
1978; Lancioni and Lenci, 2010; Lin and Adams, 1987; Maheshwari
et al., 2004; Tsai and Westmann, 1967). Because of the bending de-
flection induced by the track-wheel contact (Choros and Adams, 1979;
Lin and Adams, 1987) or the vertical buckling due to thermal stress
(Kerr, 1974; Kerr and El-Aini, 1978), the railway track can separate
from its ballast. Because the ballast is an elastic supporting layer con-
sisting of crushed stones, it cannot exert tensile forces on the track. As a
result, the tensionless foundation model captures the track behavior
more accurately than the foundation model that reacts to both tension
and compression (Lin and Adams, 1987). Besides the crushed stones, a
lot of supporting materials, such as soil (Lancioni and Lenci, 2010;
Maheshwari et al., 2004; Sapountzakis and Kampitsis, 2011a, 2011b,
2013), foam (Bhattiprolu et al., 2014; 2016), ice (Kerr, 1972) and
concrete (Wright, 1995), etc, all demonstrate the unilateral property of
reacting to compression only. For many years, the track has been the
main cause of limiting the operating speed of trains (Kerr, 1974).
Thermal stress (Kerr, 1972, 1974; Labra, 1975), train moving load
(Hetényi, 1946; Timoshenko and Langer, 1932; Weitsman, 1971) and
moving mass (Ang and Dai, 2013; Dimitrovová, 2017; Tran et al., 2014)
all effectively exert a compressive axial load on a track, which can cause
the track instability and thus affect the safety of trains. A large number
of the train accidents are due to the track instability (Lim et al., 2003).
The continuous welded rail (CWR), which can be several kilometers
long (Lim et al., 2003), is widely used in modern railways. Because of
the complete elimination of expansion joints in the CWR tracks (Kerr,
1974; Lim et al., 2003), the thermal stresses due to the varying tem-
perature can cause considerable axial compression or tension. In fact,
the possibility of the track buckling due to thermal stress was the main
reason for delaying the use of CWR track by decades (Kerr, 1974). Al-
though Timoshenko and Langer′s (1932) earlier work concluded that
the dynamic effect on the track stress analysis is very small and a static
analysis is thus sufficient, they implicitly assumed that the train speed is
very low (Kerr, 1972). Because the effective compressive axial load is
proportional to the square of the train speed for both the moving load
and moving mass models, the dynamic effect must be considered in the
analysis of the high-speed train-track interactions (Ang and Dai, 2013;
Dimitrovová, 2017; Tran et al., 2014).

Besides modeling the actual axial load, incorporating an axial load
into the model of a beam resting on the Winkler foundation is mathe-
matically equivalent to introducing a new foundation model with one
more parameter, which can better characterize an elastic continuum.
An elastic foundation model in essence assumes the local response, i.e.,
the foundation reaction at a given point is determined only by its dis-
placement, curvature and other higher order derivatives at that point.
With this assumption, the foundation reaction can be incorporated into
the differential governing equation of a structure, such as beam, plate
and shell (Kerr, 1964). In other words, the elastic foundation model
provides a differential formulation for contact problems, which also
retains the mathematical simplicity (Kerr, 1964; Reissner, 1958). If the
elasticity theory is used to analyze the contact between a structure and
an elastic continuum modeled as the elastic half-space (Weitsman,
1969, 1972), the Boussinesq problem with integral or in-
tegrodifferential formulation has to be solved (Johnson, 1985). Physi-
cally, the integral or integrodifferential formulation indicates that the
response of a given point in an elastic continuum is nonlocal, which
depends on the responses of all other points. Mathematically, the in-
tegral or integrodifferential formulation is much more difficult than a
differential one. Furthermore, for a high-speed railway support con-
sisting of six layers of different materials (Bian et al., 2014), the elas-
ticity analysis will be extremely difficult and complex if not impossible.
The Winkler foundation is the simplest foundation model with only a
spring layer of one parameter, which more or less causes some devia-
tions from the response of a realistic material (Kerr, 1964). To obtain

the physically close and mathematically simple representation of a
realistic material, there are two main approaches: One is to introduce
some assumptions in the elasticity analysis of a continuum to simplify
the Boussinesq problem. For example, the assumption of the shear force
independence on the depth leads to the Reissner foundation model
(Reissner, 1958). The other is to add more layer(s)/parameter(s) to the
Winkler foundation. For example, the Filonenko-Borodich foundation
and the Pasternak foundation (Kerr, 1964) add a membrane layer and a
shear layer onto the spring layer of Winkler foundation, respectively.

This study shows that under various axial loads, the contact zone of
an infinite beam on the tensionless foundation is independent on the
transverse concentrated load. This independence property leads to a
very useful result: For the track-wheel contact with different con-
centrated loads, only one computation is needed. On the other hand,
our solution indicates that the beam deflection in the non-contact zone
will increase linearly to infinity as the distance from the concentrated
load locus increases. Weitsman (1970) did not give the beam deflection
solution to the non-contact zone and the discussion on the beam de-
flection unphysically reaching infinity is thus not presented. In this
study, we show that this unphysical solution actually satisfies the
equilibrium as described by the model. The unphysical problem can be
corrected by adding a distributed load of the beam/track self-weight
(Tsai and Westmann, 1967; Weitsman, 1970). However, with the pre-
sence of a distributed load, the above independence property is no
longer valid. The computation has to be taken case by case because the
contact zone depends on the magnitudes of both the concentrated and
the distributed loads (Tsai and Westmann, 1967). In the modeling as-
pect, the loading scenario with a single concentrated force is a limit
case of the general loading scenario with both concentrated and dis-
tributed loads (Tsai and Westmann, 1967). In the railway application,
the concentrated load due to the track-wheel contact is much larger
than the track self-weight. Therefore, the solutions to the beam resting
on the tensionless foundation subjected to an axial and a concentrated
loads can be an efficient tool of evaluating the track deflection and
other related problems.

2. Model development

As shown in Fig. 1(a), the governing equation for a beam on the
tensionless Winkler foundation subjected to an axial load T and a
transverse concentrated load P is given as the following:
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where E, I and k are the beam Young′s modulus, area moment of inertia
and the foundation modulus, respectively. Here x( ) is the Dirac delta
function. Because a beam can lift-off from a tensionless elastic foun-
dation due to its bending deformation as shown in Fig. 1(a), the beam
and tensionless foundation interaction occurs only in the area where the
springs are compressed. As a result, the beam deflection (y) is divided
into two parts: the contact part of y1 and the lift-off part of y2. As a
tensionless foundation cannot exert tension, the force associated with
the foundation vanishes for y2. The (unknown) separation points of

= ±x xo demarcate the boundary of the above two governing equations.
Here for an infinitely long beam under a transverse concentrated load,
the symmetry of the deflection and separation is assumed (Weitsman,
1970). It should be kept in mind that for an infinite beam under com-
plex transverse loads (Ma et al., 2009a), or for a finite beam under an
asymmetric transverse concentrated load (Nobili, 2013; Zhang and
Murphy, 2004, 2013), or for a beam with the dynamic effects (Chen and
Chen, 2011; Kenney, 1954), the above symmetry assumption is not
valid. However, as this model is intended for the railway application, it
is demonstrated in Appendix A that the beam deflection asymmetry due
to the dynamic effects is rather small for the real application in a high-
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speed railway track (UIC60) (Chen et al., 1997). Furthermore, it is not
difficult to extend this symmetric solution of an infinite beam to the
finite beam case in which both symmetric and asymmetric contact
scenarios can be handled (Zhang and Murphy, 2004).Physically, the
Winkler foundation is to idealize an elastic continuum as a layer con-
sisting of closely spaced, identical but mutually independent springs. As
a modeling result, the externally applied load is localized in the Winkler
foundation, or say, the Winkler foundation only deforms in the loaded
area. Therefore, the effect of load dispersion cannot be accounted by
the Winkler foundation (Dutta and Roy, 2002; Younesian et al., 2019).
Furthermore, the localized deformation behavior of the Winkler foun-
dation causes the deformation discontinuity at the boundary of the
loaded area (Dutta and Roy, 2002; Kerr, 1964; Younesian et al., 2019),
which in essence violates the compatibility condition of an elastic
continuum. To alleviate the demerits of the Winkler foundation model,
various elastic foundation models are developed. Besides the spring
layer, the Filonenko-Borodich foundation adds a membrane layer and
the Pasternak foundation adds a shear layer as shown in Fig. 1(b). The
essential improvement of the Filonenko-Borodich foundation and the
Pasternak foundation models is that the independent Winkler springs
are now connected by the membrane/shear layer and interacts to one
another (Dutta and Roy, 2002), which better characterizes an elastic
continuum. More importantly, the deformation discontinuity problem
is gone (Sapountzakis and Kampitsis, 2011a, 2011b, 2013). The re-
sponse of the surface of the one dimensional (1D) Filonenko-Borodich
foundation subjected to a distributed load f is the following (Dutta and
Roy, 2002; Kerr, 1964):

=f ky T d y
dx

,m
2

2 (2)

where Tm is the membrane tension. For the Pasternak foundation, the
following relation holds (Dutta and Roy, 2002; Kerr, 1964):

=f ky G d y
dx

,c
2

2 (3)

where Gc is the shear layer constant. Compared with the Filonenko-
Borodich foundation of Eq. (2), Tm is replaced by Gc in the Pasternak
foundation. For a beam resting on the Filonenko-Borodich and Pas-
ternak foundations subjected to a transverse concentrated load, its
governing equations are the following two
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The vibration of a beam on the Winkler foundation subjected to a
moving transverse concentrated load is described by the following
equation (Hetényi, 1946; Timoshenko and Langer, 1932):
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where m is the beam mass per unit length, t is time and v is the speed of
moving load P. The above equation describes the dynamic response of a
railroad track (modeled as a beam) to a moving concentrated load due
to the wheel-track contact (Timoshenko and Langer, 1932) and x1 is a
fixed coordinate. Its (quasistatic) steady state response is given as the
following (Hetényi, 1946; Timoshenko and Langer, 1932):

+ + =EI d y
dx
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4
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Here mv2 is with the unit of Newton and =x x vt1 is a moving
coordinate. Eq. (7) states that the track vibration induced by a moving
load effectively adds a compressive axial force of mv2 (Hetényi, 1946).
For the case of constantly moving load, the coordinate system is often
set to move with the load for the convenience of study (Kerr, 1972; Lin

Fig. 1. (a) Schematic diagram of an infinite beam on a tensionless Winkler foundation subjected to an axial load T and a concentrated load P. The concentrated load is
at the origin of the coordinate system and x2 o is the beam contact length. (b) Schematic diagram of different elastic foundation models. The Winkler foundation
consists of only a spring layer. The Filonenko-Borodich foundation is a spring layer plus a membrane layer and Tm is the tension of the membrane layer. The Pasternak
foundation is a spring layer plus a shear layer.
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and Adams, 1987).
The railroad deflection causes the rotation of cross-ties and the ro-

tation is resisted by the ballast, which exerts a bending moment on the
track. In order to more accurately evaluate the bending stresses of a
track, the following equation is given by taking account of the addi-
tional bending moment exerted by the ballast (Kerr, 1974).

+ =EI d y
dx

d y
dx
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4

4

2

2 (8)

where ρ is a proportionality constant. The mathematical equivalence of
Eqs. (4), (5), (7) and (8) to the first equation of Eq. (1) is noticed.The
following quantities are introduced
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where α is the dimensionless axial load and 1 is an important char-
acteristic length for a beam on an elastic foundation (Kerr, 1974; Tsai
and Westmann, 1967). Eq. (1) is now nondimensionalized as follows
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Here = d d() /4 4 and = d d() /2 2. At the separation points of ± o,
the vanishing deflection, moment and shear force result in the following
boundary conditions (Weitsman, 1970):

= = =Y Y Y( ) 0, ( ) 0, ( ) 0.o o o1 1 1 (11)

Due to the symmetry, only the three boundary conditions at = o
are given and the separation points also define the beam contact length
as 2 o. At = ± o, the two deflections of Y1 and Y2 are related by the
following transversality conditions (Kerr, 1976), which are also var-
iously called the matching conditions (Zhang and Murphy, 2004) or the
continuity conditions (Bhattiprolu et al., 2014; 2016)

= = = =Y Y Y Y Y Y Y Y( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ).o o o o o o o o1 2 1 2 1 2 1 2

(12)

Physically, the transversality conditions are to ensure the continuity
of the deflection, slope, moment and shear at the separation points
(Zhang and Murphy, 2004). Again, because of the symmetry, only the
four transversality conditions at = o are given in Eq. (12). In con-
junction with the boundary conditions of Eq. (11), the above trans-
versality conditions can also be equivalently written as the following

= = = =Y Y Y Y Y( ) 0, ( ) ( ), ( ) 0, ( ) 0.o o o o o2 1 2 2 2 (13)

The α value determines the solution form of Eq. (10) and there are
the following five cases in total: no axial load case of = 0, three
tensile cases of < <0 1, = 1 and > 1 and one compressive case of

< <1 0.

Case I. = 0
This is the zero axial load case and the corresponding solution forms

of Eq. (10) are the following (Weitsman, 1970):
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Here A1, B1, H, G, A2, B2, C2 and D2 are the eight unknown constants
to be determined. Keep in mind that o is also unknown, which is the
major reason responsible for the mathematical difficulty of the ten-
sionless contact (Bhattiprolu et al., 2014, 2016; Kerr, 1972; Lin and
Adams, 1987; Weitsman, 1970 Zhang and Murphy, 2004). In the above
equation, the first two terms of +A Bsinh sin cosh cos1 1 are the

homogeneous solution of Y1 and the last two terms of
+H Gsinh | | cos cosh sin | | are the particular solution. There are

two other homogeneous solution terms associated with the odd func-
tions of sinh cos and cosh sin , which are tossed away. Because the
presence of odd functions breaks the deflection symmetry, only even
functions survive in the solution form. It is noticed that the particular
solution of +H Gsinh | | cos cosh sin | | is the even function con-
structed from the above two odd functions.

Case II. < <0 1
The corresponding solution forms of Eq. (10) are as follows
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Here 1 and 2 are defined as = +11 and = 12 .

Case III. = 1
The corresponding solution forms of Eq. (10) are as follows
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Case IV. > 1
The corresponding solution forms of Eq. (10) are as follows
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Here 1 and 2 are defined as = +2 2 11
2 and

= 2 2 12
2 .

Case V. < <1 0
The corresponding solution forms of Eq. (10) are as follows
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+
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Here 1
* and 2

* are defined as = 1 | |1
* and = +1 | |2

* .
When = 1, the corresponding axial load = =T k kEI22 as
defined by Eq. (9) is (compressive) buckling load of an infinite beam on
the Winkler foundation that reacts to both tension and compression
(Hetényi, 1946). Once the beam buckles and enters the post-buckling
region, i.e., 1, the linear equations of Eq. (10) do not apply. This is
the reason why we only handle one compression case of < <1 0.

With the above five different solution forms depending on α, the
separation point of o and eight unknown constants of A1, B1, H, G, A2,
B2, C2 and D2 are found in conjunction with the boundary conditions of
Eq. (11) and transversality conditions of Eq. (13). The detailed proce-
dures are presented in Appendix B. Because finding the separation point
is the major difficulty and a key thing in the tensionless contact pro-
blem, the equations for the five cases to determine o are summarized as
follows.

Case I. = 0

=cosh( )cos( ) 0.o o (19)

This equation was firstly derived by Weitsman (1970). Clearly,
= /2o is a solution. There are other solutions such as
= +n(2 1) /2o ( = …n 1,2,3 ), which are discarded. The reason is that

only = /2o can ensure Y 01 in the region of | | o (Weitsman,
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1970).

Case II. < <0 1
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Clearly, Eq. (21) results in =cosh( )cos( ) 0o o , which recovers Eq.
(19) of the = 0 case.

Case III. = 1
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resemblance between Eqs. (20) and (24) is noticed. If 1
* is replaced

by 1 and 2
* by 2, Eq. (24) becomes Eq. (20). Similar to the < <0 1

case, when = 0, = = 11
*

2
* and Eq. (24) becomes the following

+
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Again, Eq. (25) results in =cosh( )cos( ) 0o o , which recovers Eq.
(19) of the = 0 case.

In all the five equations determining o, one thing in common is that
they do not contain F. This is a benchmark characteristics of the ten-
sionless contact of various structures subjected to a single transverse
concentrated load (Weitsman, 1970; Zhang and Murphy, 2004). Here
the presence of an axial force does not change this benchmark property.
A finite element analysis is also carried out to numerically verify this
conclusion and ensure the correct derivations of those unknown con-
stants as given in Appendix B. Besides an infinite beam, for a finite
beam (Zhang, 2008; Zhang and Murphy, 2004), a finite or infinite plate
(Dempsey et al., 1984; Weitsman, 1969; Zhang and Murphy, 2012), the
conclusion of the contact length/area independence on a single con-
centrated load still holds even when the support is modeled as the
tensionless Reissner foundation (Zhang, 2008) or as the tensionless
elastic half-space (Weitsman, 1972).

3. Results and discussion

Depending on the α value, the separation point of o is determined
by Eq. (19)–(23). Except Eq. (19), the other four equations have to be
numerically solved by the Newton-Rhapson method (Press et al., 1986).
In Eq. (19)–(23), the concentrated load of F has no impact on o. As seen
from the solution forms of the eight unknown constants presented in
Appendix B, F acts as a proportionality factor which modulates the
magnitude of the beam deflection. In all the results presented in this
study, =F 1 is taken.

Fig. 2 plots the beam deflections with = 0, 0.5 and 0.9, re-
spectively. The deflection with = 0 is described by Eq. (14) and the
other two are described by Eq. (18). The separation points are marked
by circles. As the axial compression increases, i.e., the decreasing ne-
gative α, both the contact length and the deflection magnitude enlarge:

= /2o , 1.644, 1.718 and =Y (0) 0.545, 0.86, 1.458 for = 0, 0.5
and 0.9, respectively. Because the compressive axial load reduces the
system effective stiffness, the beam has to increase its contact length
and deflection to balance the concentrated load. In conjunction with
Eq. (18) and Eq. (41) in Appendix B, we have =Y Blim (0)1 1 1 ,
which is the buckling definition of the system effective stiffness be-
coming zero (Hetényi, 1946). Therefore, the buckling loads of an in-
finite beam on the Winkler foundation and the tensionless Winkler
foundation are the same as = 1. The reason is that upon the buck-
ling, there is no beam (upward) deflection and the effects of the two
Winkler foundations are thus the same. However, once the beam
buckles and enters the post-buckling region with an upward beam de-
flection, there is an instant difference between these two foundations
(Kerr and El-Aini, 1978). It is also interesting to notice that though the
deflections of a beam on these two foundations become infinite upon
the buckling load, their contact length and wavelength are finite. The
computation of Eq. (24) yields lim 1.738o1 . In comparison, the
half wavelength of the buckling beam on the Winkler foundation that
reacts to both tension and compression is = EI T/ 2 /| | (Hetényi,
1946) and its corresponding dimensionless form is

= = / 2 2.22. Fig. 3 shows the beam deflections with = 0.5,
1 and 1.5, respectively. The deflections are described by Eq. (16) for

= 1 and by Eq. (15) for = 0.5 and = 1.5. As the tension (α) in-
creases, both the contact length and deflection magnitude decrease:

= 1.511o , 1.46, 1.417 and =Y (0) 0.389, 0.297, 0.237 for = 0.5, 1 and
1.5, respectively. The reason is that the tensile axial load increases the
system effective stiffness and as a result, smaller contact length and
deflection are needed to balance the concentrated load. In Eq. (1) or

Fig. 2. The beam deflections with three different αs. As the compression in-
creases (α decreases), the half contact length increases from = /2o of = 0 to

= 1.644o of = 0.5 and to = 1.718o of = 0.9. The beam maximum de-
flection also increases from =Y (0) 0.545, to =Y (0) 0.86 and to =Y (0) 1.458 for

= 0, 0.5 and 0.9, respectively.
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(10), an implicit assumption is that there is only one contact zone of
x x| | o (Weitsman, 1970). This assumption is valid for the tensionless
foundation. The foundation of a ballastless high-speed railway de-
monstrates some (weak) capability of withholding tension, which is
described an asymmetric bilinear foundation model (Zhang et al.,
2018). In the bilinear foundation model, there are multiple contact
zones for an infinite beam/track under a concentrated load (Zhang
et al., 2018). However, in the contact zone where the concentrated load
is located, there are little differences of the beam deflections and con-
tact stresses as predicated by the tensionless foundation and the bilinear
foundation models (Zhang et al., 2018). The mechanism for this little
difference is that the major deformations of both the elastic foundation
and beam are in a small (contact) region around the concentrated load
(Zhang et al., 2018).

We need to address an important issue on the beam deflection in the
lift-off zone. For all five cases, = =A B 02 2 in the lift-off zone of > o.
Therefore, all the beam deflections with different α values are described
by = +Y C D( )2 2 2. Clearly, Y ( )2 is a straight line and it approaches
infinity as ξ approaches infinity, which is unphysical. However, this
deflection configuration does satisfy the equilibrium equation of Eq.
(10). Because =Y Y( ) ( ) 02 2 , the > o part of the beam deflection
has no contribution to the moment and shear, which is the reason why
it can go to infinity without violating the equilibrium equation. As
mentioned above, this unphysical feature of the beam deflection going
to infinity can be easily overcome by considering the distributed load of
the beam self-weight (Tsai and Westmann, 1967; Weitsman, 1970,
1972). While, for the tensionless contact under a concentrated load, the
focus is on the contact zone (Weitsman, 1970, 1972), in which the
deflection results are reliable.

The beam bending moment, which is given as
= =M EIy EI Y , determines the beam maximum axial stress as

= My I/max b . Here yb is the distance between the beam cross-section
surface(s) and its neutral axis. For a given beam, yb is fixed. The max-
imum axial stress, which is directly associated with the curvature of Y ,
is an important parameter of evaluating the stress, fatigue and fracture
of a railroad track (Hetényi, 1946; Timoshenko and Langer, 1932).
Figs. 4 and 5 present the beam curvatures under different axial load. In
Fig. 4, the curvatures of = 0, 0.5 and 0.9 are presented. Clearly,
the maximum value of Y| ( )| is at = 0 and it monotonically decreases
to zero as ξ increases. For = 0, 0.5 and 0.9, the maximum cur-
vature values are =Y| (0)| 1.09, =Y| (0)| 1.441 and =Y| (0)| 2.048,

respectively. As also seen in Fig. 4, a larger compression results in a
larger Y| ( )| at any given point of ξ. For = 0.5, 1 and 1.5 in Fig. 5,

=Y| (0)| 0.898, =Y| (0)| 0.776 and =Y| (0)| 0.69, respectively.
Clearly, a larger tension results in a smaller Y| ( )| at any given point of
ξ. As seen in Fig. 2, the beam under a larger axial compression is with a
larger contact length but a significantly larger deflection magnitude.
Therefore, the variations of both the beam deflection and slope are
much larger in a slightly larger contact area, which results in a larger
curvature and thus a larger bending stress. The similar argument also
explains why a larger tension results in a smaller curvature. In sum-
mary, the presence of compressive axial load increases the bending
stress and thus makes the stress concentration at the concentrated load
locus more severe, which may significantly reduce the life span of a
track. On the other hand, the presence of tensile axial load mitigates the
stress concentration problem by distributing the bending stress more
uniformly. In the track-wheel contact application, a larger train speed
results in a larger axial compression as reflected by Eq. (7), which is
harmful to a railroad track. In conjunction with Eqs. (4) and (5), besides
exerting axial tension on the track, increasing the tension of membrane
layer (Tm) or the shear layer constant (Gc) is also an effective method of
reducing the stress concentration and improving the system stiffness. A
reinforced bed overlaying a soft soil stratum is often used to improve

Fig. 3. The beam deflections under tensile axial loads with three different po-
sitive αs. As the tension increases, the half contact length now decreases from

= 1.511o of = 0.5, to = 1.46o of = 1 and to = 1.417o of = 1.5. The beam
maximum deflection also decreases from =Y (0) 0.389, to =Y (0) 0.297 and to

=Y (0) 0.237 for = 0.5, 1 and 1.5, respectively.

Fig. 4. The curvatures of = 0, 0.5 and 0.9. The separation points marked
by circles are the same as those in Fig. 2.

Fig. 5. The curvatures of = 0.5, 1 and 1.5. The separation points marked by
circles are the same as those in Fig. 3.
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the bearing capacity of a rail-foundation system. The reinforced bed
consists of two layers: the granular fill layer and the geosynthetic layer
(Maheshwari et al., 2004). In the viewpoint of modeling, the granular
fill layer is the shear layer of the Pasternak foundation and the geo-
synthetic layer is the membrane layer of the Filonenko-Borodich
foundation (Maheshwari et al., 2004).

In Fig. 6, the above results are more succinctly summarized. Fig. 6
(a), (b) and (c) present the half contact length ( o), beam deflection
magnitude (Y (0)) and curvature ( Y| (0)|) as the functions of the axial
load (α). These three quantities are all monotonically decreasing and
nonlinear functions of α. The special case of = 0 was analytically
solved by Weitsman (1970) and the related results are marked with
circles in Fig. 6. As discussed above, for all different αs, Y F( ) and
therefore, both the displacement and curvature at any given point of ξ
will vary linearly with F. Fig. 7 plots the force-displacement of F Y (0)
with different αs. The linear relation between F and Y ( ) also implies
that for different transverse loads of F, only one F Y ( ) data is needed
and all others can be easily extracted by this linearity relation.

4. Conclusion

Depending on the value of the axial load, the solution form of a beam
on the tensionless Winkler foundation varies. Total five different solution
forms are studied and the corresponding five equations of determining the
separation point are derived. Once the separation point is numerically
solved, the closed form expressions of the beam deflection can be found.
Under a same transverse concentrated load, the compressive axial load
reduces the system stiffness and thus enlarges the beam deflection, which
also leads to a larger bending stress concentration. On the other hand, the
tensile axial load increases the system stiffness, which results in both
smaller beam deflection and smaller bending stress. The tensile axial load
can thus be utilized as an effective method to relieve the stress con-
centration. For the tensionless contact of an infinite beam subjected to a
transverse concentrated load, a hallmark property is that the concentrated
load has no influence on the contact length whatever the axial load is. The
effect of a concentrated load is to linearly determine the magnitude of the

beam deflection. This outstanding property means that for the response of
an infinite beam on a tensionless foundation subjected to a given axial
load and varying transverse concentrated loads, only one computation in
essence is needed and all other results can then be easily obtained by
multiplying a numerical factor.
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Appendix A. The Beam asymmetric deflections under a moving concentrated with the presence of damping

With the presence of damping, Eq. (7) of our manuscript becomes the following by adding a damping term (Kenney, 1954)

+ + + =EI y
x

m y
t

c y
t

ky P x vt( ),
4

4

2

2 (26)

where v is the load P moving speed. The following quantities are introduced (Kenney, 1954):

= = = = = = = =k
EI

v kEI
m

c km Y y x vt v
v

c
c

F P
k4

, 4 , 2 , , ( ), , , 4 ,cr r
cr r

2

2
4 4

(27)

where vcr and cr are the critical speed and damping, respectively. Here = x vt( ) is a moving coordinate. The dimensionless steady-state of Eq.
(26) in a moving coordinate system with a constant speed is written as follows:

+ + =Y Y Y Y F4 8 4 ( ).
4

4
2

2

2 (28)

Clearly, Y4 /2 2 2 is an effective axial compression induced by the moving concentrated load. Due to the presence of damping, the derivation of
the (approximate) analytical solution is complex and very lengthy (Kenney, 1954). Here we only present the results based on the Kenney′s (1954)
solution to Eq. (28).

Fig. A1 plots the wave shapes of = 1 and = 2 with the underdamping of = 0.1, which is also Fig. 1(b) presented by Kenney (1954). Here
= 1 is the (dimensionless) critical moving speed. With the presence of damping, = 1 and = 2 are the subcritical and supercritical cases,

respectively. The symmetric static solution (Hetényi, 1946) is also plotted for a comparison. Clearly, the asymmetric wave shapes and multiple
contact zones arise in both cases with the presence of damping. Besides damping, the moving speed also determines the asymmetry. Even with no
damping ( = 0), the asymmetry of wave shape can still arise when a moving speed surpasses the critical speed (Kenney, 1954). This causes an even
more outstanding asymmetry for the supercritical case as seen in Fig. A1. With such high moving speeds of = 1 and = 2, the assumptions of
symmetry and one contact zone are indeed invalid.

Fig. A2 plots the wave shapes of = 0.1 and = 0.2 in comparison with the static deflection. The same = 0.1 is taken. In the subcritical range of
moving speed, it is actually the combined effect of moving speed and damping which determines the asymmetry. As seen in Fig. A2, there is little
difference between these three curves. Because the static one is symmetric and with only one contact zone, the symmetry and one contact zone
assumptions are good ones for = 0.1 and = 0.2. Furthermore, the “small” speeds of = 0.1 and = 0.2 may physically correspond to very large
“absolute” speeds. For a high-speed railway track (UIC60) (Chen et al., 1997), its parameters are the following: = ×E 2 1011 N/m2, = ×I 3.06 10 5

m4 and =m 60.34 kg/m. The foundation modulus varies in a large range of ×5 106 N/m2 k 109 N/m2 (Chen and Chen, 2011) and here a very
moderate value of = ×k 1.67 107 N/m2 is taken. The corresponding critical speed and damping defined in Eq. (27) are with the following fixed
values: =v 572.7cr m/s (2061.7 km per hour) and =c 62134r kgm−1s−1. As a result, = 0.1 and = 0.2 in Fig. A2 physically correspond to the train
speed of 206.17 km per hour and 412.34 km per hour, respectively. Currently, there are no operating trains with a speed higher than 400 km per
hour.

Here a noteworthy point is that the governing equation of Eq. (10) in conjunction with the transversality condition of Eq. (12) is capable of
handling the asymmetric contact scenario (Zhang and Murphy, 2004). The symmetry assumption simply reduces the mathematical difficulty of
derivation.

Appendix B. Determining the unknowns of the closed form solution

To determine the nine unknowns of o, A1, B1, H, G, A2, B2, C2 and D2 in Eqs. (14)–(18), the following three steps are carried out: The first is to find
H and G; the second is to find o and the third is to find A1, B1, A2, B2, C2 and D2. This three-step procedure applies to all five cases of different α
values. Because = 0 and = 1 are the two special cases and < <0 1, > 1 and < <1 0 are the three general cases, here we demonstrates the
solution procedure for the < <0 1 case.

The solution form of the < <0 1 case, the particular solution of Y1 as given by Eq. (15) is
+ = +H G Hf Gfsinh | | cos( ) cosh( )sin | |1 2 1 2 1 2. By definition, =f sinh | | cos( )1 1 2 and =f cosh( )sin | |2 1 2 . The successive differentia-

tions on f1 yield the following

=

= +

=
+ +

=
+

+ +

f

f

f

f

cosh( )sgn( )cos( ) sinh | | sin( ),

( )sinh | | cos( ) 2 cosh( )sin | | 2 ( ),

( )[ cosh( )sgn( )cos( ) sinh | | sin( )]
2 [ sinh( )sin | | cosh( )cos( )sgn( )] 2 ( ),

( )[( )sinh | | cos( ) 2 cosh( )sin | |]
2 [( )cosh( )sin | | 2 sinh | | cos( )]
[2 ( ) 4 ] ( ) 2 ( ),

1 1 1 2 2 1 2

1 1
2

2
2 1 2 1 2 1 2 1

1 1
2

2
2 1 1 2 2 1 2

1 2 1 1 2 2 1 2 1

1 1
2

2
2

1
2

2
2 1 2 1 2 1 2

1 2 1
2

2
2 1 2 1 2 1 2

1 1
2

2
2 1 2

2 1 (29)

where sgn ( ) is the sign function, = +11 and = 12 . In a similar way, we can obtain the second and fourth derivatives of f2 as follows

= + +
= +
+

+ +

f
f

( )cosh( )sin | | 2 sinh | | cos( ) 2 ( ),
( )[( )cosh( )sin | | 2 sinh | | cos( )]
2 [( )sinh | | cos( ) 2 cosh( )sin | |]

[2 ( ) 4 ] ( ) 2 ( ).

2 1
2

2
2

1 2 1 2 1 2 2

2 1
2

2
2

1
2

2
2

1 2 1 2 1 2

1 2 1
2

2
2

1 2 1 2 1 2

2 1
2

2
2

1
2

2 2 (30)

By substituting the particular solution and its derivatives of +Hf Gf1 2, +Hf Gf1 2 and +Hf Gf1 2 into the first equation of Eq. (10), only the
( ) and ( ) terms survive. Equating the coefficients of ( ) and ( ), we have the following two equations after some simple manipulations using

the relations of = 21
2

2
2 and = 11 2

2 :
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+ + =
+ =

H G F
H G

( 1 ) ( 1 ) ,
0.

1
2

2 2
2

1

1 2 (31)

Now H and G are solved as the following:

= =H F G F
2

,
2

.
1 2 (32)

Substituting the above H and G into Y1 of Eq. (15) and taking the derivative successively, we have the following relations at = o

= +

+

= + +

+ +

= + +

+ + +

= +
+ +

+ + +

( )

( )

( )

Y A B

Y A B A B

Y A B B A

Y A B
A B

( ) sinh( )sin( ) cosh( )cos( ) sinh( )cos( )

cosh( )sin( ),

( ) ( )sinh( )cos( ) ( )cosh( )sin( )

sinh( )sin( ),

( ) [ ( ) 2 ]sinh( )sin( ) [ ( ) 2 ]cosh( )cos( )

[ sinh( )cos( ) cosh( )sin( )],

( ) [ (3 ) 2 ( 3 )]sinh( )cos( )
[ ( 3 ) 2 ( 3 )]cosh( )sin( )

[( )sinh( )sin( ) 2 cosh( )cos( )].

o o o o o
F

o o
F

o o

o o o o o
F

o o

o o o o o
F

o o o o

o o o

o o
F

o o o o

1 1 1 2 1 1 2 2 1 2

2 1 2

1 1 2 1 1 1 2 1 1 1 2 1 2

2 1 2

1 1 1
2

2
2

1 1 2 1 2 1 1
2

2
2

1 1 2 1 2

2 2 1 2 1 1 2

1 1 2 1
2

2
2

1 1 1
2

2
2

1 2

1 1 1
2

2
2

1 2 2
2

1
2

1 2

2 1
2

2
2

1 2 1 2 1 2

1

2

2
1

1
2

2
1

1
2

2
1

1
2 (33)

Applying the first two boundary conditions of =Y ( ) 0o1 and =Y ( ) 0o1 as given in Eq. (11), we obtain the following two equations after some
simple manipulations

+ =

+
+

= + +( )

A B

A
B

sinh( )sin( ) cosh( )cos( ) sinh( )cos( ) cosh( )sin( ),

[( )sinh( )sin( ) 2 cosh( )cos( )]
[( )cosh( )cos( ) 2 sinh( )sin( )]

[ sinh( )cos( ) cosh( )sin( )]

o o o o
F

o o
F

o o

o o o o

o o o o
F

o o o o

1 2 1 1 2 1 2 1 2 2 1 2

1
2

2
2

1 2 1 2 1 2 1

1
2

2
2

1 2 1 2 1 2 1

2 2 1 2 1 1 2

1 2

2
1

1
2 (34)

Now A1 and B1 are solved as the following:

=

=

+

+

A

B

,

,

F
Det

F
Det

1
[ sinh( )cosh( ) sin( )cos( )]

1
[ sinh( )cosh( ) sin( )cos( )]

o o o o

o o o o

1 1 1 2 2 2

2 1 1 1 2 2
(35)

where = +Det 2 [sinh ( )sin ( ) cosh ( )cos ( )]o o o o1 2
2

1
2

2
2

1
2

2 . By substituting the above A1 and B1 solutions into Y ( )o1 of Eq. (33) and applying
the boundary condition of =Y ( ) 0o1 , the following equation, which is also Eq. (20), is obtained after some manipulations

+ + +

=

+ ( )[2 sinh( )sin( ) 2 1 cosh( )cos( )]

cosh( )cos( ) 0.

o o o o Det

Det o o

1 2
2

1 2
2[cosh ( ) cos ( )] 1

2

8 1
1 2

o o
2 1 2 2 2

1
1
2

2

(36)

Eq. (36), which is independent of the concentrated load F, is the equation to determine the separation point of o.
Once o is determined by Eq. (36) and substituted into Eq. (35), A1 and B1 are found. Now only four unknowns of A2, B2, C2 and D2 are left, the

transversality conditions of Eq. (13) provide four equations to solve these four unknowns.
For all other cases with different α values, the nine unknowns can also be determined by repeating the above three steps. For the succinctness

purpose, we only summarize the results as follows.

Case I. = 0
The separation point is determined as = /2o by Eq. (19). The other eight unknowns are given as follows

= = = = = = = =( )A F B A H F G H A B C F D C
2

coth
2

, ,
2

, , 0,
sinh

,
2

.1 1 1 2 2 2

2

2 2

(37)

Case II. < <0 1
The separation point of o is determined as by Eq. (20) or the same equation as the above Eq. (36). The other eight unknowns are given as follows

= = = = = =

= + + + +

=

+ +A B H G A B

C A chs shc B shc chs chc shs shs chc

D C

, , , , 0,

( ) ( ) ( ) ( ),

,

F shch sc
Det

F shch sc
Det

F F

F F

o

1
( )

1
( )

2 2 2 2

2 1 1 2 1 1 2 2 1 2 2 1 2

2 2

1 2 2 1
1 2

1 2

(38)

where = +11 , = 12 , = +Det 2 [sinh ( )sin ( ) cosh ( )cos ( )]o o o o1 2
2

1
2

2
2

1
2

2 . Here for brevity reason, we define =sh sinh( )o1 ,
=ch cosh( )o1 , =s sin( )o2 and =c cos( )o2 .

Case III. = 1
The separation point of o is determined as by Eq. (22). The other eight unknowns are given as follows
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= = = =

= = = + + + =

A B H G

A B C A B D C

, [ 2 sinh( 2 )cosh( 2 ) 2 ], , ,

0, [sinh( 2 ) 2 cosh( 2 )] 2 sinh( 2 ) sinh( 2 ), .

F F
o o o

F F

o o o o
F

o o o

1
sinh( 2 )

2 cosh( 2 ) 1 4 cosh ( 2 ) 2 2 2

2 2 2 1 1
2
2 2 2

o
o o

2

(39)

Case IV. > 1
The separation point of o is determined as by Eq. (23). The other eight unknowns are given as follows

= =

= = = =

A B

H G H A B

sinh( )cosh( ), cosh( )sinh( ),

, , 0,

F

Det o o
F

Det o o

F

1
( )

2 1 1 2 1
( )

2 1 1 2

2 1
2 2

1
2

2
2

1 2 1

2
2

1
2

1 2 1

1
2

1 2
1
2

= + + =C A B H D Csinh( ) sinh( ) [cosh( ) cosh( )], ,o o o o o2 1 1 1 1 2 2 1 1 2 2 2 (40)

where = +2 2 11
2 , = 2 2 12

2 and =Det ( )cosh( )cosh( )o o1 2
2

1
2

1 2 .

Case V. < <1 0 The separation point of o is determined as by Eq. (24). The other eight unknowns are given as follows

= = = = = =

= + + + +

=

+ +A B H G A B

C A chs shc B shc chs chc shs shs chc

D C

, , , , 0,

( ) ( ) ( ) ( ),

,

F shch sc
Det

F shch sc
Det

F F

F F

o

1
[ ]

1
[ ]

2 2 2 2

2 1 1
*

2
*

1 1
*

2
*

2 1
*

2
*

2 1
*

2
*

2 2

1
*

2
*

*
2
*

1
*

*
1
*

2
*

1
*

2
*

(41)

where = 1 | |1
* , = +1 | |2

* and = +Det 2 [sinh ( )sin ( ) cosh ( )cos ( )]o o o o
*

1
*

2
* 2

1
* 2

2
* 2

1
* 2

2
* . Again, for brevity reason, we define

=sh sinh( )o1
* , =ch cosh( )o1

* , =s sin( )o2
* and =c cos( )o2

* .

Fig. A1. The asymmetric wave shapes of a beam under a moving concentrated load with very high speeds.
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Fig. A2. The wave shapes of a beam under a moving concentrated load with low speeds.
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