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a b s t r a c t 

Non-probabilistic reliability based multidisciplinary design optimization has been widely 

acknowledged as an advanced methodology for complex system design when the data is 

insufficient. In this work, the uncertainty propagation analysis method in multidisciplinary 

system based on subinterval theory is firstly studied to obtain the uncertain responses. 

Then, based on the non-probabilistic set theory, the interval reliability based multidisci- 

plinary design optimization model is established. Considering that the gradient informa- 

tion of interval reliability cannot be acquired in the whole design domain, which causes 

convergence difficulties and prohibitive computation, an interval reliability displacement 

based multidisciplinary design optimization method is proposed to address the issue. In 

the proposed method, the interval reliability displacement is introduced to measure the 

degree of interval reliability. By doing so, not only the connotation of the interval reliabil- 

ity is guaranteed, but more importantly, the partial gradient region for interval reliability is 

equivalently converted into full gradient region for reliability displacement. Consequently, 

the gradient information can be acquired under any circumstances and thus the conver- 

gence process is highly accelerated by utilizing the gradient optimization algorithms. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

The field of multidisciplinary design optimization (MDO) has emerged as developed approaches for optimizing the de-

sign of large coupled system [1] . By solving the MDO problem early in the design process and taking advantage of advanced

computational analysis tools, designers can simultaneously improve the design as well as reduce the time and the cost of

the design cycle [2] . Furthermore, considering that there inherently exist large quantities and multi-sources of uncertainties

in the whole life circle design of large complex system, including structural parameters, material properties, geometric di-

mensions, boundary conditions, loads and fabrication tolerance, the reliability based MDO (RBMDO), as a new trend of MDO

[3,4] , has been widely acknowledged as an advanced and potential methodology to obtain the global optimal solution and

guarantee the high reliability simultaneously. The successful applications of RBMDO in engineering are frequently reported

in recent years [5–11] . 
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It is common knowledge that reliability assessment is the foundation of RBMDO. In practice, structural reliability can be

divided into probabilistic reliability and non-probabilistic reliability according to the type of uncertainty. Probabilistic reli-

ability based on the classic probability theory has been studied for long, and many reliability analysis methods have been

proposed. The reliability index approach [12] describes the probabilistic constraint as a reliability index and many kinds of

indexes have been developed, such as the first order reliability analysis method (FORM), the second order reliability analysis

method (SORM) and so on. What is more, many works on probabilistic reliability evaluation and design optimization under

the frame of MDO have been presented. Huang et al. [13] combined the collaborative optimization framework and the in-

verse reliability strategy to assess the uncertainty encountered in the multidisciplinary design process, in which FORM and

SORM are employed to calculate the probability integration to assess the reliability. McDonald and Mahadevan [14] devel-

oped a novel formulation of RBMDO problems with both system and component level reliability constraints. 

However, when dealing with probabilistic reliability, a great quantity of information on the uncertainty is required to

construct precise distributions of uncertain parameters, which, unfortunately, is not always available or sometimes very ex-

pensive to obtain, especially for complex systems. Therefore, in order to tackle with the reliability problem in uncertain sys-

tem with few data and poor information, Ben-Haim and Elishakoff [15–18] first proposed the concept of “non-probabilistic

reliability” in early 1990s. Ever since, the non-probabilistic reliability theory has been intensely researched by many other

researchers and got extensive application in both theoretic research and actual engineering [19–24] . 

According to the state of the art of the non-probabilistic reliability, two categories of non-probabilistic reliability indexes

have been developed. On the one hand, Guo [25] , Guo and Lu [26] and Kang et al. [27] measured the non-probabilistic

reliability by the minimum distance from the origin to the failure surface, which was inspired by FORM in probability

theory. On the other hand, Jiang et al. [28] developed an interval satisfaction degree index to quantitatively characterize the

possibility that one interval is smaller than another based on an order-relation of interval numbers [29] . Moreover, Wang

et al. [30] extended this concept into multi-dimension situation and then established a general measurement of structural

non-probabilistic reliability on the basis of the volume ratio principle and interval interference model. Considering that this

kind of reliability index provides a definite assessment for the structural safety with non-probabilistic interval parameters,

it has been widely introduced and applied in many research fields with non-probabilistic parameters in recent years, such

as the non-probabilistic reliability-based topology optimization [31] , non-probabilistic time-dependent reliability assessment 

[32] , non-probabilistic stability reliability measure for vibration control system [33] , and so on. 

Nevertheless, as stated in [34] , for the non-probabilistic reliability based design optimization (NRBDO) issue, non-gradient

regions always exist for this interval reliability index. Under this circumstance, the traditional gradient-based optimization

algorithms are no longer suitable because the lack of gradient information would easily lead to the local optimal solution.

Thus, the global optimization algorithms are always adopted to deal with NRBDO problems in existing literatures [28,35–

37] , however, the computation amount will dramatically increase. More than that, when the global optimization algorithm

is integrated into the non-probabilistic reliability based MDO (NRBMDO) cases, the computation would further increase and

become unaffordable when the complex systems are involved. All in all, the main obstacles when tackling with the NRBDO

problems under this non-probabilistic reliability index can be summarized as: (1) The existing non-gradient regions will

result in convergence difficulties when the gradient-based optimization algorithms are utilized and (2) Huge amount of

computation will be caused when the global optimization algorithms are adopted. 

Moreover, the non-probabilistic model has only been primitively applied to deal with MDO problems involving interval

parameters according to the research state of NRBMDO. Li et al. [37] investigated an uncertain multi-objective MDO using

interval convex models. Wang et al. [34] attempted to solve the NRBMDO problems by conducting the interval uncertainty

analysis, the reliability analysis and MDO in a sequential manner. However, the first-order approximation is used in the

deterministic transformation, which could lead to non-convergence for the highly non-linear problem. All in all, compared

with the probabilistic reliability based MDO problems, studies on NRBMDO are still not sufficient at present. 

Considering this situation, in this work, an efficient strategy is established to improve the efficiency of the NRBMDO is-

sues. In this method, the non-probabilistic reliability is equivalently converted into the dynamic perpendicular displacement

from the actual limit-state plane to the referential limit-state plane. Therefore, the partial gradient region for the reliability

is equivalently transformed into full gradient region for reliability displacement and thus the convergence process can be

greatly accelerated by utilizing the gradient based optimization technique. 

The rest of the paper is organized as follows. In Section 2 , the subinterval theory based uncertainty analysis method in

multidisciplinary coupled system is researched. In Section 3 , the reliability analysis based on the area ratio algorithm in

multidisciplinary system is elaborated. In Section 4 , the non-probabilistic reliability displacement based MDO is expounded,

followed by the explanation of the computation procedure. In Section 5 , several cases are conducted to demonstrate the

efficiency of the proposed methods. Finally, some conclusions are given in Section 6 . 

2. Uncertainty propagation analysis in multidisciplinary system 

2.1. Description of multidisciplinary system with interval parameters 

For the sake of simplicity but without losing generality, Fig. 1 illustrates the interrelation in a typical three-discipline

coupled system, in which each small block stands for a discipline analysis. 

Additionally, the basic concepts and notations utilized in this paper are explained as follows: 
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Fig. 1. Concept of a three-discipline coupled system with interval uncertainties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Design variables { X s , X i } : Design variables can be divided into system design variables X s that involved in more than

one discipline and the discipline design variables X i that only involved in discipline i, i = 1, …, N ( N denotes the

number of the disciplines). Without loss of generality, the design variables are also assumed to be uncertain. 

(2) Uncertain parameters { P s , P i } : Just like design variables, uncertain parameters which describes the system attribute can

be classified into two types, that is, uncertain system parameters P s and uncertain discipline parameters P i . 

Note that both of the design variables and the uncertain parameters are considered as uncertainties in this paper. In order to

express more clearly in the following text, all the involved uncertainties are further divided into two types, namely, system

uncertainties U s and disciplinary uncertainties U d _ i (i = 1 , . . . , N) . The expressions of U s and U d _ i are formulated by 

U s = X s ∪ P s , U d _ i = X i ∪ P i (i = 1 , . . . , N) (1)

(3) Linking variables Y ij ( i � = j ): Linking variables represent the variables that acts as the outputs from discipline i and

simultaneously the inputs to discipline j . 

(4) System outputs Z i : System outputs represent the variables that act as the outputs from discipline i , however, not the

inputs to any other discipline. 

(5) Discipline analysis DA: Discipline analysis represents the process that calculates Y ij ( i � = j ) and Z i , and the calculation

model can be expressed as 

Y i = D A Yi ( X s , X i , P s , P i , Y •i ) 

Z i = D A Zi ( X s , X i , P s , P i , Y •i ) (2)

where Y i = { Y ij | j = 1, …, N; j � = i } denotes the set of linking variables which are the outputs from discipline i and meanwhile

the inputs to the other disciplines; Y •i = { Y 1, i , …, Y i − 1, i , Y i + 1, i , …, Y N,i } denotes the set of linking variables which are the

outputs from all disciplines except discipline i and meanwhile the inputs to discipline i ; DA Yi and DA Zi , respectively, stands

for the analysis model for Y i and Z i . 

2.2. Uncertainty propagation analysis based on subinterval theory in multidisciplinary system 

The first order interval Taylor expansion algorithm is adopted as the most common way to obtain the interval responses

of the multidisciplinary system [38] . However, the method is only accurate for linear system, and the accuracy is supposed to

be acceptable when the ranges of the interval parameters are small enough. Actually, for many cases, especially engineering

problems, the ranges of the uncertain parameters become so large that the error caused by the first order approximation is

unacceptable. In order to address this problem, the subinterval theory is introduced according to [39] and a modified first

order interval Taylor expansion method based on global sensitivity equation and subinterval theory is further put forward

in this paper. 

For convenience, the linking variables Y i is calculated in the following formulations and for the case of system outputs

Z , the same calculation process can be applied. 
i 
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Firstly, the system uncertainties U s and disciplinary uncertainties U d _ i (i = 1 , . . . , N) can be described by interval mathe-

matical theory as follows. ⎧ ⎨ 
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U d _ i is n i . Note that, in this paper, the superscript “r ” and “c ”, respectively, mean the radius and median value; the overline

“–” and the underline “–”, respectively, stand for the upper and lower bound. 

Secondly, based on the subinterval theory, the large interval uncertainties can be divided into a certain number of small

subintervals [40] : 
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) j is the j th subinterval of the k th uncertainties of the i th discipline and t k _ i is the number of subinterval for

U 
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It should be noted here that for the different interval parameters, different number of the subinterval can be applied

according to the uncertain level by the guideline provided in [39] . 

Thirdly, by taking out one subinterval from each interval parameter, w combinations can be generated. And w can be

expressed as 

w = 

m ∏ 

i =1 

s i ×
N ∏ 

i =1 

n i ∏ 

k =1 

t k _ i (6) 

Fourthly, combining the subinterval theory and SIUAM method in [38] , the median values of the uncertain multidisci-

plinary responses for each subinterval combinations can be calculated by one time of multidisciplinary analysis as follows: 
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Obviously, the interval responses with respect to the subintervals are connected one by one. Therefore, the whole interval

responses with regards to the original interval vector can be assembled by interval union operation as follows: 
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To sum up, by dividing the original uncertain parameters in multidisciplinary system into enough small subintervals, the

interval response for each subinterval combination can be guaranteed to be enough precise. Based on this, the accuracy of

the whole responses of the multidisciplinary system can be also ensured through the set operation. 

However, it should be noted that as the first order interval Taylor expansion method is only accurate for the linear

system, it is necessary to divide the original large intervals into a large number of enough small subintervals to guarantee

the precise in complex multidisciplinary system. In the case, when there are too many uncertain parameters involved, the

subinterval theory based uncertainty analysis method proposed in the paper will suffer unbearable computation on account

the fact that too many subinterval combinations are needed. In order to overcome these difficulties to some extent, the

following strategies can be implemented: 

(1) To reduce the computation caused by the large amount of subinterval combinations, the efficient subinterval de-

composition algorithms [41] can be utilized. Therefore, the interval responses of the multidisciplinary system are

approximately calculated by only a few subinterval combinational analyses instead of all possible combinations of

subintervals. 

(2) Some alternative methods are needed to guarantee the efficiency and accuracy. Actually, as stated in [34,38] , several

uncertainty based multidisciplinary analysis methods under non-probabilistic theory have been proposed, including

the iteration algorithm based approach, the direct optimization approach, the interval vertex method and the hybrid

concurrent approach. In a manner of speaking, the subinterval theory based uncertainty analysis method in multidis-

ciplinary system proposed in this paper is a complement to the UMDA methodology. In actual engineering projects,

we are supposed to choose which method to be utilized in light of actual situations. 

3. Interval reliability index based multidisciplinary design optimization 

3.1. Interval reliability analysis in multidisciplinary system 

As explained in [30] , the non-probabilistic interval interference model can provide a reasonable assessment for the state

of different interval responses. Therefore, in this work, this model is extended to the multidisciplinary system to appropri-

ately evaluate the system safety. And the limit-state function vector of the multidisciplinary system can be preliminarily

expressed as 

G i = R 

actual 
i − R 

allowable 
i (i = 1 , 2 , . . . , N) (11)

where G i represents the limit-state function vector of discipline i ; R 

actual 
i 

denotes the actual multidisciplinary response vec-

tor of discipline i , which can be acquired by the methods in Section 2 ; R 

allowable 
i 

denotes the allowable multidisciplinary

response vector of discipline i , which can be obtained from measurement data, engineering experience, etc. 

Furthermore, to facilitate the expression in the follow-up content, the limit-state function vector can be unified for dif-

ferent types of responses as follows. 

M = T − T 0 (12)

where T equals to either of R 

actual and R 

allowable while T 0 equals to the other; M > 0 indicates the safe state while M ≤ 0

indicates dangerous state. 

It is widely acknowledged that T and T 0 are affected by various uncertainties in actual projects, such as the variability

of loads, the dispersion of material properties, the machine tolerance of geometry dimensions, etc. Moreover, the informa-

tion about uncertain parameters is always poor in the engineering practice. Under this circumstance, the uncertainties are

expressed as interval parameters in this paper, and then the element of T and T 0 can be described as ⎧ ⎨ 
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where m i denotes the number of limit-state functions in disciplinary i . Moreover, the total number of the limit-state func-

tions is denoted as N t , which is equal to 
∑ n 

i =1 m i . 
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Fig. 2. States of T and T 0 in the two dimensional coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For generality and simplification, Eq. (14) is defined as the typical limit-state function 

M = T − T 0 (14) 

where T ∈ [ T , T ] , T 0 ∈ [ T 0 , T 0 ] . 

Based on the interval locations of T and T 0 , three situations, namely, the safe state, the interference state and the failure

interference, need to be analyzed. As shown in Fig. 2 , each of the situations can be illustrated in the two dimensional

coordinate system. In order to appropriately evaluate the interval reliability of each situation, the non-probabilistic reliability

index that proposed in [30] is introduced and the measure of the structural safety is defined as the ratio of the safe region

area to the total area. The expression of the reliability can be expressed by 

η(T > 0) = η(T − T 0 > 0) = S safe / S total (15) 

where η( •) denotes the possibility, and S stands for the area derived from interval model. 

3.2. Formulation of the interval reliability index based MDO optimization model 

Considering that the design variables X s and X i ( i = 1, …, N ) as well as the model parameters P s and P i ( i = 1, …, N ) are

uncertain in the multidisciplinary system, the general NRBMDO model, that is, the interval reliability index based MDO

(IRIB-MDO) model can be mathematically written as follows. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f ind X 

c 

min f ( X 

c ) 

s. t. η{ M ≥ 0 } ≥ η0 

Y i = D A Yi (X , Y •i , P ) 

Z i = D A Zi (X , Y •i , P ) 

X = ( ∪ 

i =1 , ··· ,N 
X i ) ∪ X s , P = ( ∪ 

i =1 , ··· ,N 
P i ) ∪ P s 

Y •i ⊆ ( ∪ 

i =1 , ··· ,N, j � = i 
Y j ) , X 

c ∈ 

[
X 

L , X 

U 
]

(16) 

where X is the design variables set containing both system design variables X i and discipline design variables X s ; X 

c rep-

resents the median value of X , whose feasible design domain is [ X 

L , X 

U ]; f ( X 

c ) is the objective function to be minimized;

η0 = [ η1 
0 
, . . . , ηN t 

0 
] is the allowable reliability vector, which can be calculated by the non-probabilistic reliability index in

Section 3.1 . Additionally, the definition of the other parameters can be found in Section 2 . 

4. Interval reliability displacement based multidisciplinary design optimization 

4.1. The statement about the deficiency of IRIB-MDO 

The regular strategy based on IRIB-MDO is a direct way to solve NRBMDO problem. It executes interval reliability analy-

sis at every search point and then compares the interval reliability vector with the allowable one to judge if the reliability

requirements are satisfied or not. Though the regular solution strategy is understandable, there indeed exist some insuffi-

ciencies. For instance, although the interval reliability based on the volume ratio theory possess clearer physical interpreta-

tion than any other interval reliability indexes for the interference situation, the gradient information of reliability cannot

be gathered in the no interference situation for that the reliability is identically equal to 1 or 0. 



R. Wang and Y. Luo / Applied Mathematical Modelling 75 (2019) 349–370 355 

Fig. 3. Six different optimization processes in the IRB-MDO problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consequently, the convergence process may be misguided and delayed when the traditional gradient-based optimization

algorithms are utilized to solve the IRB-MDO problem. In order to explain the problem clearly, the following situations are

analyzed in detail as illustrated in Fig. 3 , which describes the optimization process of a two-variable IRB-MDO problem.

Obviously, the whole design space can be divided into four parts by the reliability constraint plane η = η0 , the critical plane

η = 0 and η = 1. The four regions are denoted as 1 ©, 2 ©, 3 ©, 4 © and fall into two categories according to different character-

istics. For one thing, 1 © and 2 © construct the feasible region while 3 ©, 4 © the non-feasible region. For another, 1 © and 4 ©
construct the non-gradient region while 2 © and 3 © the gradient region. Based on this, the following cases could happen. 

When the initial design point is located in the region 1 © (the feasible and non-gradient region), there exist three possible

situations just like the optimization process I, II and III depicted in Fig. 3 . All the three processes can be explained as follows:

(1) In the optimization process I, the searching process is “lost” and the solution converges to the local optimal point 1

(LOP 1) in the region 1 © because the gradient and direction information cannot be acquired. 

(2) In the optimization process II, the searching point repeatedly jumps between the region 1 © (the feasible and non-

gradient region) and the region 4 © (the non-feasible and non-gradient region), then the searching process is “lost” in

the non-gradient region 4 © and the solution would converge to the previous optimal design point, namely the LOP 2

in the region 1 ©. 

(3) In the optimization process III, after many times of nondirectional search, the searching point finally jumps into the

gradient region, and then it will converge to the global optimal points (GOP1 and GOP2) rapidly. However, the opti-

mization process is indeed delayed in process of nondirectional search. 

When the initial design point is located in the region 4 © (the non-feasible and non-gradient region), there also exist

three situations just like the optimization process IV, V and VI delineated in Fig. 3 . Similarly, the three processes can be

described as 

(1) In the optimization process IV, the searching point jumps from the non-feasible region 4 © to the feasible region 1 ©.

And then it is “lost” in the non-gradient region 1 © and converges to the LOP 3. 

(2) In the optimization process V, just like the process III, though the searching process will finally converge to either

GOP1 or GOP2 rapidly, the convergence will be delayed for the nondirectional search into the gradient region. 

(3) In the optimization process VI, the searching process is “lost” in the non-gradient region 4 © and only the non-feasible

design points are detected. Therefore, the feasible design point cannot be acquired in this situation, let alone the

global optimal point. 

All in all, for the IRB-MDO issues, due to the lack of gradient information of interval reliability, the situations where

the optimization processes are misguided do exist. The facts will be further demonstrated in the numerical examples in

Section 5 . Moreover, it should be noted that the risk of falling into the local optimal point and non-feasible point will

increase as the area rate of the gradient region decreases. In this case, the global optimization algorithm will be an alternate

but with a sharp reduction of computational efficiency. Consequently, in this paper, we intend to develop a novel strategy in
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Fig. 4. Displacement from the actual limit-state plane to the referential limit-state plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which the gradient-based optimization algorithms can be applied to deal with the IRB-MDO issue to increase the efficiency

in the premise of accuracy. 

4.2. The definition of the interval reliability displacement 

In view of the above considerations, some improvements have been achieved in this section to ameliorate the situations.

The key issue is to seek an equivalent transformation of the interval reliability, which cannot only maintain the meaning of

reliability in Section 3.1 , but also gain the gradient information to get the right search direction. 

For better understanding and clearer analytic process, the interval model is firstly converted into the normalized space

according to the following transformation equation: {
δT = (T − T c ) / T r , where T c = ( T + T ) / 2 and T r = ( T − T ) / 2 

δT 0 = ( T 0 − T c 0 ) /T r 0 , where T c 0 = ( T 0 + T 0 ) / 2 and T r 0 = ( T 0 − T 0 ) / 2 

(17) 

where δT and δT 0 
are the normalized interval variables. 

Substituting Eq. (17) into Eqs. (14) and ( 15 ), the limit-state function and reliability index function can be obtained as 

M( δT , δT 0 ) = T r δT − T r 0 δT 0 + ( T c − T c 0 ) (18) 

η(M( δT , δT 0 ) > 0) = η( T r δT − T r 0 δT 0 + ( T c − T c 0 ) > 0) = 

S safe 

S total 

(19) 

Then, in order to expound this issue more clearly, as illustrated in Fig. 4 , we define the following two notions: 

(1) Referential limit-state plane: a plane which is parallel to the actual limit-state plane and the interval reliability is

the allowable reliability η0 . 

(2) Interval reliability displacement: the dynamic perpendicular displacement that the actual limit-state plane shifts 

to the referential limit-state plane, which is denoted as d . The reliability displacement is positive when the actual

limit-state plane shifts in the direction of positive δT axis, otherwise, the reliability displacement is negative. 

Obviously, when d ≥ 0, we can draw the conclusion that the structure is safe and the design is conservative, and what

is more, the conservative degree of the actual limit-state plane can be also measured by d in no matter the interference

situation or the no interference situation. Similarly, when d < 0, we will reach the conclusion that the structure is dangerous,

the design is radical and the radical degree is also quantified by d . 

Therefore, the interval reliability displacement acts as an equivalent transformation of the interval reliability. More im-

portantly, the gradient information of the reliability displacement is acquired all through the optimization process. It should

be noted here is that the actual/referential limit-state plane is dynamic in the optimization process. Just as shown in Fig. 5 ,

though the interval reliability corresponding to the referential limit-state plane always equals to the allowable reliability η0 ,

the slope of the referential limit-plane keeps changing from the iteration step 1 till the iteration step n until the convergence

is achieved. 

4.3. The analytic solution of the interval reliability displacement 

In order to obtain the interval reliability displacement, the expression of the referential limit-state plane needs to be

acquired. Considering the normalized actual limit-state function shown in Eq. (18) , the referential limit-state plane whose

slope is same as the normalized actual limit-state function can be written as 

T r δT − T r 0 δT 0 + D 

referential = 0 (20) 

where D 

referential is an undetermined item that needs to be derived. 
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Fig. 5. Dynamic actual/referential limit-state plane during the optimization process. 

Fig. 6. Illustration of the three circumstances according to the slope value. 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the allowable reliability η0 is always assigned a value close to 1 to ensure safety in practical engineering,

thus the referential limit-state plane is located at the upper-left corner of the normalized feasible region. In this case, three

circumstances shown in Fig. 6 is analyzed to acquire the solution of D 

referential according to the slope value. To identify the

three circumstances, two critical limit-state planes that cross the points ( − 1, −1) and (1, 1) are introduced. And based on

the area-ratio principle, the critical slope values can be calculated by: ⎧ ⎨ 

⎩ 

critical limit − state plane 1 : η0 = 1 − S faliure 

S total 
= 1 −

1 
2 × 2 

Slop e 1 
×2 

4 
⇒ Slop e 1 = 

1 
2(1 −η0 ) 

critical limit − state plane 2 : η0 = 1 − S faliure 

S total 
= 1 − 1 

2 ×2 Slop e 2 ×2 

4 
⇒ Slop e 2 = 2(1 − η0 ) 

(21)

where Slope 1 and Slope 2 are the slope of the critical limit-state plane 1 and 2, respectively. 

Then, D 

referential is supposed to be deduced according to the following three circumstances. 

(1) Circumstance I: T r 0 / T 
r ≥ slop e 1 

As illustrated in Fig. 6 (a), the referential limit-state plane intersects with the upper and lower sides of the feasible region,

thereby the failure region is constructed by an right-angled trapezoid in this circumstance. The four vertexes coordinates

of the right-angled trapezoid can be obtained as ( − 1, 1), ( − 1, −1), (( T r 0 − D 

referential ) / T r , 1) , (( −T r 0 − D 

referential ) / T r , −1) .

Considering that, the equation of calculating the reliability can be formulated by 

η0 = 1 − S failure 

S total 

= 1 −
1 
2 

× 2 ×
(

T r 0 −D referential 

T r 
0 

+ 1 + 

−T r 0 −D referential 

T r 
0 

+ 1 

)
4 

(22)

Therefore, D 

referential can be obtained by solving Eq. (22) . 

D 

referential = ( 2 η0 − 1 ) T r (23)

(2) Circumstance II: slop e 2 < T r 0 / T 
r < slop e 1 

As illustrated in Fig. 6 (b), the referential limit-state plane intersects with the left and upper sides of the feasible region,

thereby the failure region is constructed by an right angle triangle in this circumstance. The three vertexes coordinates of
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the right angle triangle can be obtained as ( − 1, 1), (( T r 0 − D 

referential ) / T r 0 , 1) , (−1 , ( −T r 0 + D 

referential ) / T r 0 ) . Considering that,

the equation of calculating the reliability can be formulated by 

η0 = 1 − S failure 

S total 

= 1 −
1 
2 

×
(

T r 0 −D referential 

T r 
+ 1 

)(
1 − −T r 0 + D referential 

T r 
0 

)
4 

(24) 

Therefore, D 

referential can be obtained by solving Eq. (24) . 

D 

referential = T 0 
r + T r −

√ 

8 T r T 0 
r 
( 1 − η0 ) (25) 

(3) Circumstance III: T r 
0 
/ T r ≤ slop e 2 

As illustrated in Fig. 6 (c), the referential limit-state plane intersects with the left and right sides of the feasible region,

thereby the failure region is constructed by an right-angled trapezoid in this circumstance. The four vertexes coordinates of

the right-angled trapezoid can be obtained as ( − 1, 1), (1, 1), (1 , ( T r + D 

referential ) / T r 
0 
) , (−1 , ( −T r 

0 
+ D 

referential ) / T r 
0 
) . Considering

that, the equation of calculating the reliability can be formulated by 

η0 = 1 − S failure 

S total 

= 1 −
1 
2 

× 2 ×
(

T r 0 −D referential 

T r 
0 

+ 1 + 

−T r 0 −D referential 

T r 
0 

+ 1 

)
4 

(26) 

Therefore, D 

referential can be obtained by solving Eq. (26) . 

D 

referential = ( 2 η0 − 1 ) T r 0 (27) 

Furthermore, based on the above analysis and the definition proposed in Section 4.2 , the interval reliability displacement

d can be computed as 

d = 

T c − T 0 
c − D 

referential √ 

( T r ) 
2 + ( T 0 

r ) 
2 

(28) 

Consequently, the expressions of d under different conditions can be summarized as 

d = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

T c −T 0 
c −( 2 η0 −1 ) T r √ 

( T r ) 
2 + ( T 0 r ) 2 

, 
T r 0 

T r 
≥ 1 

2(1 −η0 ) 

T c −T 0 
c −T r −T 0 

r + 
√ 

8 T r T 0 
r ( 1 −η0 ) √ 

( T r ) 
2 + ( T 0 r ) 2 

, 2(1 − η0 ) < 

T r 0 

T r 
< 

1 
2(1 −η0 ) 

T c −T 0 
c −( 2 η0 −1 ) T 0 

r √ 

( T r ) 
2 + ( T 0 r ) 2 

, 
T r 0 

T r 
≤ 2(1 − η0 ) 

(29) 

Consequently, the new optimization model based on the reliability displacement can be developed from Eq. (16) as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f ind X 

c 

min f ( X 

c ) 

s. t. d ≥ 0 

Y i = D A Yi (X , Y •i , P ) 

Z i = D A Zi (X , Y •i , P ) 

X = ( ∪ 

i =1 , ... ,N 
X i ) ∪ X s , P = ( ∪ 

i =1 , ... ,N 
P i ) ∪ P s 

Y •i ⊆ ( ∪ 

i =1 , ... ,N, j � = i 
Y j ) , X 

c ∈ 

[
X 

L , X 

U 
]

(30) 

where d = [ d 1 , . . . , d N t ] is the interval reliability displacement vector. 

On this basis, corresponding to Fig. 3 , the searching process of the above optimization model can be illustrated in Fig. 7 .

Apparently, the whole design space, which is composed by feasible region and non-feasible region, is supposed to be a

whole gradient field when the reliability displacement constraint is considered. Based on this, the following processes will

happen. 

(1) When the initial design point is located in the feasible region, as shown in Fig. 7 , just like the optimization process

I, the searching process converges to the global optimal point because the gradient and direction information can be

easily acquired. 

(2) When the initial design point is located in the non-feasible region, just like the optimization process II, the searching

process also can converge to the global optimal point because the gradient and direction information can be easily

acquired as well. 

Therefore, the conclusion can be drawn that, compared with IRIB-MDO, IRDB-MDO has higher efficiency by converting

the non-gradient problem into an equivalent gradient issue. 
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Fig. 7. Two different optimization processes in IRDB-MDO. 
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Fig. 8. Computational procedure of IRDB-MDO. 

 

 

 

 

 

4.4. Computational procedure of IRDB-MDO 

In this section, we will emphasize the optimization design process based on the proposed strategy. The flowchart of

IRDB-MDO is illustrated in Fig. 8 and the specified computational procedure can be expounded as follows: 

(1) Construct the IRDB-MDO model with mathematical description. Model the practical multidisciplinary design problem,

including identifying the design variables, system parameters, the constraint conditions, optimization objects, design

space. Then, establish the mathematical optimization model of the IRBMDO problem as shown in Eq. (30) . 

(2) Conduct the uncertainties propagation analysis at the search point. Select the design point based on the optimization

algorithm and then analyze the interval bounds of the multidisciplinary responses through the uncertainty analysis

method proposed in Section 2 . 
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(3) Analysis the interval reliability displacement. Based on the uncertain responses obtained in ( 2 ) and the interval relia-

bility definition proposed in Section 3 , the interval reliability displacement analysis can be accomplished through the

method proposed in Section 4 . 

(4) Check the convergence of the optimization process. If reliability requirements are satisfied and the system objects be-

comes stable, the entire optimization procedure is regarded to be completed. Otherwise, repeat ( 2 ) and ( 3 ) to continue

the uncertainties propagation analysis and interval reliability displacement analysis at the updated search point. 

(5) Export the optimal solutions. The optimal design point can be acquired after the optimization process converges. 

5. Numerical examples and discussions 

5.1. Example 1: mathematical function case 

The multidisciplinary system involved in this case consists of two disciplines, which are discipline 1 and discipline 2 . X 1 ,

X 2 , X 3 are design variables, and all of X 1 , X 2 , X 3 are the system design variables. p s , p 1 , p 2 , g 
0 
1 
, g 0 

2 
are uncertain parameters,

in which p s is the uncertain system parameter, p 1 and p 2 are uncertain discipline parameters, g 0 
1 
, g 0 

2 
are the uncertain pa-

rameters in constraint functions. Moreover, the allowable reliability vector is specified to be (0.9, 0.9). Thus, the optimization

model can be mathematically expressed in Eq. (31) as 

(31) 

5.1.1. Optimization based on IRIB-MDO 

In this part, IRIB-MDO is tried to solve the optimization design problem. In the first place, one of the most common

gradient optimization algorithm, namely, the sequential quadratic programming (SQP) is chosen to work out the problem.

Unfortunately, the situations in which either the local optimal solution or the non-feasible solution is obtained often hap-

pened for the reason that the search points locate in the non-gradient region where the gradient information of interval

reliability is always equivalent to 0 and then the search direction is not clear. Different initial design points are selected and

the results can be listed in Table 1 . 

Under this circumstance, the global optimization algorithms are introduced to tackle the problem. When the global opti-

mization strategy is applied, neither the derivative information nor the gradient information is needed. However, the calcu-

lation amount sharply increases. 

In this case, the initial design point is set to be ( X 1 , X 2 , X 3 ) = (2.5, 3.0, 3.0) and the converging process based on global op-

timization method, i.e., adaptive simulated annealing (ASA) is conducted. The obtained optimal point is ( X 1 , X 2 , X 3 ) = (0.531,

1.428, 1.728) and the minimum value of objective function is F = 7.369. Note that the reliability at the optimal point can

be obtained based on the area ratio theory and the reliability vector is η= ( η1 , η2 ) = (0.9002, 0.9012), which means that the

reliability requirements have been satisfied. 

5.1.2. Optimization based on IRDB-MDO 

IRDB-MDO is used to solve the UMDO problem as well. Similar to the strategy in above section, SQP is firstly used to

settle the problem. Due to the proper gradient information of interval reliability displacement which can be captured in

any search points, the global optimal solution of the optimization problem is easily obtained and the optimization process
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Table 1 

The optimum solutions based on SQP and ASA for IRIB-MDO. 

Design variables Object Constrain reliability Total 

MDA 
X 1 X 2 X 3 F η1 η2 

SQP IP 1 a 1.2506 2.0 0 05 2.0 0 05 13.0690 1.0 1.0 39 

SQP IP 2 b No feasible design is found to satisfy all constraints 

SQP IP 3 c 0.6291 1.4289 1.6287 7.3483 0.9 0.9 41 

ASA 0.5309 1.4179 1.7283 7.3694 0.9002 0.9012 20,254 

a IP 1 = (2.5, 3.0, 3.0), which locates in the feasible and non-gradient region. 
b IP 2 = (0.0, 1.0, 1.0), which locates in the non-feasible and non-gradient region. 
c IP 3 = (1.0, 1.5, 1.5), which locates in the gradient region. 

Table 2 

The optimum solutions based on gradient optimization algorithms for IRDB-MDO. 

Design variables Object Constraint reliability Total 

MDA 
X 1 X 2 X 3 F η1 η2 

SQP IP 1 a 0.6292 1.4289 1.6286 7.3483 0.9 0.9 17 

SQP IP 2 b 0.6294 1.4289 1.6284 7.3483 0.9 0.9 9 

SQP IP 3 c 0.6292 1.4289 1.6286 7.3483 0.9 0.9 17 

MMFD IP 1 a 0.6289 1.4289 1.6289 7.3483 0.9 0.9 31 

MMFD IP 2 b 0.6305 1.4289 1.6273 7.3483 0.9 0.9 30 

MMFD IP 3 c 0.8289 1.4289 1.4289 7.4283 0.9 0.9 26 

LSGRG IP 1 a 0.6289 1.4289 1.6289 7.3483 0.9 0.9 36 

LSGRG IP 2 b 0.6289 1.4289 1.6289 7.3483 0.9 0.9 26 

LSGRG IP 3 c 0.6289 1.4289 1.6289 7.3483 0.9 0.9 24 

a IP 1 = (2.5, 3.0, 3.0). 
b IP 2 = (0.0, 1.0, 1.0). 
c IP 3 = (1.0, 1.5, 1.5). 

Table 3 

Optimum solutions of IRIB-MDO and IRDB-MDO. 

Design variables Object Constrain reliability Total 

MDA 
X 1 X 2 X 3 F η1 η2 

IRIB-MDO ASA 0.5309 1.4179 1.7283 7.3694 0.9002 0.9012 20,254 

SLS-NRBMDO SQP a 0.6292 1.4289 1.6286 7.3483 0.9 0.9 47 

IRDB-MDO SQP a 0.6292 1.4289 1.6286 7.3483 0.9 0.9 34 

a When SQP is utilized, the initial point (1.5, 1.5, 1.0) is selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

converges quickly. Corresponding to Section 5.1.1 , different initial points are selected to verify the effectiveness of the pro-

posed IRDB-MDO. Furthermore, several gradient optimization algorithms, namely, SPQ, MMDF (Modified method of feasible

directions), LSGRG (Large Scale Generalized Reduced Gradient), are introduced to tackle this issue. All the results are listed

in Table 2 . 

From the results in Table 2 , it indicates that the optimum solutions are acquired when any of the initial design points

and gradient optimization algorithms is selected for that the gradient information of the interval reliability displacement

constraints is available in any circumstances. 

5.1.3. Comparison between IRDB-MDO and the existing algorithms 

In order to further illuminate the characteristics of the proposed algorithm, the comparisons between IRDB-MDO and

the existing algorithms are conducted. Besides IRIB-MDO, the efficient single-loop strategy SLS_NRBMDO in [34] is also

considered. 

To compare the efficiency of the three algorithms, the converging processes constituted by improved data points and

the optimal solutions for both methods are respectively shown in Fig. 9 and Table 3 . Obviously, all the three methods can

obtain the optimal solution in this example. On the one hand, the number of total multidisciplinary analyses of IRDB-MDO

is at the same level with SLS-NRBMDO since gradient optimum algorithms are applied in both strategies; on the other hand,

the computational cost of either SLS-NRBMDO or IRDB-MDO is much less than that of IRIB-MDO because global optimum

algorithms are utilized. Another thing to note that though the first-order approximation is used in SLS-NRBMDO, it is still

suitable for this case while the nonlinear degree of the multidisciplinary system is not high in this example. 

Besides, the gradient information for both constraints of IRID-MDO and IRDB-MDO are contrasted in Fig. 10 . Based on the

figure, it turns out that for the same design domain, in IRID-MDO strategy, most region of the constraints is non-gradient

and only a small region of the constraints is gradient. On the other hand, as an improved strategy, in IRDB-MDO, all the

region of constraints is gradient, thus the efficient gradient based optimization algorithms can be applied. Furthermore, the
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Fig. 9. Converging process of optimization based on IRIB-MDO and IRDB-MDO. 

Table 4 

Probabilistic and interval reliability analyses in different design schemes. 

Design scheme number IRDB-MDO MCS 

Constraint interval reliability Design scheme Probabilistic reliability 

η1 η2 X 1 X 2 X 3 η1 _ MSC η2 _ MSC 

1 0.80 0.80 0.6101 1.3166 1.6096 0.8390 0.8126 

2 0.85 0.85 0.6188 1.3680 1.6183 0.8847 0.8623 

3 0.90 0.90 0.6291 1.4289 1.6287 0.9333 0.9121 

4 0.95 0.95 0.6427 1.5083 1.6422 0.9735 0.9582 

 

 

 

 

 

 

 

 

 

 

 

 

 

variation ranges of constraints are much larger than that in IRIB-MDO, which only varies between 0 and 1. It means that

the gradient feature is more distinct, which makes IRDB-MDO converge much faster than IRID-MDO. 

5.1.4. Validation based on MCS 

In order to verify the validity of the proposed interval reliability based optimization methods, MSC is applied to demon-

strate the optimized design scheme. In this case, the size of the MCS is chosen as 10 0,0 0 0, which is large enough to be

considered as the “correct analytic solution” for the purpose of confirmation, and random simulations are picked to follow

uniform distributions of the input variables. Taking the optimized design scheme obtained through IRDB-MDO as an exam-

ple, the reliability obtained by MCS is compared with the constraint reliability, which is assumed to be 0.8, 0.85, 0.9 and

0.95. The probabilistic reliability values of both constraints are listed in Table 4 and the tendency under different constraint

interval reliability are illustrated in Fig. 11 . 

5.2. Example 2: supersonic aircraft conceptual design 

The well-studied NASA test suite with regards to the design of a supersonic business jet is adopted in this paper to fur-

ther illustrate the effectiveness of IRDB-MDO for high dimensional and highly non-linear problems. As illustrated in Fig. 12 ,

the supersonic jet is modeled as a coupled system of structure, aerodynamic, propulsion, and aircraft range. The analysis

model involves 8 linking variables, including total aircraft weight W T , wing twist θ , fuel weight W F , drag D , drag-to-lift ratio

L / D , fuel consumption SFC , engine scale factor ESF , engine weight W E . The detailed description of the analysis models for all

the linking variables and outputs in involving disciplines are presented in [42] . 

The purpose of the optimization model is to maximize the range R which is computed through the Breguet range equa-

tion as follows: 

R = 

M ( L/D ) 661 

√ 

σ

SF C 
In 

(
W T 

W T − W F 

)
(32) 

where M is Mach number, σ is temperature ratio. 
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Fig. 10. Illustration of the gradient information for both IRIB-MDO and IRDB-MDO. 

Fig. 11. Comparison between probabilistic reliability and interval reliability for different design scheme. 
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Fig. 12. Illustration of supersonic business jet system consisting of four disciplines. 

Table 5 

Descriptions of the design variables in case 2. 

Name Symbol (unit) Lower bound Upper bound 

1 Wing taper ratio λ 0.1 0.4 

2 Wingbox x-sectional area χ 0.75 1.25 

3 Skin friction coefficient C 1 0.75 1.25 

4 Throttle T 0.1 1 

5 Thickness/chord ratio t / c 0.01 0.09 

6 Altitude h (ft) 30,0 0 0 60,0 0 0 

7 Mach number M 1.4 1.8 

8 Aspect ratio AR 2.5 8.5 

9 Wing sweep � ( ◦) 40 70 

10 Wing surface area S ref (ft 
2 ) 500 1500 

Table 6 

Descriptions of the uncertain variables in case 3. 

Mach number M Altitude h (ft) Throttle T 

Median value 1.4–1.8 30,0 0 0–60,0 0 0 0.1–1 

Deviation 5% 5% 5% 

 

 

 

 

 

 

 

 

 

The involving 10 design variables are specifically described in Table 5 . 

Moreover, in this example, engine scale factor ESF and engine temperature Temp are chosen as the constraints. The spec-

ified expressions can be written as {
0 . 5 ≤ ESF = ( D/ 3 ) / ( T ∗ 16168 . 6 ) ≤ 1 . 5 

temp = p f ( M, h, T ) ≤ 1 . 02 

(33) 

where pf is the polynomial equation, the definition of that is presented in [42] . 

Specially, considering that uncertainties are inevitably involved in the process of the supersonic aircraft conceptual de-

sign, M , h , T are considered to be uncertainties in the case, and the detailed descriptions of the uncertain variables can be

listed in Table 6 . Then the constraint equations can be rewritten as follows to consider the interval reliability constraints. {
η1 ( 0 . 5 ≤ ESF ≤ 1 . 5 ) ≥ η1 

0 

η2 ( temp ≤ 1 . 02 ) ≥ η2 
0 

(34) 

where η1 and η2 are the actual interval reliability, η1 
0 

and η2 
0 

are the corresponding allowable reliability. In this case, the

values of η1 
0 and η2 

0 is set to be 0.9 and 0.9. 

The uncertainty propagation analysis is conducted by the modified first order interval Taylor expansion method proposed

in this paper. Note that SLS-NRBMDO is no longer applicable in this example for the high non-linear effect, therefore, only

IRDB-MDO and ASA are conducted. Additionally, SQP is utilized in IRDB-MDO while ASA in IRIB-MDO. Then, the optimal

design solutions can be listed in Table 7 and the converging processes are illustrated in Fig. 13 . 

Obviously, both the traditional IRIB-MDO and the proposed IRDB-MDO can obtain nearly the same optimal design of

the supersonic aircraft conceptual design. However, as listed in Table 7 , the number of total multidisciplinary analyses of
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Table 7 

Optimum solutions of IRIB-MDO and IRDB-MDO in case 3. 

IRIB-MDO a IRDB-MDO b 

Design 

variables 

λ 0.113 0.100 

χ 1.036 1.170 

C 1 0.842 1.031 

T 0.248 0.248 

t / c 0.09 0.09 

h (ft) 60,0 0 0 60,0 0 0 

M 1.4 1.4 

AR 2.5 2.5 

� ( ◦) 70 70 

S ref (ft 
2 ) 1500 1500 

Reliability 

constraints 

η1 0.9 0.9 

η2 1.0 1.0 

Object R 4248.7 4250.2 

Total MDA – 80,936 712 

a ASA is utilized in IRIB-MDO. 
b SQP is utilized in IRDB-MDO. 

Fig. 13. Converging process of optimization based on IRIB-MDO and IRDB-MDO. 
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(a) Components of the hypersonic Wing
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(b) Hypersonic wing consisting of two coupling disciplines 
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Fig. 14. Illustration of the hypersonic wing design problem. 

 

 

 

 

IRDB-MDO is 712 while that of IRIB-MDO is 80,936, which further verifies the high efficiency of IRDB-MDO for the high

dimensional and highly non-linear multidisciplinary design problems. 

5.3. Example 3: hypersonic wing design 

The hypersonic wing design is selected as the engineering application for IRDB-MDO strategy in this example. As dis-

played in Fig. 14 (a), the wing is composed of three part: (1) The titanium skin that covers the whole wing surface; (2) The

bearing frame that consists of titanium alloy ribs and beams and (3) the sandwiches filled between ribs and beams with

honeycomb paperboard. All the three components stick together to form the integrated wing structure. 
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Table 8 

Uncertain descriptions of input variables in case 2. 

L rib L beam E Ti d allowable 

Median value 10 mm–50 mm 10 mm–50 mm 1.0e11 Pa 16 mm 

Deviation 0.4 mm 0.4 mm 5.0e10 Pa 1.0 mm 

Fig. 15. Procedure of hypersonic wing design through IRIB-MDO and IRDB-MDO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 14 (b), the fluid discipline and structure discipline are strongly coupled in this case. And the design is

formulated as UMDO problem to minimize the weight of the wing structure. Furthermore, the design variables include the

thickness of the ribs L rib and beams L beam 

; the linking variables include the aerodynamic shape Aero_shape and pressure

Aero_pressure ; the output refers to the maximum displacement d actual 
max . Additionally, as described in Table 8 , the elastic mod-

ulus of alloy materials E Ti , the thickness of the ribs L rib and beams L beam 

as well as the allowable displacement d allowable 

are assumed to be uncertain due to the inevitable uncertainties in the process of design and manufacturing in practical

engineering. 

In this case, the reliability ηdis that the actual maximum displacement d actual 
max is less than the allowable displacement

d allowable 
max is taken as the constraint for the hypersonic wing design. The reliability can be mathematically expressed by 

ηdis = η
(
d actual 

max ≤ d allowable 
max 

)
(35) 

Of the two coupled disciplines, the aerodynamic pressure on the skin is computed by the engineering method and the

structure analysis is conducted by finite element method. For flight environment, the flight altitude is 30 km, the free stream

Mach number is 6 as well as the angle of attack is 16 °. For the boundary conditions, the wing root region is imposed by

fixed constraints to simulate the connection with the fuselage. The uncertainty propagation analysis for the fluid-structure

interaction system is accomplished by the modified first order interval Taylor expansion method proposed in Section 2.2 .

Specially, the derivative in the global sensitivity equation is approximated by the finite difference method in this engineering

case. And the procedure of the hypersonic wing design through both IRIB-MDO and IRDB-MDO is illustrated in Fig. 15 . 

As displayed in Fig. 16 , in order to work out this engineering problem, the solution procedure is conducted by con-

structing the integrated optimization design platform with iSIGHT, which includes several modules: (1) CATIA that provides

parametric modeling technology; (2) ANSYS that conducts finite element analysis; (3) MATLAB that calculates the interval

reliability displacement and (4) the self-compiled program that obtains the aerodynamic pressure on the skin. 
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Table 9 

Optimum solutions of IRIB-MDO and IRDB-MDO in case 3. 

Design variables Object Interval reliability Total 

MDA 
L rib L beam m η1 η2 

IRIB-MDO 

a 0.01 0.0175 524.4758 0.99110 0.99012 20,072 

IRDB-MDO 

b 0.01 0.02143 524.3675 0.99004 0.99021 89 

a ASA is utilized in IRIB-MDO. 
b SQP is utilized in IRDB-MDO. 

Fig. 16. Integrated platform for IRDB-MDO based on iSIGHT. 

Fig. 17. Converging process of optimization based on IRIB-MDO and IRDB-MDO. 

 

 

 

 

 

 

 

Based on the solving procedure in Fig. 16 , the optimal design solutions can be listed in Table 9 and the converging pro-

cesses of IRIB-MDO and IRDB-MDO are illustrated in Fig. 17 . Moreover, the bounds of displacement at wing tip is illustrated

in Fig. 18 . Obviously, both strategies can obtain the optimal design of the hypersonic wing. Nevertheless, the number of to-

tal multidisciplinary analyses of IRDB-MDO is much less than IRIB-MDO since gradient optimum algorithm (SQP) is utilized

in IRDB-MDO while global optimum algorithm (ASA) are utilized in IRIB-MDO, which indeed verifies the efficiency of the

proposed IRDB-MDO. 

5.4. Discussion 

From the results of the three cases, the following conclusions can be summarized: 

(1) As referred by the example 1, the traditional IRIB-MDO highly depends on the initial point when the gradient based

methods are utilized. Once the initial point locates in the non-gradient region, the optimization process may be
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Fig. 18. Bounds of displacement at wing tip for optimal design scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

delayed or misguided. Then the local optimal or the non-feasible solutions could be obtained. To overcome this, IRDB-

MDO transforms all the design space into the gradient region through the equivalent transformation from the relia-

bility index to the reliability displacement. Consequently, compared with IRIB-MDO, the optimization process based

on IRDB-MDO could always be accelerated by utilizing gradient based optimization algorithms. 

(2) As example 1 indicated, the probabilistic reliability for the design scheme obtained by either IRDB-MDO is larger than

the interval reliability. Therefore, it is concluded that the design scheme based on either IRDB-MDO is more conser-

vative than the ones based on probabilistic RBMDO for the reason that the available information in non-probabilistic

RBMDO is less than that in probabilistic RBMDO. 

(3) As example 2 and 3 stated, IRDB-MDO converges much faster than IRIB-MDO for that IRDB-MDO equivalently converts

interval reliability into the displacement from the actual limit-state plane to the referential limit-state plane, and

then the gradient information can be acquired under any circumstances. Consequently, the traditional gradient-based

optimization algorithms can be utilized to acquire the global optimal solution, and then the convergence procedure

is greatly accelerated. Thus, IRIB-MDO is indeed applicative in the optimization design of complicated engineering

system. 

6. Conclusions 

Considering that the gradient information of the interval reliability cannot be fully obtained in the traditional NRBMDO

problems, an interval reliability displacement based MDO method is proposed to promote the efficiency in this paper. The

novel reliability displacement index is defined as the dynamic perpendicular displacement from the actual limit-state plane

to the referential limit-state plane in IRDB-MDO. By replacing interval reliability with interval reliability displacement in the

optimization model, the partial gradient domain is equivalently converted into whole gradient domain. IRDB-MDO possesses

the following advantages over the traditional methods. 

(1) Compared with the traditional IRIB-MDO strategy, the computational efficiency can be greatly promoted. For IRIB-

MDO strategy, the time-consuming global optimization algorithms must be adopted to guarantee the global opti-

mization solution due to the partial gradient domain. However, for IRDB-MDO strategy, the gradient optimization

algorithms can be utilized because the whole gradient domain is obtained through the interval displacement index.

And thus, the optimization process is sharply accelerated. 

(2) Compared with the existing single loop strategy, IRDB-MDO is more robust. In the single level procedure, the outer op-

timization and inner reliability analysis are decoupled and executed in a sequential way to improve the computation

efficiency. However, the iteration divergence may be caused in the highly non-linear problem due to the first-order

approximation used in the constraint transformation. As for IRDB-MDO strategy, the original optimization framework 

is maintained and it is still a double-loop optimization problem in essence, thus the robustness can be ensured. 

The proposed IRDB-MDO is tested with one numerical case and two complex practical engineering cases. The results

show that it can obtain the optimum with lower computational cost than the traditional method, which demonstrates the

effectiveness and efficiency of the proposed method. Moreover, to enhance the engineering applicability of IRDB-MDO, in-

vestigations are needed in the future to address the following issues: (1) novel reliability displacement index that involves
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multi-source uncertainties and (2) the development of the more efficient strategy to deal with the RBMDO issue with large

amount of design variables, uncertain parameters and constraints. 
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