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The experimental study on thermocapillary convection in liquid bridges of large
Prandtl number has been carried out on Tiangong-2 in space. The purpose of these
experiments is to study the oscillation instability of thermocapillary convection,
and to discover and recognize the mechanism of destabilization of thermocapillary
convection in the microgravity environment in space. In this paper, the geometry of
a half-floating-zone liquid bridge is featured by the aspect ratio Ar and volume ratio
Vr, and its influence on critical conditions of oscillatory thermocapillary convection
is studied. More than 700 sets of space experiments have been finished. The critical
conditions and oscillation characteristics of thermocapillary convection instability in
the Ar–Vr parameter space have been fully obtained under microgravity conditions
for the first time. It is found that the Ar–Vr parameter space can be divided into two
regions of different critical conditions and oscillation characteristics: the region of low
frequency oscillation, and the region of high frequency oscillation. More importantly,
we obtain the complete configuration of these two stability neutral curves, and find
that the low frequency mode is a ‘ ’ type curve. Based on this, we discuss the
influence of heating rate on the oscillation mode. It is found that the heating rate
affects the selection of critical mode, which results in a jump change of critical
temperature difference. The findings of this study are helpful to better understand the
critical modes and transition processes of thermocapillary convection in liquid bridges
with different configurations.

Key words: Marangoni convection, thermocapillarity, liquid bridges

1. Introduction

Liquid bridge refers to a section of liquid formed between two solid walls under
the action of liquid surface tension. An example of a naturally formed liquid bridge
can be found in porous media (Dejam & Hassanzadeh 2011; Mashayekhizadeh et al.
2012; Dejam, Hassanzadeh & Chen 2014a,b, 2015), which is useful in industry, for
example, oil recovery. In the single crystal growth of floating-zone method, the melt
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FIGURE 1. (Colour online) Schematic diagrams of liquid bridges. (a) The floating-zone
and (b) half-floating-zone.

forms a liquid bridge between polycrystalline and single crystal. With the moving of
the floating zone, the melt is directionally solidified and the single crystal is produced.
Thermal convections, including buoyant convection and thermocapillary convection,
are formed in the bulk of liquid due to temperature gradient. In the small liquid
bridge or the liquid bridge under microgravity conditions, thermocapillary convection
plays a dominant role. Thermocapillary convection originates from the property that
surface tension decreases with the increase of temperature. Therefore, the surface
tension drives the surface liquid to move from the hot end to the cold end, so
thermocapillary convection forms.

Schwabe et al. (1978) and Chun & Wuest (1979) found that thermocapillary flow
in the floating-zone liquid bridge transits from steady flow to three-dimensional
oscillatory flow when the temperature difference exceeds a certain value. This kind
of oscillatory flow was thought to be related with the inhomogeneity in the crystal,
i.e. there are striations in the crystal growth because the oscillation can affect the
mass transfer. In space laboratories D-1, D-2 and the sounding rocket, the influence
of thermocapillary flow on the process of crystal growth by floating-zone method
has been studied (Eyer, Leiste & Nitsche 1985; Cröll et al. 1991, 1994). Under
the microgravity conditions, it has been proved that striations in the crystal growth
are caused by oscillatory thermocapillary flow. Therefore, the study on oscillatory
thermocapillary flow has great significance in the quality improvement of crystal
growth as well as material preparation in space.

Thermocapillary instability from steady flow to oscillatory flow has received wide
attention in fundamental research. The half-floating-zone liquid bridge with one
rod being heated and another rod being cooled was proposed (see figure 1b). It
is used as a simplified model to study fluid dynamics in the liquid bridge. The
melt of semiconductor materials, which is the fluid with a small Prandtl number, is
not suitable for the experimental purpose because of its high melting point, easily
oxidizing surface and opacity. Usually transparent fluids are used as the flow media
in experiments, for example, silicone oil or salt-melt, which are fluids with large
Prandtl numbers.

The mechanism of thermocapillary oscillation in the fluid with a small Prandtl
number is different from that in the fluid with a large Prandtl number. Oscillatory
thermocapillary flow in the fluid with a small Prandtl number is the destabilization
process driven by the inertia force of flow, and its critical parameter is represented by
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the Reynolds number. However, oscillatory thermocapillary flow in a fluid with a large
Prandtl number is caused by the instability of hydrothermal waves, and its critical
parameter is represented by the Marangoni number. The instability of hydrothermal
waves was first proposed by Smith & Davis (1983) in their linear stability analysis
of an infinite horizontal liquid layer. Xu & Davis (1984) applied the instability of
hydrothermal waves to the study of thermocapillary convection in the infinite liquid
bridge. They assumed the disturbance to be a normal mode, i.e. exp(i(αz+mθ − σ t)),
where α is the axial wavenumber, m is the azimuthal wavenumber and σ is the
growth rate. The instabilities of different modes, i.e. m = 0 or m = 1 and α = 0 or
α 6= 0, were studied.

The best way to verify hydrothermal waves is to conduct space experiments
with a very long liquid bridge, which reduces the deviation from theoretical study
that assumes the infinite length of the liquid bridge. Schwabe (2005) carried out
experimental study on MAXUS4 on thermocapillary convection with a large aspect
ratio (Ar = 2.5), which was close to the Rayleigh limit π. Hydrothermal waves in
oscillatory flow were found in the experiments, and the critical conditions for starting
oscillations were consistent with the results by Xu & Davis (1984) in the analysis
of the liquid bridge with infinite length. Ryzhkov (2011) reanalysed the instability of
thermocapillary flow in the liquid bridge with infinite length, and found that there
existed a new mode with m = 1 in the liquid bridge with a large Prandtl number.
The critical condition of this new mode was closer to the experimental result by
Schwabe (2005).

The critical conditions of oscillatory thermocapillary convection and the aspect
ratio effect in the liquid bridge are the most widely studied issues (Schatz & Neitzel
2001; Hu, Tang & Li 2008). Velten, Schwabe & Scharmann (1991) systematically
studied the influence of different aspect ratios in the 24-Alkane (Pr = 47) liquid
bridge, and found that the critical Marangoni number decreased with the increase of
aspect ratio Ar. However, Preisser, Schwabe & Scharmann (1983) found an opposite
trend in their ground experiments with the fluid media NaNO3, in which the critical
Marangoni number increased with the increase of aspect ratio. The space experimental
results with 5 cSt silicone oil as the fluid media given by Albanese et al. (1995) also
indicated that the critical Marangoni number increased with the increase of aspect
ratio, from 0.8× 104 to 2× 104. Hu & Tang (2013) carried out ground experiments
and studied the aspect ratio effect on liquid bridges with different sizes (diameter
D= 2 mm, 3 mm, 4 mm, 5 mm and 6 mm) with 5 cSt and 10 cSt silicone oil as the
fluid media, respectively. They found that the critical Marangoni number increased
first and then decreased with the increase of aspect ratio.

Recently, a series of experiments named MEIS (2008–2013) were conducted in
the ‘KIBO’ cabin on the International Space Station (ISS). The fluid media in these
experiments included 5 cSt (Pr = 67), 10 cSt (Pr = 112) and 20 cSt (Pr = 207)
silicone oil, the diameters of liquid bridges were 30 mm and 50 mm, and the
maximum aspect ratio was 2.5. Nishino et al. (2015) reported results of MEIS about
the critical Marangoni number for liquid bridges with 5 cSt silicone oil and 20 cSt
silicone oil as the media for different aspect ratios. The critical Marangoni number
had a peak when Ar = 0.89, which was consistent with the trend of first increasing
and then decreasing found by Hu & Tang (2013). In addition, it was found that the
critical condition for the liquid bridge with 5 cSt silicone oil had a jump change
when Ar = 1.25–1.50, and the corresponding jump change in oscillation frequency
was more obvious, from 22 mHz to 6.3 mHz. Yano & Nishino (2015) also suggested
that the jump change was related to the change in heat transfer on the surface.
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Also, it was found by Nishino et al. (2015) that the neutral stability curve given by
linear stability analysis was in agreement with the critical condition obtained from
the space experiments with 5 cSt silicone oil, but it was needed to set different Bi
numbers for the two conditions of Ar < 1 and Ar > 1. More recently, new space
experiments named Dynamic Surf (2013–2016), which aimed to study the dynamic
free surface deformation and the interfacial heat transfer, were conducted on board
the International Space Station (Yano et al. 2018).

The shape of the meniscus is another important geometric factor that affects
thermocapillary convection. It can be represented by non-dimensional parameters, the
volume ratio V/V0 or the diameter ratio dmin/D, where dmin is the necking diameter
of the liquid bridge. Hu et al. (1994) carried out systematic ground experiments
about the influence of volume ratio on critical conditions with 10 cSt silicone oil
as the fluid media. They proposed that the critical curve was separated into two
branches, the branch of the slender liquid bridge (small volume ratio) and the branch
of the fat liquid bridge (large volume ratio). The critical Marangoni number of the
slender liquid bridge increased with the increase of the volume ratio, and the critical
Marangoni number of the fat liquid bridge decreased with the increase of the volume
ratio. There was a stable ‘gap’ between these two branches. Chen & Hu (1998)
further proved that two branches of the critical curve existed in liquid bridges with
large Pr numbers.

The branches of the critical curve have been verified in many ground experiments,
but there are disputes of opinion regarding the gap. Masud, Kamotani & Ostrach
(1997) carried out ground experiments at the aspect ratio Ar= 0.4–0.7, with the fluid
media being 2 cSt silicone oil (Pr = 28–29). They obtained results similar to those
by Hu et al. (1994), but they suggested that there was not a stable ‘gap’, but a jump
change in the critical condition. Xun, Li & Hu (2010) analysed the influence of
volume ratio on critical oscillations through the linear stability method, and suggested
that there was an oscillation with m = 0 in the ‘gap’. Sim & Zebib (2002) studied
thermocapillary oscillations in the liquid bridge with a meniscus (Pr = 27) through
numerical simulations, and found that the volume ratio effect was in agreement with
the experimental result when Bi = 1. Sakurai, Ohishi & Hirata (2004, 2007a) and
Sakurai, Ohishi & Hirata (2007b) studied the volume ratio effect experimentally in
the normal gravity environment and in the drop tower, respectively. They came to
results in agreement with the opinion of Chen & Hu (1998) that the ‘gap’ region
exists for the fluid with a relative large Pr number, such as 2 cSt and 5 cSt silicone
oil, but it does not exist for the fluid with a small Pr number such as 1 cSt and
1.5 cSt silicone oil. They also found that oscillations would occur in the originally
stable gap in the microgravity environment.

Most studies considered effects of the aspect ratio Ar and the volume ratio Vr
separately on thermocapillary convection. Thermocapillary convection oscillations in
cylindrical liquid bridges (Vr = 1) are more frequently studied in space experiments,
such as the experiments carried out on D-2, the ISS and the sounding rocket. Indeed,
experiments with various Ar and Vr are needed to assess the geometry effect on
the Ar–Vr space. Shevtsova et al. (2011) summarized the ground experiments of five
research groups, and reported the results for Vr = 0.8, 0.9 and 1.0, and Ar = 0.64,
1.0 and 1.2. Yano & Nishino (2015) studied the onset of oscillation at various
combinations of volume ratio, Vr= 0.6–1.1, and aspect ratio, Ar= 0.5–0.65. However,
the shape of the liquid bridge is limited and the influence of buoyancy cannot be
eliminated in ground experiments. Therefore, space experiments are necessary for a
better understanding of thermocapillary instability in the liquid bridge under different
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FIGURE 2. (Colour online) Experimental payload for studying thermocapillary convection
in liquid bridges.

geometric configurations. Moreover, thermocapillary convection in the liquid bridge
has abundant transition processes, but we know little about the geometric effect on
the transition process. The study on transitions may improve the understanding of the
competition of different modes, especially in the ‘gap’ region.

In order to systematically study thermocapillary convection in the liquid bridge, we
have carried out space experiments in the space laboratory on Tiangong-2 (TG-2).
Kang’s research team carried out ground experiments for the preparation of space
experiments on TG-2, with the height limited to 3–4 mm (Wang et al. 2017). The
experimental set-up entered the orbit on 15 September 2016 with the spacecraft. Based
on the abundant space experiment resources supported by the TG-2 platform, more
than 700 space experiments have been finished. The experiments were conducted at
different aspect ratios, volume ratios and heating rates. The critical oscillations and
transitions under different parameters were carefully analysed.

This paper mainly introduces results of critical oscillatory modes (i.e. low-frequency
and high-frequency) and the mode transitions. In § 2, the space experiments are
described. In § 3, the geometry effects (including the aspect ratio and the volume
ratio) on the condition and mode of critical oscillation at the onset were studied. In
§ 4, the mode transition from low-frequency mode to high-frequency mode and the
heating rate effect on the transition process are investigated.

2. Space experiments
The payload of space experiments on thermocapillary convection in liquid bridges

of large Prandtl number is shown in figure 2. This experimental set-up can accurately
control the aspect ratio and volume ratio of the liquid bridge, as well as the
temperature difference between the upper and lower copper columns to perform
experiments on thermocapillary convection.

2.1. Geometric parameters
The bridge columns are made up of two coaxial copper cylinders with a diameter of
D= 20 mm. The distance of the gap between the two columns (i.e. the height of the
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Silicone Kinematics Density ρ Thermal Thermal Coefficient Temperature Prandtl
oil viscosity (kg m−3) expansion diffusivity of surface coefficient number

ν (m2 s−1) β (◦C−1) κ (m2 s−1) tension σ of surface Pr
(N m−1) tension σT

(N m−1 ◦C−1)

5 cSt 5.00× 10−6 9.15× 102 1.09× 10−3 7.46× 10−8 1.83× 10−2
−6.58× 10−5 67

TABLE 2. Physical properties of KF96-5 cSt silicone oil.

liquid bridge H) is accurately controlled by a stepper motor with a moving range of
3–22 mm. The non-dimensional parameter of aspect ratio is defined as Ar = H/D,
which is used to normalize the height of the liquid bridge. As the aspect ratio
is smaller than the Rayleigh limit π, it is unnecessary to consider the Rayleigh
instability which may lead to breakage of the liquid bridge. The liquid is injected
from the hole at the centre of the lower column. The liquid injection volume V
is accurately controlled by a stepper motor. The fluid in the space experiments is
KF96-5 cSt silicone oil produced by Shin-Etsu, Chemical Co. Ltd and its physical
properties are listed in table 2. The volume ratio of the liquid bridge is represented
as Vr= V/V0, where V0 is the volume of the cylindrical column, πHD2/4. It is used
to characterize the geometry of free surface of the liquid bridge: Vr < 1 or Vr > 1,
which corresponds to the concave meniscus or the convex meniscus, respectively.
Only when Vr = 1, is it the cylindrical liquid bridge that is consistent with liquid
bridges in most theoretical and experimental studies.

When the aspect ratio Ar is fixed, the volume ratio Vr corresponds to a certain
shape of free surface. The static free surface geometry is described by Laplace–Young
equation as follows:

σ

{
z′′

[1+ (z′)2]3/2
+

z′

r[1+ (z′)2]1/2

}
=1p0 (2.1)

or

σ

{
r′′

[1+ (r′)2]3/2
−

r′

r[1+ (r′)2]1/2

}
=−1p0, (2.2)

where z′′ and z′ represent d2z/dr2 and dz/dr, respectively; r′′ and r′ represent d2r/dz2

and dr/dz, respectively.
Because of symmetry, a simplified model of one-quarter of a liquid bridge is

established to calculate the configuration of the free surface. The boundary conditions
can be determined by the position of the contact line and the value of contact angle:

r|z=H/2 =D/2 (the position of contact line), (2.3)
dz
dr

∣∣∣∣
r=D/2

= tan θ (the contact angle), (2.4)

dr
dz

∣∣∣∣
z=0

= 0 (geometric symmetry). (2.5)

The parameter 1p0 is adjusted to make the free surface satisfy boundary conditions.
So the shape of the meniscus r(z) is determined by the contact angle θ . The volume
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4 mm

Thermocouple

1 mm
(a) (b)

FIGURE 3. (Colour online) The CCD images of a liquid bridge and the numerical solution
of the free surface. (a) The panoramic image and (b) the close shot image.

ratio of the liquid bridge can be obtained by the integral

Vr= 2
∫ H

0
r(z) dz/D. (2.6)

The details of solving the shape of a liquid bridge can be found in the work done by
Dejam et al. (2014a,b).

Two CCD cameras are installed in the experimental device of the liquid bridge
for capturing the panoramic image and the close shot image near the contact angle,
respectively. By comparison between the practical free surface shape of the liquid
bridge according to the CCD image in the experiment and the numerical solution
of Young–Laplace equation (the red curve), the volume ratio of the liquid bridge
can be determined. Figure 3 shows the space experiment images and the numerical
solution with the aspect ratio Ar= 0.8 (H = 16 mm) and the volume ratio Vr= 0.69.
Figure 3(a) is the panoramic image of the liquid bridge, and the free surface shape
is very consistent with the numerical meniscus. Figure 3(b) is the close shot image
near the contact angle, and the practical contact angle is also very consistent with the
calculated contact angle. Theoretically, the free surface shape and the volume ratio can
be completely determined by the contact angle. Therefore, by matching the numerical
solution of the Young–Laplace equation and the experimental images, we can finally
determine the volume ratio of the liquid bridge in the space experiments.

What needs to be particularly mentioned is that the contact line shrink is not
considered in this study. With the decrease of the volume ratio, the contact angle
decreases gradually. When the contact angle is 0◦, the corresponding volume ratio is
the limit value Vrmin, as shown in table 3. The contact angle between the silicone
oil and the flat copper surface is approximately 0◦. Therefore, if the liquid volume
is continuously reduced until Vr < Vrmin, then contact line shrink will occur. This
phenomenon will cause a decrease in the effective diameter of the liquid bridge, and
it is not included in the discussions in this paper. In addition, contact line shrink only
occurs in the short liquid bridge, because in the tall liquid bridge the broken bridge
occurs before the contact angle reaches 0◦.

2.2. Thermocapillary flow
Liquid bridges with certain aspect ratios and volume ratios are established, and
the temperatures on the upper and lower columns are controlled to establish the
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Aspect ratio Ar Limit volume ratio Vrmin

0.2 0.708
0.3 0.577
0.4 0.454
0.5 0.334

TABLE 3. The limit volume ratios corresponding to different aspect ratios.

temperature gradient in the liquid bridge. The upper column is heated, as the hot
end, by an electrothermal film, and the lower column is cooled, as the cold end, by
Peltier elements. The temperature curve controlled by a PID is shown in figure 4.
The temperature on the lower column is maintained at T0 − 1 ◦C, where T0 is the
environment temperature. The temperature on the upper column is linearly increased
to the target value T0 +1Taim − 1 at a slow heating rate. The maximum temperature
difference that can be realized is 55 ◦C. The heating rate Tv is 0.1–2.0 ◦C min−1

under control, and it is set to 0.3 ◦C min−1 by default to ensure that the flow field
in the liquid bridge is in a quasi-equilibrium state. When the target temperature is
reached, it keeps the temperature difference constant for 5 min at 1Taim until the
end of the experiment, or linearly decreases the temperature at the same rate for the
study of thermocapillary convection oscillations during the cooling process.

The experimental data is a set of temperatures at five points in the fluid measured
by thermocouples with high sensitivity. The filament diameter of thermocouples
is 0.08 mm. They stick out from the holes on the lower column, in a distance
of 2 mm to the surface of the lower column. The temperatures can reflect the
transition process of thermocapillary convection from steady state to oscillatory
state. When the temperature difference is small, thermocapillary convection in
the liquid bridge is at a steady state. With the increase of temperature difference,
thermocapillary flow intensifies and starts to be unsteady, then the steady flow transits
into three-dimensional unsteady flow. At this time, the measured temperatures transfer
from stationary state to oscillatory state.

Figure 4 shows the experimental results, where the pink line represents the
temperatures at the hot end, the blue line represents the temperatures at the cold
end, the yellow dashed line shows the ambient temperatures, and the green line gives
the temperatures at a point in the fluid. The critical temperature difference for the
transition of fluid temperature from stationary state to oscillatory state is 1Tc1. As
shown in figure 4, 1Tc1 is 11.5 ◦C. When 1T >1Tc1, thermocapillary convection is
in the state of oscillatory flow. As the temperature difference is further increased, the
flow pattern will transit many times. These transition points are defined in turn as the
second critical temperature difference 1Tc2, the third critical temperature difference
1Tc3, and so on. Similarly, during the cooling process, the critical temperature
difference at each transition point is marked in turn from beginning to end as
1T∗c1, 1T∗c2, 1T∗c3, and so on. Then we study the influencing laws of the geometric
parameters (aspect ratio and volume ratio) and heating conditions.

Compared with the MEIS on the ISS, the experiments on TG-2 have fewer flow
visualizations. Due to limitations on the size and weight of our payload, we only
used thermocouples to measure temperature oscillations and the CCD camera to
record videos. The MEIS on the ISS adopted several measuring techniques including
thermocouple, infrared camera, particle image velocimetry, etc. However, TG-2
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FIGURE 4. (Colour online) Temperature data in the experiment on thermocapillary
convection (Ar= 0.8, Vr= 0.69).

provides abundant resources of program injections and very quick data download.
We can flexibly adjust our research strategy according to recent experimental results.
Up until now, after 30 months, more than 700 groups of space experiments have
been completed. Therefore, the advantage is that we have collected a large database
and conducted very detailed research on the geometric effect and flow transitions. In
addition, we have completed another set of space experiments on the scientific satellite
SJ-10, in which plenty of measurement methods including thermocouples, infrared
camera, displacement sensor and CCD camera were used (Kang et al. 2019a,b,c).
The SJ-10 experiments focused on the waves of thermocapillary instability in the
annular liquid pool. We can draw lessons from the SJ-10 experiments when analysing
the experimental data of TG-2.

2.3. The non-dimensional parameters
Thermocapillary convection in the liquid bridge under the microgravity condition
can be described by the Navier–Stokes equation and the heat transfer equation with
corresponding boundary conditions. We use µ/(σT∂T/∂z), σT(∂T/∂z)l/µ, (∂T/∂z)l
and σT(∂T/∂z) as the characteristic time, characteristic velocity, characteristic tempera-
ture difference and characteristic pressure to non-dimensionalize the hydrodynamic
equation, and get the non-dimensional parameters

Ma=
σT∂T/∂zl2

νκ
, Pr=

ν

κ
, Ca=

σT∂T/∂zl
σ0

and Bi=
hl
k
, (2.7a−d)

where, Ma is the Marangoni number, Pr is the Prandtl number, Ca is the Capillary
number and Bi is the Biot number.

The Marangoni number represents the intensity of thermocapillary convection. Since
the oscillation phenomenon is caused by the instability of thermocapillary convection,
Ma is used as the non-dimensional critical condition. The critical Marangoni number
is defined as follows:

Mac =
σT1Tcl2

νκH
. (2.8)
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The Marangoni number has different values for different characteristic lengths. The
characteristic length is l=H in this paper.

In addition, because the viscosity of silicone oil changes greatly with temperature,
the mean value of the temperature on the upper bridge (T0 − 1 + 1T) and the
temperature on the lower bridge (T0− 1), Tm= T0+1T/2− 1 is used as the average
temperature of the flow field, and the fluid viscosity depending on the temperature is
provided by the data sheet of Kf-96 silicone oil,

log10 νT =
763.1

273+ T
− 2.559+ log10 ν25. (2.9)

When calculating the Bi number, we should know the coefficient of heat transfer h.
By taking account of both thermodifussion and thermoradiation, we estimate the heat
transfer coefficient of the surface of liquid bridge to be 7.40 W m−2 K−1. Therefore,
the Bi number, which reflects the heat transfer capability of the free surface, is
estimated as 1.2.

The aspect ratio Ar and the volume ratio Vr are non-dimensional parameters that
represent the geometry of the liquid bridge. During the heating process, the volume
ratio increases slightly due to the thermal expansion of liquid. When the temperature
difference is 50 ◦C, the volume ratio has increased 2.6 %.

In order to keep good microgravity conditions, all experiments are carried out after
the astronauts have returned to the ground and under the condition of three-axis-stable
to the ground. The residual gravity 1g is −4–4 mg. Then, the dynamic Bond number
that indicates the intensity of buoyancy convection as well as thermocapillary force is
calculated as

Bod =
ρ1gβH2

|σT |
≈ 0.88. (2.10)

The static Bond number is

Bo=
ρ1gH2

|σ0|
≈ 0.29. (2.11)

3. Critical oscillations

Critical oscillation refers to the initial transition from steady convection to
oscillatory convection as the temperature difference reaches a certain threshold.
The onset of oscillation and the oscillation mode are affected by the geometry of
liquid bridge.

3.1. The aspect ratio effect
The height of the liquid bridge has a great influence on the critical temperature
difference for the oscillatory thermocapillary convection. Previous studies on the
aspect ratio effect on thermocapillary convection in the liquid bridge are mostly
focused on cylindrical liquid bridges (Vr = 1). In this paper, the aspect ratio effect
in the liquid bridge with a meniscus is studied. Figure 5 shows the temperature
oscillations and corresponding spectra in liquid bridges with Ar = 0.5, 0.6, 0.7 and
0.8 and Vr = 0.65. The corresponding critical oscillation parameters are shown in
table 4. To research the characteristics of the onset, we pick up the signal within
1000 s time interval at the beginning of the oscillation. The amplitude of oscillation
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FIGURE 5. Critical oscillations and spectra for different aspect ratios (Vr= 0.65).

first increases and then saturates, which is consistent with the theory. According
to the linear stability, the critical wave is unstable and grows exponentially. While
the nonlinear theory tells us that the critical wave will be saturated, which can
be modelled as the Landau equation. As the temperature difference increases, the
saturated amplitude gradually increases.

We found that the critical oscillation with a small aspect ratio and that with a
large aspect ratio have significant differences. For example, when Ar = 0.5 and
0.6, thermocapillary convection has characteristics including high onset temperature
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Ar Vr 1Tc (◦C) Ma f (Hz) Period (s) Peak–peak amplitude (◦C)

0.50 0.65 17.8 26 410 0.0689 14.5 0.93
0.60 0.65 19.7 35 760 0.0695 14.4 1.74
0.70 0.65 10.4 20 000 0.0415 24.1 0.38
0.80 0.65 8.4 18 090 0.0354 28.3 0.26

TABLE 4. Characteristics of critical oscillations for different aspect ratios.

difference (17.8 ◦C and 19.7 ◦C), short oscillation period (14.5 s and 14.4 s) and large
amplitude. When Ar = 0.7 and 0.8, thermocapillary convection has characteristics
including low onset temperature difference (10.4 ◦C and 8.4 ◦C), long oscillation
period (24.1 s and 28.3 s) and small amplitude. The former is called high-frequency
oscillation mode, and the latter is called low-frequency oscillation mode.

Figure 6(a) shows critical temperature differences of thermocapillary convection in
liquid bridges with different heights. As the height of the liquid bridge increases,
there is a significant downward trend in the critical temperature difference. When the
height increases from 4 to 20 mm, the critical temperature difference decreases from
approximately 45 to approximately 10 ◦C. Because there are differences in volume
ratios for liquid bridges of the same height, the critical temperature differences in
figure 6(a) are discrete. For the liquid bridge with a volume ratio of 0.646Vr 6 0.66,
as shown in figure 6 with the marksq, the influencing curve of height on the critical
temperature difference is separated into two branches of the short and tall bridges,
corresponding to high-frequency oscillation mode and low-frequency oscillation mode,
respectively. The critical condition has a significant jump change at the separation
point, H= 14 mm. Therefore, with the increase of the liquid bridge height, the overall
trend of the critical temperature difference is decreasing, and the critical curve is
separated into two branches of the short bridge and the tall bridge.

Figure 6(b) shows the relationship between the critical Marangoni number and the
aspect ratio. Almost all obtained Marangoni numbers for various aspect ratios are
within the range 2× 104–5× 104. This means that using the dimensionless Marangoni
number to characterize the critical oscillation condition of thermocapillary convection
is very effective. The aspect ratio has a significant influence on the critical Marangoni
number. For liquid bridges with a volume ratio of 0.64 6 Vr 6 0.66, as shown in
figure 6 with the marksq, the curve showing the change of critical Marangoni number
with the aspect ratio is separated into two branches, one of which is for the short
bridge (small aspect ratio) and the other is for the tall bridge (large aspect ratio), and
the separation point is Ar = 0.7. In addition, the critical curve of the short bridge
decreases first and then increases with the increase of aspect ratio. The values of the
critical curve of the tall bridge are obviously lower than that of the short bridge.

3.2. The volume ratio effect
The volume ratio effect means the influence of the volume ratio Vr = V/V0 (V0
is the cylinder volume of the liquid bridge) on the critical oscillation by changing
the fluid volume V of the liquid bridge. The volume ratio represents the geometric
configuration of the meniscus. When Vr is small, the liquid free surface is a deep
‘concave’, which is of the ‘slender bridge’. When Vr is large, the liquid free surface
is approximately flat or ‘convex’, which is of the ‘fat bridge’. According to the results
of Hu et al. (1994), the curves of critical temperature difference for various volume
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FIGURE 6. (Colour online) The aspect ratio effect on critical conditions of thermocapillary
oscillation. (a) The critical temperature difference versus height and (b) critical Mac versus
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FIGURE 7. The volume ratio effect of the liquid bridge.

ratios are separated into two branches, the slender bridge and the fat bridge. The
critical temperature difference of the slender bridge decreases first and then increases
with the increase of the volume ratio, also, the critical temperature difference of the
fat bridge decreases monotonically with the increase of the volume ratio. There is a
stable ‘gap’ between the two branches, where the critical temperature difference is
infinity, as shown in figure 7.

Take the liquid bridge with aspect ratio Ar = 0.7 as an example, the critical
temperature difference and oscillation characteristics of thermocapillary convection at
various volume ratios are studied. The temperature oscillation signals and spectra at
volume ratios Vr= 0.60, 0.64, 0.66 and 0.90 are shown in figure 8(a–d), respectively,
and the critical oscillation parameters are listed in table 5. Two oscillation modes,
low-frequency oscillation and high-frequency oscillation, are also found. Figures 8(a)
and 8(b) are low-frequency oscillations with a frequency of 39.6 mHz and a period
of 25.2 s; figures 8(c) and 8(d) are high-frequency oscillations with oscillation
frequencies of 72.6 mHz and 55.5 mHz, respectively. The small change in volume
ratio from Vr= 0.64 to Vr= 0.66 leads to almost two times the critical value and the
oscillation frequency. The critical temperature differences at volume ratios Vr = 0.64
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 Vr = 0.66, ÎTc = 19.4 °C, f = 0.0726 Hz, period: 13.8 s, peak–peak amplitude: 1.96 °C
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 Vr = 0.60, ÎTc = 8.7 °C, f = 0.0396 Hz, period: 25.2 s, peak–peak amplitude: 0.27 °C

FIGURE 8. Oscillation signals and spectra for various volume ratios at Ar= 0.7
(H = 14 mm).

and Vr= 0.66 are 10.2 ◦C and 19.4 ◦C, respectively, and the corresponding oscillation
frequencies are 39.6 mHz and 72.6 mHz, respectively. In addition, the amplitude of
high-frequency oscillation is five times larger than the amplitude of low-frequency
oscillation. Therefore, the critical oscillation mode of thermocapillary convection has
the phenomenon of bifurcation with the change in volume ratio Vr. Low-frequency
oscillation mode appears in the slender bridge, and it has the characteristics of
low onset temperature difference, low oscillation frequency, and small oscillation
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FIGURE 9. (Colour online) The volume ratio effect in the liquid bridge at H = 14 mm.
(a) The critical temperature difference versus volume ratio and (b) onset oscillation
frequency versus volume ratio.

Ar Vr 1Tc (◦C) Ma f (Hz) Period (s) Peak–peak amplitude (◦C)

0.70 0.60 8.7 16 440 0.0396 25.2 0.27
0.70 0.64 10.2 19 590 0.0396 25.2 0.40
0.70 0.66 19.4 40 960 0.0726 13.8 1.96
0.70 0.90 13.6 26 600 0.0555 18.0 1.14

TABLE 5. Characteristics of critical oscillations for various volume ratios.

amplitude. High-frequency oscillation mode appears in the fat bridge and it has
characteristics of a high onset temperature difference, high oscillation frequency, and
large oscillation amplitude.

Figure 9 shows critical temperature differences corresponding to various volume
ratios of the liquid bridge at Ar= 0.7. The critical curve of temperature difference has
two branches, and the demarcation point is Vr = 0.65–0.66. The critical temperature
difference on the left branch has much lower values, and it increases from 8 to 10 ◦C
with the increase of the volume ratio; the critical temperature difference on the right
branch has higher values, and it decreases from 20 to 13 ◦C with the increase of the
volume ratio. The critical temperature difference has a jump change at Vr= 0.65–0.66.
We name this volume ratio the critical volume ratio, Vrc. The curve of oscillation
frequency also has two branches as shown in figure 9(b). The oscillation frequency
on the left branch is approximately 40 mHz, and 25 s in period; the oscillation
frequency on the right branch has relatively high values, and it decreases from 75 to
55 mHz with the increase of the volume ratio. Therefore, the left branch corresponds
to low-frequency oscillation mode, and the right branch corresponds to high-frequency
oscillation mode.

Figure 10 shows the critical Marangoni numbers (figure 10a) and the critical
dimensionless frequencies (figure 10b) with the change of volume ratio at aspect
ratios Ar= 0.5, 0.6, 0.7 and 0.8. The curve of the critical Marangoni number also is
divided into two branches, and the demarcation volume ratio Vrc increases with the
increase of the aspect ratio. For example, for the liquid bridge with an aspect ratio
Ar= 0.5, the critical volume ratio is Vrc = 0.58; for the liquid bridge with an aspect
ratio Ar= 0.8, the critical volume ratio is Vrc = 0.69.
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FIGURE 10. (Colour online) The volume ratio effect in liquid bridges with
various heights.

Selecting the reciprocal of heat dissipation time scale as the characteristic oscillation
frequency, we can get the dimensionless oscillation frequency

F=
D2f
κ
. (3.1)

For the fat bridge, the critical oscillation frequency tends to converge when Ar>0.5,
and shows a decreasing trend with the increase of volume ratio; for the slender bridge,
the critical frequency decreases with the increase of aspect ratio. In addition, for
liquid bridges with Ar= 0.80, it is found in experiments that the critical temperature
difference and the oscillation frequency have a second jump change at approximately
Vr= 0.82.

3.3. The comprehensive effect of aspect ratio and volume ratio
With a fixed volume ratio and various aspect ratios of the liquid bridge, there are
two separated critical curves of thermocapillary convection for the short bridge and
the tall bridge, respectively; with a fixed aspect ratio and various volume ratios,
there are also two separated critical curves for the slender bridge and the fat bridge,
respectively. They are all bifurcation phenomena caused by the geometry of liquid
bridge. Therefore, it is reasonable to study the geometric effect of the liquid bridge
in the two-dimensional parametric space of aspect ratio and volume ratio, Ar–Vr.

Figure 11 gives the critical Mac and oscillation period in the whole Ar–Vr
parametric space. It indicates that the Ar–Vr geometric parameter space is divided
into two regions, zone 1 and zone 2, and the values of critical Marangoni number
and oscillation period are different between these two zones. In zone 1, the oscillation
has characteristics of large critical Marangoni number and short oscillation period;
in zone 2, the oscillation has characteristics of small critical Marangoni number and
long oscillation period. When the volume ratio effect at the aspect ratio Ar = 0.7 is
considered, the geometric parameter (the red arrow in figure 11c) crosses two zones,
so the critical curves are separated into two branches; the branch of the slender
bridge is low-frequency oscillation, and the branch of the fat bridge is high-frequency
oscillation. When the aspect ratio effect at the volume ratio Vr = 0.65 is considered,
the geometric parameter (the black arrow in figure 11c) also crosses two zones, and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

75
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

st
itu

te
 o

f M
ec

ha
ni

cs
, C

AS
, o

n 
08

 N
ov

 2
01

9 
at

 1
1:

38
:1

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.757
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


968 Q. Kang, D. Wu, L. Duan, L. Hu, J. Wang, P. Zhang and W. Hu

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

1.0

0.8

0.6

0.4

1.0

0.8

0.6

0.4

5

4

3

2

1

0

30

25

20

15

10

5

0

Zone 2

Zone 2 Zone 2

Zone 1

Zone 1
Zone 1

Zone 1

(÷ 104)

(÷ 104)

0.6
0.7

0.8
0.9

0.4
0.6

0.8
1.0

0.6
0.8

1.0
0.5

1.0

30

20

10

0

5

0

Vr

Ar

Ar Vr Ar
Vr

Vr

Mac Pe
rio

d 
(s

)

(a) (b)

(c) (d)
Critical Mac in parametric space (Ar, Vr) Oscillation period in parametric space (Ar, Vr)

Critical Mac in parametric space (Ar, Vr) Oscillation period in parametric space (Ar, Vr)

Zone 2

FIGURE 11. (Colour online) Distributions of oscillation starting condition and period in
Vr–Ar parametric space.

the critical curves are separated into two branches, too; the branch of the tall bridge is
low-frequency oscillation mode, and the branch of the short bridge is high-frequency
oscillation mode, both of them having different oscillation characteristics from each
other. From figure 11, the critical curves of volume ratio effect, as well as aspect
ratio effect, should be represented with two branches of critical curves, and they have
the same mechanism.

The demarcation line between zone 1 and zone 2 is approximately a straight line,
Ar− 3.2Vr+ 1.4= 0 through fitting. According to this linear fitting result, we define
a geometric factor as follows:

GF= Ar− 3.2Vr+ 1.4. (3.2)

When GF < 0, the oscillation of thermocapillary convection belongs to the
low-frequency oscillation (zone 1); when GF > 0, it belongs to the high-frequency
oscillation (zone 2). Our experiments cover the range of 0.2 6 Ar 6 1.0, and the
low-frequency oscillation (zone 1) is not found in the range of 0.2 6 Ar 6 0.4. This
geometric factor is effective when 0.5 6 Ar 6 1.0. When Vr = 0.65, the geometric
factor gives the demarcation point Ar=0.68, which is consistent with the experimental
result at Ar= 0.70 (figure 6). The space experiments of MEIS in Japan obtained the
critical conditions at the volume ratio Vr = 0.95. They found a jump of the critical
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Marangoni number and dimensionless frequency at Ar = 1.25–1.50. We use the
geometric factor to predict that the demarcation point is at Ar = 1.64, which is
essentially in agreement with the results of the space experiments of MEIS.

3.4. The mechanism of thermocapillary convection
There are two different wave forms in thermocapillary convection: azimuthal waves
and axial waves. Azimuthal waves are traveling waves or standing waves rotating on
the horizontal cross-section of the flow field. Kang carried out the matching liquid
bridge experiments of TG-2 on the ground, studying liquid bridges with diameter
D = 20 mm and height H = 3–4 mm (0.15 6 Ar 6 0.2), and observed azimuthal
waves (Wang et al. 2017). The propagation direction of axial waves is in the axial
direction of the liquid bridge or at a certain angle with it. Schwabe (2005) found
hydrothermal waves in their space experiments in the liquid bridge with Ar = 2.5.
The propagation direction of hydrothermal waves is opposite to the direction of
temperature gradient (axial) and at a certain angle with it, which is very close to the
theoretical result of hydrothermal waves by Xu & Davis (1984). For cylindrical liquid
bridges, axial waves mostly appear in liquid bridges with high aspect ratios, also,
azimuthal waves appear more easily in short bridges due to the limit of the boundary
of liquid bridge. However, if the volume ratio decreases, the necking diameter of the
meniscus decreases too, which is equivalent to the increase of aspect ratio. Therefore,
in short bridges with small volume ratios, it is also possible that axial waves appear.

As shown in figure 11, zone 1 corresponds to ‘short and fat’ liquid bridges, and the
high-frequency oscillation mode in zone 1 is inferred to the azimuthal wave; zone
2 corresponds to ‘tall and slender’ liquid bridges, and the low-frequency oscillation
mode in zone 2 is inferred to the axial wave. The smaller the aspect ratio, the
more slender the liquid bridge needs to be to have axial waves appearing and enter
low-frequency oscillation mode. In order to decide whether the liquid bridge is ‘tall
and slender’ or ‘short and fat’, we define a parameter S to indicate the degree of
slenderness of the liquid bridge,

S=H/dmin −H/(2Rc), (3.3)

where dmin is the free surface necking diameter of the liquid bridge and Rc is the
radius of curvature of the meniscus in the longitudinal surface. The minus sign in the
equation means that the radius of a concave meniscus Rc in the longitudinal surface is
defined to be negative. Here dmin and Rc are given by numerical calculations according
to the aspect ratio Ar and the volume ratio Vr, respectively. Under various aspect
ratios, the demarcation gives a consistent slenderness factor S, as shown in table 6.
The average S at the demarcation point is 1.545. When the volume ratio Vr= 1, then
1T∗c1, and S= Ar. That is, for the cylindrical liquid bridge (Vr= 1), when the aspect
ratio Ar> 1.545, thermocapillary convection is in the second oscillation mode.

The experimental results in space and other related experimental results on the
ground at the geometric demarcation point of the two oscillation modes are shown
in figure 12. The geometric factor fits the experimental data well. The demarcation
curve given by the slenderness S is nonlinear, and the extrapolated data are consistent
with the space experimental results of MEIS in Japan. However, in most ground
experiments, the demarcation points appear in a less slender liquid bridge than in the
microgravity environment. In other words, the low-frequency oscillation mode can
also be found in the ‘short and fat’ liquid bridge in ground experiments.
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FIGURE 12. (Colour online) The space experimental results and ground experimental
results at the demarcation point.

Ar Vrc dmin Rc S

0.4 0.545 12.72 −4.31 1.56
0.5 0.570 12.84 −6.04 1.61
0.55 0.610 13.47 −7.37 1.56
0.6 0.625 13.68 −8.88 1.55
0.7 0.655 14.15 −13.05 1.53
0.8 0.683 14.61 −19.43 1.51
0.9 0.704 14.97 −29.04 1.51
1 0.725 15.33 −44.16 1.53

TABLE 6. The slenderness factor S at the demarcation point.

The diameter of a liquid bridge affects the demarcation point. In ground experiments,
the data distributions from different research groups are discrete because the diameters
of liquid bridges used in different research groups are different. For example, Hu
et al. (1994), Chen & Hu (1998), Sumner et al. (2001), Masud et al. (1997) and
Shevtsova et al. (2011) used liquid bridges with a diameter of 1.5–3.0 mm, and
Yano & Nishino (2015) and Sakurai et al. (2004, 2007a,b) used liquid bridges with
a diameter of 5.0 mm. It can be seen from figure 12 that the larger the diameter
of liquid bridge, the smaller the demarcation slenderness S is. It implies that the
low-frequency oscillation mode is preferred by the gravity effect. The reason is that
the Bond number of the liquid bridge increases with the increase of the diameter of
liquid bridge, and the gravity effect makes low-frequency oscillation mode easier to
appear. Shevtsova also found in ground experiments with liquid bridges of different
sizes that, the gap region moves in the direction of larger volume ratios with the
increase of Bond number. When D = 1.5 mm and Bod = 1.02, the gap region is at
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FIGURE 13. (Colour online) Temperature oscillations of thermocapillary convection in the
process of linear temperature increase; (a) Ar= 0.7, Vr= 0.64, (b) Ar= 0.7, Vr= 0.66.

0.7 < Vr < 0.9, which is very close to our experimental result (0.71 < Vr < 0.75)
in space. In the space experiments carried out by Japanese scientists (Kawamura
et al. 2012; Nishino et al. 2015), liquid bridges with diameters of 30–60 mm were
used, and the Bond number generated by residual acceleration was approximately
2.25–9 times bigger than that in our experiments. Probably because of the bigger Bod

number, the jump change points of critical values observed in MEIS correspond to
smaller aspect ratios than our predicted values.

4. Oscillation transitions

Oscillation transition refers to the change of oscillation mode when the temperature
difference exceeds the threshold. It reflects the nonlinear competition between
instability modes. The transition process is affected by the geometry of the liquid
bridge and the variation mode of temperature difference.

4.1. Multiple transitions of low-frequency mode
In the heating process, there exists the transition from low-frequency oscillation
mode to high-frequency oscillation mode. Taking liquid bridges with the aspect ratio
Ar = 0.7 as an example, figures 13(a) and 13(b) show temperature oscillations in
liquid bridges with the volume ratio Vr = 0.64 and 0.66, respectively. In the liquid
bridge with Ar = 0.7 and Vr = 0.64 (figure 13a), the critical temperature difference
is 10.2 ◦C, and the fundamental frequency is 0.0396 Hz. When the temperature
difference is increased to 22.9 ◦C, the oscillation transition appears with the sudden
increase of oscillation amplitude and the jump change of frequency to 0.0793 Hz.
After the transition, the oscillation is in the high-frequency oscillation mode, and
it is consistent with the high-frequency oscillation mode in the liquid bridge with
Ar= 0.7 and Vr= 0.66 (1Tc= 19.4 ◦C and f = 0.0726 Hz). Both of them have similar
critical conditions and oscillation frequencies. Therefore, as the temperature difference
increases, the low-frequency oscillation mode transits to high-frequency oscillation
mode in the small volume ratio liquid bridge.

In the transition process from low-frequency mode to high-frequency mode,
generally, there is an oscillating stage when low-frequency mode and high-frequency
mode are mixed together. As shown in figure 13, in the transition process from
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FIGURE 14. (Colour online) The transition process starting from low-frequency oscillation
mode (H = 14 mm and Vr= 0.58).

low-frequency mode to high-frequency mode at volume ratio Vr = 0.58, there is
an obvious oscillating region mixed with low-frequency and high-frequency modes.
However, in the transition process at volume ratio Vr = 0.64 shown in figure 13(a),
low-frequency mode transits directly to high-frequency mode, and there is no mixed
oscillating region. Therefore, the mixed oscillating region exists in thermocapillary
convection in liquid bridges with smaller volume ratios. The smaller the volume ratio,
the longer the mixed oscillating stage.

Figure 14 shows the original signals and spectra of data windows 1 , 2 and 3 .
At data window 1 , the oscillation signal has a fundamental frequency and multiple
harmonics, and the fundamental frequency is 0.0829 Hz. At data window 2 , the
oscillation signal is in the mixed oscillation mode and is irregular; there exist two
fundamental frequencies in the spectrum, f1= 0.0927 Hz and f2= 0.0280 Hz, as well
as frequencies of linear combinations of these two fundamental frequencies, such as
f1 + f2 = 0.1207 Hz and f1–f2 = 0.0647 Hz. Also, at data window 3 , the oscillation
signal is in the high-frequency mode, and the fundamental frequency is 0.1220 Hz,
which evolves from the frequency of mixed oscillation mode f1 + f2. The mixed
oscillation mode is the superposition of low-frequency mode and high-frequency
mode simultaneously.

The critical temperature differences for transitions into low-frequency mode, mixed
oscillation mode and high-frequency mode are defined in turn as the first critical
temperature difference 1Tc1, the second critical temperature difference 1Tc2 and the
third critical temperature difference 1Tc3, respectively. The three critical temperature
differences in figure 14 are 8.26 ◦C, 35.47 ◦C and 40.38 ◦C, respectively.

Figure 15 shows the critical values of transitions at various volume ratios in liquid
bridges with Ar = 0.7. From the point of view of stability analysis, both of the first
critical value and the third critical value are critical points of neutral stability of
low-frequency mode. Therefore, by connecting these points, we can get the curve
of neutral stability of low-frequency mode (the ‘red curve’). This curve shows a ‘ ’
type, the concave side of the curve is the unstable region of low-frequency mode.
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FIGURE 15. (Colour online) The curves of neutral stability of low-frequency mode and
high-frequency mode.

Also, both the second critical value of the slender bridge and the first critical value
of the fat bridge are neutral stable for high-frequency mode. By connecting these
points, we can get the curve of neutral stability of high-frequency mode (the ‘green
curve’).

There is an intersection between the neutral stability curves of low-frequency mode
and high-frequency mode, and the corresponding volume ratio is noted as Vr(1)c . In
figure 15, Vr(1)c ≈ 0.63. When the volume ratio is close to Vr(1)c (0.60 6 Vr 6 0.64),
the second transition point and the third transition point are very close, and there is
no obvious mixed oscillation. The largest volume ratio at which low-frequency mode
appears is noted as Vr(2)c , and it is approximately 0.66–0.68. The demarcation volume
ratio observed in experiments is noted as Vrc. Because of the heating rate effect,
Vrc is slightly less than Vr(2)c (see 4.2). The characteristics of neutral stability curves
can explain the jump change of the first critical temperature difference at volume
ratio Vrc well. Even though the volume ratio is changed gradually, the phenomenon
of jump change in critical conditions and oscillation frequency is still inevitable,
when Vrc = Vr(1)c .

From figure 15, we can see that thermocapillary convection in liquid bridges with
different volume ratios have different transition processes. It is roughly divided into
three cases: (1) when Vr< Vr(1)c , there is a sequence of three transitions: steady state
→ low-frequency oscillation mode → mixed oscillation mode → high-frequency
oscillation mode; (2) when Vr≈Vr(1)c , low-frequency oscillation mode transits directly
to high-frequency oscillation mode, so there is a sequence of only two transitions:
steady state → low-frequency oscillation mode → high-frequency oscillation mode;
(3) when Vr(1)c <Vr<Vr(2)c , there is an oscillation suspension area in theory, and there
is a sequence of three transitions: steady state → low-frequency oscillation mode →
oscillation suspension → high-frequency oscillation mode. The situations (1) and (2)
have been well reflected in the experiments, corresponding to the transition processes
in figures 13 and 14, respectively. For the phenomenon of oscillation suspension
predicted in (3), though it has not been found in the heating process, its existence
has been verified in the linear cooling process (see § 4.3).
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FIGURE 16. (Colour online) The influence of heating rate. (a) The critical temperature
difference versus the heating rate; (b) the oscillation period versus the heating rate.

In the experimental study on the volume ratio effect on the ground, there are two
points of view about stability characteristics of the demarcation point between the two
branches of critical curve. In the opinion of Hu et al. (1994), there is no intersection
between these two branches, instead there is a stable gap. But, there is also a view that
oscillation of thermocapillary convection will occur at the interval if the temperature
difference is high enough. If we only consider the critical value of the onset mode,
it is hard to explain the phenomenon of jump change at the demarcation point. By
completely drawing the curves of neutral stability of low-frequency mode and high-
frequency mode, we find that the two curves have an intersection, so there is not a
gap. When the volume ratio of the liquid bridge is at Vr(2)c , the jump changes in the
critical temperature difference and oscillation frequency must occur.

4.2. The influence of heating rate on critical conditions
It is usually considered that the heating rate only influences the relaxation time of
heat balance. Hysteresis in the onset of oscillatory thermocapillary convection may
occur under the condition of rapid temperature variation. Because the characteristic
time scale of dissipation is H2/κ , the taller the liquid bridge, the more significant the
heating rate effect. We find that the heating rate of 0.3 ◦C min−1 has relatively high
influence in the liquid bridge with H > 16 mm.

The influence of heating rate on critical conditions of different branches is different.
Figure 16 shows the critical temperature differences in liquid bridges with Ar = 0.8
when volume ratio Vr= 0.6, 0.69, 0.80 and 0.90, and with the heating rate changing
from 0.1 to 2.0 ◦C min−1. For the liquid bridge with Ar= 0.8, the volume ratio at the
demarcation point is approximately 0.70–0.72. As a result, the volume ratios Vr =
0.60 and 0.69 belong to the branch of smaller volume ratios, also, the volume ratios
Vr= 0.8 and 0.9 belong to the branch of larger volume ratios (figure 16). Therefore,
we need to consider which branch the critical curve belongs to and then carry out a
classified discussion about the influence of heating rate on critical conditions.

For the liquid bridge with a volume ratio close to the demarcation point, the
critical temperature difference and oscillation mode are very sensitive to the heating
rate. For example, the liquid bridge with Ar = 0.8 and Vr = 0.69, when the heating
rate increases from 0.2 to 0.4 ◦C min−1, the critical temperature difference jumps
from 9 to 19 ◦C suddenly, and the oscillation period jumps from 28 to 14 s.
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FIGURE 17. (Colour online) The change in oscillation mode caused by the heating rate
(H= 16 mm and Vr= 0.69). (a) The heating rate is 0.2 ◦C min−1 and (b) heating rate is
0.4 ◦C min−1.

Temperature signals at the heating rates of 0.2 and 0.4 ◦C min−1 are shown in
figures 17(a) and 17(b), respectively. It is observed clearly that, when the heating
rate is 0.2 ◦C min−1, low-frequency oscillation mode appears first, then transits
into high-frequency oscillation mode; when the heating rate is 0.4 ◦C min−1, the
oscillation is in high-frequency mode directly. Thus, around the demarcation point
where Vr ≈ Vrc, low-frequency oscillation mode appears first and then enters into
high-frequency oscillation mode when the heating rate is slow; also, the oscillation
is in high-frequency oscillation mode directly when the heating rate is increased. It
is inferred that the demarcation volume ratio Vrc obtained from the experiments with
limited heating rates is less than Vr(2)c (Vrc < Vr(2)c ).

As shown in figure 16, in the case Vr < Vrc, for example, Vr = 0.6, the critical
temperature difference increases linearly with the increase of heating rate. This
indicates that the fast heating rate has an inhibitory effect on the low-frequency mode.
When the heating rate is increased, the critical temperature difference increases too,
and the low-frequency oscillation becomes short, until it disappears completely. In
the case Vr>Vrc, for example, Vr= 0.80 and 0.90, the critical temperature difference
shows an increasing trend within the range 0.1< Tv < 0.4 (◦C min−1), and its slope
is close to that of the case Vr = 0.60. However, the influence of a fast heating rate
on the critical temperature difference is non-monotonic, there is a minimum value of
the critical temperature difference at the heating rate of 0.6 ◦C min−1.

Figure 18 shows the curves of neutral stability at aspect ratio Ar= 0.8. The critical
temperature difference is the most sensitive to the heating rate when the volume ratio
is close to the demarcation volume ratio. So, the heating rate is set to 0.1 ◦C min−1

when 0.65<Vr< 0.75, and 0.3 ◦C min−1 for other volume ratios. The volume ratio at
the intersection of the two branches Vr(1)c is approximately 0.690–0.705. In this range
of volume ratio, low-frequency mode transits to high-frequency mode directly, so there
is no mixed oscillation process. However, in experiments with volume ratio Vr= 0.65
and 0.67, there exists a band of mixed oscillation, and the pattern of neutral stability
curves is consistent with that of the liquid bridge with Ar= 0.7.

To study the heating rate effect, the critical temperature differences at slow heating
rate (0.1 ◦C min−1) and fast heating rate (2 ◦C min−1) are obtained. The arrows in
figure 18 indicate the influence of heating rate on critical conditions when it is
increased from 0.1 to 2 ◦C min−1. Red arrows indicate the changes of the left branch,
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FIGURE 18. (Colour online) The heating rate effect on the critical curves in liquid bridges
with Ar= 0.8.

that the low-frequency oscillation mode jumps to high-frequency oscillation mode
when Vr < Vrc, which is because the fast heating rate leads to the transition of
thermocapillary convection into high-frequency oscillation mode directly. Blue arrows
indicate the changes of the right branch, that the fast heating rate leads to changes
in the critical temperature difference of high-frequency mode when Vr > Vrc. The
experiments show that, when volume ratio Vr= 0.75, 0.80 and 0.90, the fast heating
rate does not lead to a significant change in the critical temperature difference. In
brief, for Vr<Vrc, if the heating rate is slow, thermocapillary convection goes through
multiple transitions from low-frequency oscillation to high-frequency oscillation; and
if the heating rate is fast, it directly enters into high-frequency oscillation mode. Also,
for Vr>Vrc, the increase of heating rate only leads to a slight increase of the critical
value without the change of oscillation mode.

4.3. The influence of heating and cooling on critical conditions
When the maximum temperature difference has been reached in the liquid bridge,
the temperature difference starts to decrease linearly, and thermocapillary convection
transits from oscillatory flow to steady flow. Figure 19 shows temperature oscillation
signals and time-frequency spectra during the heating and cooling processes in liquid
bridges with Ar = 0.8 for various volume ratios, Vr = 0.71, 0.73, 0.75 and 0.77.
Both the heating rate and the cooling rate are 0.3 ◦C min−1. These volume ratios are
distributed near the critical volume ratio.

When volume ratio Vr=0.71 (Vr<Vr(1)c ), during the heating process, thermocapillary
convection experiences the transition sequence: steady state → low-frequency
oscillation mode → mixed oscillation mode → high-frequency oscillation mode;
oscillation transitions during the cooling process are the reverse process in most
cases, and the three critical points are significantly lower than in the heating process.
However, when volume ratio Vr = 0.73, the transition process under cooling is not
exactly the reverse process of heating. During the heating process, thermocapillary
convection enters into high-frequency oscillation mode directly; while, during the
cooling process, there is a short oscillation suspension during the transition from
high-frequency oscillation mode to low-frequency mode. Experimental results of the
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Temperature oscillation signals (Vr = 0.71) Time-frequency spectrum
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FIGURE 19. (Colour online) Oscillation signals and time-frequency spectra of
thermocapillary convection in heating and cooling processes (LM, low-frequency
mode, HM, high-frequency mode, MM, mixed mode, OS, oscillation suspension).

case Vr = 0.75 are similar to that of the case Vr = 0.73, but oscillation signals
in low-frequency mode become very weak, furthermore, the interval of oscillation
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FIGURE 20. (Colour online) Critical curves in the heating and cooling processes.
(a) Critical curves in the heating process; (b) critical curves in the cooling process.

suspension becomes longer. In § 4.1, we predict there is an oscillation suspension
region according to the neutral stability curves, and the oscillation suspension region
that appears in the cooling process is exactly the same as our prediction. When
Vr= 0.77, low-frequency oscillation mode disappears, and thermocapillary convection
only has oscillations in high-frequency mode. Therefore, by analysing the oscillation
of thermocapillary convection during the cooling process, we can get a more accurate
value of critical volume ratio Vr(2)c , which is approximately 0.75–0.77.

Because the heating rate effect has an inhibitory effect on the oscillation process of
thermocapillary convection, studying critical conditions of thermocapillary convection
in the cooling process is closer to the condition in theory. The heating experiments
and cooling experiments are carried out simultaneously in liquid bridges with Ar=0.9,
with the heating or cooling rate being 0.3 ◦C min−1. Three transition points have been
obtained, as shown in figure 20. The configuration of neutral stability curves of the
heating process and that of the cooling process are by and large the same. The critical
temperature differences in the cooling process are generally lower than in the heating
process (approximately 5 ◦C).

During the heating process, the critical temperature difference of low-frequency
mode (1Tc1) increases significantly near the critical volume ratio Vrc under the
influence of heating rate, and as a result, the jump change at the demarcation point
of the two branches is not obvious. However, during the cooling process, the critical
temperature difference of low-frequency mode (1T∗c1) hardly increases with the
increase of volume ratio, and as a result, there is an obvious jump change at the
demarcation point. The critical volume ratios obtained in the heating process are 0.68
and 0.72, and the critical volume ratios obtained in the cooling process are 0.70 and
0.72. The cooling process is closer to the condition of unlimited slow heating rate.
In addition, the variation trend of the second critical point in the heating process and
that in the cooling process are significantly different.

5. Conclusions
The oscillation mode of thermocapillary convection in the liquid bridge is influenced

by the aspect ratio effect, volume ratio effect and heating rate effect.

(i) In the Vr–Ar parametric space, there exist the low-frequency oscillation region
and high-frequency oscillation region. The boundary of these two regions is
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approximately a straight line, which is given by GF = Ar − 3.2Vr + 1.4 = 0.
By introducing the factor of slenderness, we can describe these critical points
comprehensively. Therefore, for both aspect ratio effect and volume ratio effect,
their critical curves have two branches, and obvious jump changes exist.

(ii) By analysing three transition points in the supercritical case, we can give the
complete curves of neutral stability. The two neutral stability curves have an
intersection at Vr(1)c , and the curve of low-frequency mode is a ‘ ’ type curve,
and its maximum value of volume ratio is Vr(2)c . Thus, not only the jump
change of the critical temperature difference, but also the multiple transitions
from low-frequency mode to high-frequency mode can be explained by the
configuration of neural stability curves. (1) When Vr < Vr(1)c , the transition
sequence is: steady state → low-frequency oscillation mode → mixed oscillation
mode → high-frequency oscillation mode. (2) When Vr ≈ Vr(1)c , the transition
sequence is: steady state → low-frequency oscillation mode → high-frequency
oscillation mode. (3) When Vr(1)c < Vr < Vr(2)c , the transition sequence is:
steady state → low-frequency oscillation mode → oscillation suspension →
high-frequency oscillation mode.

(iii) Low-frequency oscillation mode is sensitive to the heating rate. When the heating
rate is fast, low-frequency mode does not exist, and thermocapillary convection in
the liquid bridge enters into high-frequency oscillation mode directly. Therefore,
the fast heating rate leads to a significant increase of the critical temperature
difference and the change in oscillation mode. In the cooling process, the
inhibitory effect of heating rate on the oscillation mode can be eliminated, thus,
a more complete oscillation transition process can be obtained.

To avoid the breakage of the liquid bridge, our space experiment strategy is to finish
experiments on ‘safe’ liquid bridges first, so the volume ratios of present experiments
are limited to 0.54<Vr< 1. The experiments on ‘fat’ liquid bridges (Vr> 1) may be
carried out at the end of this mission. We expect to find new interesting phenomena
with Vr> 1. In addition, the wave modes, mode transitions and chaotic characteristics
need to be further studied.

The original interest in thermocapillary oscillation is provoked by crystal growth,
but now we consider it as a physical model for studying thermocapillary flow
instability, waves and nonlinearity problems, etc. However, in the perspective of
crystal growth, our study gives the implication that the geometry of liquid bridges
and the heating rate should be carefully controlled, because they can influence
threshold values of oscillations and the oscillatory mode. To avoid striations, the
conditions should be controlled below the threshold values of oscillation. A slender
liquid bridge, but with Vr > Vrc, may be beneficial to the crystal growth, because
the critical temperature difference is higher. In addition, if the oscillation occurs, the
transition between high and low frequencies may lead to a change in the striation
spacing.
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Appendix A
On the ground, the heat transfer is mainly in the form of natural convection.

However, in the microgravity environment, the heat transfer includes two parts: one
is heat diffusion, and the other is heat radiation. The experiment box is simplified as
an axisymmetric body, then the temperature distribution in the air around the liquid
bridge is as follows:

T(r)=
Ts − T0

ln(d/L0)
ln(r/L0)+ Te, (A 1)

where Ts is the temperature of liquid surface.
So, the heat flux density of the heat transfer at the free surface is calculated as

follows:

Q=−kgas
dT
dr
=−

2kgas

D ln(D/L0)
(Ts − T0), (A 2)

where kgas is thermal conductivity of air, 0.026 W m−1 K−1.
The radiating rate of blackbody radiation is as follows:

Q= δ(T4
s − T4

0 ), (A 3)

where δ is Stefan–Boltzmann constant of the blackbody radiation, and its value is
5.67× 10−8 W m−2 K−4.

The coefficient of heat transfer of the free surface is

h=
2kgas

D ln(D/L0)
+ δ(T2

s + T2
0 )(Ts + T0)= 7.40 W m−2 K−1. (A 4)

So, the Biot number of the free surface is estimated to be 1.2.
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