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ABSTRACT: In this study, bulk modulus of a colloidal crystal formed by
highly charged particles is experimentally determined by applying direct
current electric field. A theoretical expression is also proposed to
independently predict the bulk modulus based on van’t Hoff’s law of
osmotic pressure and the theory of Ohshima. The experimental result thus
obtained agrees well with the theoretical expectation. In addition, results
from both above-mentioned methods coincide with that inferred from the
static structure factor.

■ INTRODUCTION

Highly charged particles in an aqueous environment can be
self-assembled into a colloidal crystal with interparticle
separation distances being significantly greater than the
individual particle diameter.1−5 The elasticity of the colloidal
crystal is one of its important research topics with theoretical
and practical significance.6−8 However, unlike ordinary
materials, elastic moduli of such kind of colloidal crystals are
extraordinarily small (about 8 orders lower than those of
metals),9,10 so the conventional measuring methods applicable
to regular solids have become no longer valid.10,11

There have been some reports about investigation on
Young’s modulus of a colloidal crystal. Crandall and Williams12

once proposed a sedimentation equilibrium method for the
determination of Young’s modulus of the colloidal crystal with
polystyrene particles by observing the variation of nearest
interparticle distance with respect to the height of the colloidal
crystal remaining at the sedimentation equilibrium between the
gravity and repulsive interactions of particles. By the same
method, Okubo6,13 obtained Young’s modulus of the colloidal
crystal with charged silica particles subsequently. Afterward,
based on the studies of Tomita et al.,14,15 Okubo16 proposed
the electrostatic field method by improving the above
sedimentation equilibrium method through the substitution
of gravitational field with the external direct current (DC)
electric field.
We doubt the rationality of the above-mentioned

sedimentation equilibrium and electrostatic field methods for
measuring Young’s modulus. Both of them imply that the
colloidal crystal under unidirectional compression would
expand freely in directions perpendicular to the direction of
compression, just as the ordinary solid materials behave.
However, in fact, it is not the case. The colloidal crystal has no
fixed shape of its own and takes the shape of the container that

holds it. Due to the constraint of container walls, the crystal is
unable to expand in other directions under the unidirectional
compression. Thus, in our opinion, these two methods are not
suitable for the measurement of Young’s modulus by
neglecting the constraint of the container.
Although the above methods cannot be used to measure

Young’s modulus, either gravitational or electric field does
provide a simple and effective way to load stress to the
colloidal crystal. When the applied DC electric field is very low,
the crystal structure is maintained and the colloidal particles do
not migrate. Gravity loading is simple, but it needs quite a long
time for the sedimentation process; also, the gravity is usually
too weak to induce measurable deformation of the colloidal
crystal, while the electric field intensity can be controlled to
produce enough deformation. By the way, it should be noted
that the voltage gradient along the direction of electric field is
not homogeneous throughout when exerting a DC electric
field on the colloidal suspension so that the electric field
strength cannot be deduced directly from the incremental
voltage per unit length between electrodes.
As for the determination of bulk modulus for charged

colloidal suspension, a couple of methods have been proposed.
The bulk modulus can be measured directly by osmotic
stress.17 Static structure factor is a characterization of the
scattering ability of materials to radiation that reflects average
information of the structure of colloidal suspension, and
therefore, it has also been used to evaluate the bulk
modulus.18−24 The static structure factor can be obtained by
small-angle X-ray scattering, static light scattering, and
turbidimetry. Gapinski et al.19,20 proposed that the static
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structure factor can also be achieved from relevant parameters
of the colloidal system. More recently, Junio et al.18 employed
the optical bottle technique to measure the osmotic bulk
modulus of colloidal suspension and compared their results
with those achieved through a zero-wavenumber static
structure factor.
In this paper, we present an experimental scheme for

measuring the bulk modulus in which the osmotic stress is
induced by an electrostatic field and state why this method is
suitable for measuring the bulk modulus rather than Young’s
modulus. The experimental equipment, procedure, and the
relevant theoretical basis are described. On the other hand, a
theoretical expression to predict the bulk modulus directly is
proposed in terms of interactions of counterions in the gap
between particles. The calculation of bulk modulus using the
structure factor is also performed for comparison. Results from
the above three different approaches, including our experiment
using a DC electric field method, theoretical prediction
analyzing the interaction of counterions, and the previously
reported calculation by the aid of the structure factor, are
entirely consistent with each other.

■ THEORY
Young’s Modulus or Bulk Modulus? The molecules in a

standard crystal are tightly bound together and can only vibrate
without moving.25 In contrast, particles in the colloidal crystal
are bound rather loosely and hence can easily move around
like molecules in a liquid; then, the loading stress to the
colloidal crystal can be transferred in all directions equally
because of the fluidity of constituent particles.10 Furthermore,
the colloidal crystal itself grows under the hydrostatic pressure
of liquid solvent.26 Thus, at any point of the colloidal crystal at
rest (static state), the normal stress in all directions equals with
each other, i.e., σxx = σyy = σzz, where x, y, and z are axes of a
Cartesian coordinate system and x is on the direction of
gravitational or electrostatic field. Since the normal stress in all
directions shares the same value (−p), the three mutually
perpendicular normal strains εxx, εyy, and εzz should also have
the same value at one point of the colloidal crystal.
For isotropic materials, we have the equation of Hooke’s

law27,28 as

ε σ ν σ σ= [ − + ]
E
1

( ( )xx xx yy zz
Y (1)

where EY is Young’s modulus and ν is Poisson’s ratio. For
colloidal crystal with σxx loaded by the sedimentation
equilibrium or electrostatic field method, ν is unknown and
σyy and σzz are definitely nonzero due to constraints of
container walls. Consequently, the Young’s modulus, EY,
cannot be obtained as expected by the sedimentation
equilibrium or electrostatic field method,6,12,13,16 although εxx
and σxx can be acquired by experiments.
Since the strains have the same value in all directions at a

point of the colloidal crystal, stresses induced by gravity or
electrostatic field will result in isotropic compression of
colloidal crystals. The reciprocal of the compressibility then
gives the bulk modulus of the colloidal crystal, which can be
obtained by analysis of regression from experimental results
through the formula

ε
= −K

pd
d b (2)

where εb = εxx + εyy + εzz.
Overall, such a stress loading method referred in the papers

of Crandall et al.12 and Okubo6,13,16 cannot be directly used to
measure Young’s modulus but rather can be used to measure
the bulk modulus.

Theoretical Formulation for Measuring Bulk Modulus
by the Electric Field Method. In this subsection, we will
demonstrate how to measure the bulk modulus of the colloidal
crystal by applying electric field between parallel plate
electrodes.
Although in some respect the colloidal system in a weak DC

electric field is similar to that in a gravitational field, it is not
straightforward to evaluate the relevant force on colloidal
particles. As known, the charged particle suspended in liquid
medium are surrounded by a diffuse layer of counterions
according to the theory of electric double layer. When the DC
electric field is applied, not only the electric force but also the
forces contributed by counterions will be exerted on the
particle. Therefore, it becomes complicate to calculate the
forces applied to the particle directly. As a simplified approach
to analyze the total forces caused by the DC electric field,
following the procedure proposed by researchers before,29−31

the model of spherical Wigner−Seitz cell is adopted in this
study.
According to the model of a spherical Wigner−Seitz

cell29,32,33 as shown in Figure 1, each particle with radius a

is embedded into a concentric virtual sphere with radius R
satisfying the equation

ϕ = i
k
jjj

y
{
zzz

a
R

3

(3)

where ϕ is the particle volume fraction of the colloidal
suspension. The virtual sphere is referred to as a spherical
Wigner−Seitz cell. Hence, the entire volume of suspension can
be regarded to be occupied by such spherical Wigner−Seitz
cells and each spherical cell appears to be electrically neutral.
Since negative charged particles were used in this study, the

direction of force field acting on particles is opposite to that of
the electric field. As discussed above, the electrostatic field will
make the volume of a Wigner−Seitz cell at one end smaller
than that at another end. The volume expansion, εb, can also
be defined as

ε =
V

V
d

b
cell

cell (4)

Figure 1. Schematic of spherical Wigner−Seitz cells (solid circles
represent colloidal particles with radius a; dashed circles represent
spherical Wigner−Seitz cells with radius R).
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where Vcell is the volume of a single spherical Wigner−Seitz cell
as

π=V R
4
3cell

3

(5)

Thus, K can also be written as

= −K V
p

V
d

dcell
cell (6)

When the colloidal crystal is at equilibrium under the
application of external electric field, eq 6 can be rewritten as

= −
=

=

K V

p x
x d d

V x
x d d

cell
(0)

d ( )
d

d ( )
d

exp exp
(0)

cell

exp exp
(0) (7)

after setting up an x-axis with its origin at the middle point
between two electrodes, as shown in Figure 2. Here, Vcell

(0) is the
original volume of a spherical Wigner−Seitz cell and dexp

(0) is the
original nearest interparticle distance when no external electric
field is applied.

In this work, all of the formed colloidal crystals are body-
centered cubic (bcc) structures and then

=V x
d x

( )
4 ( )

3 3cell
exp
3

(8)

Thus,

=
= =

V x
x

d
d x

x
d ( )

d
4
3

( )
d ( )

dd d d d

cell
exp
(0) 2 exp

exp exp
(0)

exp exp
(0) (9)

Because the strength of the applied electric filed is extremely
small, we can assume that the values of ddexp(x)/dx and dp(x)/
dx are constant in the bulk of suspension; then, there is

=
=

p x
x

p x
x

d ( )
d

d ( )
dd dexp exp

(0) (10)

and eq 9 can be rewritten as

=
=

V x
x

d
d x

x
d ( )

d
4
3

( )
d ( )

dd d

cell
exp
(0) 2 exp

exp exp
(0) (11)

To determine the directional derivative of pressure in the
direction of x-axis, dp(x)/dx, the strength of the external
electric field, E, applied to the colloidal suspension is needed to
be known. However, there is Galvanic potential difference
between the electrode and the bulk of suspension because the
ions and charged particles can condense at surfaces of the
electrodes to form double layers to induce non-Ohmic
interfacial resistances there.34,35 The schematic of potential
change is also shown in Figure 2. Hence, the actual strength of
the external electric field that the suspension is subjected to is
much smaller than Uele/Lele, where Uele is the voltage between
electrodes and Lele is the spacing between electrodes. To
determine the field strength in suspension, the differential form
of Ohm’s law36−38 is used in the scalar form

σ=j E0 (12)

where j is the magnitude of current density and σ0 is the
electric conductivity of the medium of suspension (counter-
ions). This form of Ohm’s law is especially for electric
properties at the microlevel. Additionally, there are only one
kind of counterions in the salt-free suspension, i.e., H+ ions,
which are dissociated from the surface function groups of
particles, so σ0 can be estimated by the formula36,39−41

σ = ̅ Λ+ +n
N0

H H

A (13)

where n̅H+ is the average number density of counterions
described as

π̅ = *
+n

Z
R

3
4H 3 (14)

Here, ΛH
+ is the limiting molar conductivity of H+ ions and

ΛH
+ = 349.65 × 10−4 S m2 mol−1 at the temperature of 25 °C,

Z* is the effective mobility charge number on the surface of a
colloidal particle, and NA is the Avogadro constant. Then, one
can obtain the calculation formula of field strength applied to
the suspension by combining eqs 3, 12, 13, and 14 as

π
ϕ

=
* Λ +

E
N a j

Z
4

3
A

3

H (15)

where the magnitude of current density, j, is calculated by

=j
I

Sele (16)

Here, I is the current intensity passed through the suspension
and Sele is the contact surface area between an electrode and
the suspension.
Subsequently, we estimate the internal stress inside the

colloidal crystal based on the field strength, E. Since the
particles used in this study have high surface charge, we can
estimate the internal stress according to theoretical studies of
Ohshima,42,43 in which the effective mobility charge, Z*,
satisfies the condition

ϕ
*

>
i
k
jjjj

y
{
zzzz

Z l
a

ln
1B

(17)

where lB is the Bjerrum length

π
=

ϵ ϵ
l

e
k T4B

2

0 r B (18)

Figure 2. Schematic of x-axis and electric potential change inside
colloidal suspension.
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ϵ0 is the dielectric permittivity of vacuum and ϵr is the relative
permittivity of water.
Since the Wigner−Seitz cell is electrically neutral, there is no

net electric force on the unit cell. However, there is
hydrodynamic force on the surface of the cell FH, which is
related to the electric field. The resultant of hydrodynamic
force, FH, on the Wigner−Seitz cell is the surface integral of the
local hydrodynamic pressure, p. From the Navier−Stokes
equation, the value of p can be deduced, which is related to the
local electric potential. If the DC electric field is not present,
the electric potential on that surface is equal everywhere.
However, with DC electric potential, there will be a potential
change along the direction of electric field

δψ = − ·r E r( ) (19)

which is

δψ θ θ= −R ER( , ) cos (20)

on the surface of the Wigner−Seitz cell. Here, r is the position
vector and θ is a coordinate of the spherical coordinate system
(r, θ, φ) of which the origin is at the center of the particle and
θ = 0 points to the direction of the DC electric field, E, as
shown in Figure 1. Such a potential change will cause
asymmetrical hydrodynamic pressure

δ δψ= − +r rp en r( ) ( ) ( )H (21)

which is

δ θ δψ θ θ= − =+ +p R en R R en R ER( , ) ( ) ( , ) ( ) cosH H
(22)

on the surface of the Wigner−Seitz cell. Here, nH+ is the
number density of counterions (H+). As a result, the
hydrodynamic force, FH, on the Wigner−Seitz cell is the
surface integral of the local hydrodynamic pressure as

∮

∫

δ θ θ

π θ θ θ θ

π

= −

=− [ ]

=−

π
+

+

F p R S

R en R ER

ER en R

( , ) cos d

2 ( ) cos sin cos d

4
3

( )

S
H

2

0

2

H

3
H (23)

The ion density in suspension meets the Boltzmann-type
distribution by supposing a reference place with zero electric
potential where the number density of H+ ions equals n̅H+, so
the number density of H+ ions at the outer boundary of
spherical Wigner−Seitz cell is

ψ= ̅ [− ]+ +n R n
e R

k T
( ) exp

( )
H H

B (24)

where ψ(R) is the electric potential at the outer boundary of
the spherical Wigner−Seitz cell, kB is the Boltzmann constant,
and T is the absolute temperature of suspension. According to
the study of Ohshima,42,43 in the case that the particles take
high charge density at the surface (eq 17 is satisfied) and the
particle volume fraction is much small than 1 (ϕ ≪ 1), the
electric potential on the outer boundary surface of the
spherical Wigner−Seitz cell is

ψ
ϕ

= [
*

]R
k T

e
Z l

a
( ) ln

ln(1/ )
B B

(25)

By substituting eqs 14 and 25 into eq 24, one can get

ϕ
π π

= =+n R
a

l R
a R a

l R
( )

3 ln(1/ )
4

3 ln ( / )
4H

B
3

3 3

B
3

(26)

Then, by substituting eq 26 into eq 23, the hydrodynamic
force, FH, on the Wigner−Seitz cell can also be expressed as

ϕ
= −

i
k
jjjj

y
{
zzzzF eE

a
l

ln
1

H
B (27)

The minus sign at the right side of the last equation implicates
that the direction of hydrodynamic force on the negatively
charged particle is opposite to that of the DC electric field.
In addition, we have

=
p x

x
F

V

d ( )
d

H

cell
(0)

(28)

in the bulk of suspension according to the theory of
hydrostatics.44 By substituting eqs 10, 11, 27, and 28 to 7,
we have

=

ϕ ϕ

πK

eE

al
d x

x

3 ln(1 / )

4 3
d ( )

d

2/3

23
B

exp

(29)

which is applicable at the condition that eq 17 is satisfied.
Theoretical Model to Estimate the Bulk Modulus. In

this subsection, we will derive an approximate analytic
expression to estimate the osmotic bulk modulus of colloidal
crystal formed by charged particles by means of combining the
theory of Ohshima on the surface charge density−surface
potential relationship42,43 for a particle in salt-free suspension
with van’t Hoff’s law of osmotic pressure.4,10,45

The combination of the particles and counterions inside a
spherical Wigner−Seitz cell is overall charged neutral. The
repulsive force between particles is not due to the direct effect
of electrostatics but the excess osmotic pressure of the
counterions in the gap between colloidal particles.45 According
to the van’t Hoff’s law of osmotic pressure,29,46,47 the osmotic
pressure of counterions, Π, is expressed as

Π = +k Tn R( )B H (30)

Accordingly, the bulk modulus of colloidal crystal can be
defined as

= − Π
K V

V
d

dcell
cell (31)

where Vcell is the volume of a spherical Wigner−Seitz cell

π=V R
4
3cell

3

(32)

By substituting eqs 30 and 32 into eq 31, one can obtain

= −
∂

∂
+

K k TR
n R

R
1
3

( )
B

H

(33)

Now, by substituting eq 26 into eq 33, we have the theoretical
expression to calculate the bulk modulus of the colloidal crystal
assembled from highly charged particles in the salt-free
suspension as

ϕ ϕ
π

=
[ − ]

K
k T

l a
3 ln(1/ ) 1

4
B

B
2

(34)
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■ EXPERIMENTAL SECTION
Sample Preparation. Two kinds of polystyrene particles

(PS-1 and PS-2) carrying a large number of ionizable sulfate
groups are used in this work. Their characteristic parameters
are shown in Table 1. Here, the effective mobility charge, Z*, is

measured from the fitting of the conductivity versus number
density curve,48,49 while the effective elasticity charge, Z*′, is
determined from the fitting of shear modulus versus number
density curve.50,51 The difference of these two kinds of
effective charges has been discussed thoroughly.52,53 In this
paper, the effective mobility charge, Z*, is used to calculate the
conductivity of suspension when the crystal structure is formed
in the experimental method since it is directly measured from
conductivity. The effective elasticity charge, Z*′, is used to
calculate the zero-q limit static structure factors for inferring
the bulk moduli since it is measured from mechanical
properties and is related to particle interaction and crystal
structure.
After the sample of colloidal suspension with a specified

volume fraction of particles is prepared, the electrolytic ions
inside the suspension were removed by ion-exchange resins
(IRN-150, EMD Millipore Corporation, Germany) until the
electrical conductivity of suspension was reduced to the
minimum.54,55 After deionization, the suspension sample was
enclosed into the quartz cell together with the platinum
electrodes using the parafilm. Then, the colloidal particles of
the suspension inside the quartz cell could self-assemble into
the colloidal crystal that can appear iridescent color while
keeping at the room temperature.55 It is worth noting that the
enclosed sample cell should be immersed into an ultrasonic
bath for some seconds before experiments to make sure the
homogeneity and isotropy of the colloidal crystal.
Experimental Setup. The experimental setup designed to

determine the bulk modulus of charged colloidal crystal
comprises three units: a sample unit, a circuit unit, and an
optical unit. The sample unit consists of the quartz cell and the
colloidal suspension inside.
The circuit unit, of which the diagram is in Figure 3, consists

of a pair of platinum electrodes, a DC power supply (HSPY-
300-01, Hanshengpuyuan, Beijing), a digit multimeter (Agilent
34401A 61/2, Keysight Technologies Inc.), and three resistors.
This unit is used to exert stress by providing the electrostatic
field and to measure the electric current through the
suspension simultaneously. The details on how to deduce
the exerted stress from the current intensity instead of the
voltage between electrodes are given in the last section.
To be able to control the voltage between electrodes

precisely, the resistors R1 and R2 are utilized to form a loop
with the DC power supply to enlarge the needed output
voltage of the power. Since the current intensity passed
through the suspension between electrodes is on the order of
10−7 A, which is quite small, another resistor R3 with a
resistance of 10 kΩ is series-connected with the electrodes.
Then, the total current intensity through the suspension can be

obtained by measuring the voltage across R3. While measuring
the voltages, the input impedance of the digit multimeter is
shifted to 10 GΩ for the sake of high precision.
The optical unit, i.e., the reflection spectrometer including a

tungsten halogen light source (AvaLight-HAL, Avantes Inc.,
the Netherlands), a fiber optic spectrometer (Avaspec-2048,
Avantes Inc., the Netherlands), and a bifurcated fiber optic
cable, is used to determine the shift of particles at different
parts of the colloidal crystal by detecting the nearest
interparticle distances. The diagram of this optical setup is
shown in Figure 4. As shown in previous studies,54,56 the

nearest interparticle distances for both BCC and FCC
structures can be calculated from the peak wavelength of the
reflection curve through the formula

λ ν=d 0.6124 /exp p w (35)

where dexp is the nearest interparticle distance, λp is the
wavelength at the peak of reflection curve, and νw is the
refractive index of water.
Here, we illustrate the general measurement procedure in

our experiments by taking a PS-1 sample with a volume
fraction of 0.8% and an applied voltage of 400 mV between the
electrodes as an example. After the DC electric field was forced
on the sample and the particles do not shift any more after
hours of waiting, the reflection curves at different x coordinates
determined by a reflection spectrometer are shown in Figure 5,
where the reflection curves adjacent to the electrodes have
been omitted. It can be seen that the nearest interparticle
distances (dexp) varied linearly along the x-axis. The relevant
data points of dexp along x and their fitting lines are plotted in
Figure 6. As can be seen from this figure, the variation trend of
the nearest interparticle distances is rather uniform in the
middle of the sample cell but not so good near the electrodes.
The slop of the fitting line, dexp(x)/dx = 2.05 × 10−7, was
obtained through estimation of linear least squares. The

Table 1. Parameters of Colloidal Particles

diameter polydispersity
effective mobility

charge
effective elasticity

charge

particles 2a/nm PDI Z* Z*′
PS-1 95 0.033 962 517
PS-2 75 0.335 781 457

Figure 3. Circuit diagram.

Figure 4. Diagram of optical setup.
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voltage across R3 was also measured to be 0.473 mV.
Therefore, by employing eq 29 above, the experimental value
of the bulk modulus of the colloidal crystal with 0.8% particle
volume fraction is determined as 18.2 Pa, which agrees with
the value of 19.3 Pa calculated according to eq 34. For each
particle volume fraction with different voltages (400, 500, and
600 mV) applied, respectively, we made several measurements
independently to get an averaged bulk modulus.
We have argued that εxx, εyy, and εzz at one point should

have the same value. To further confirm this judgment, we
used the indium tin oxide (ITO) film coating on the inward
surfaces of quartz cell sides normal to the x-axis to make the
opaque platinum electrodes replaced by transparent ones.
Since the two normal stresses εyy and εzz are perpendicular to
the x-axis, they have equivalent value because of symmetry.
Then, we just need to demonstrate that εxx equals εyy, i.e., to
demonstrate that the nearest interparticle distance of the
colloidal crystal along the x-axis equals that along the y-axis at
the same place. For one of the samples, the measured nearest
interparticle distances along the x-axis is 248 nm at the place
near the anode. The nearest interparticle distance along the y-

axis on the transparent ITO anode is 238 nm. This value is
close to 248 nm rather than 305 nm, the average value of those
along the x-axis or the value before the application of the
electrical field. This confirmed that εyy and εzz are both equal to
εxx.

■ RESULTS AND DISCUSSION
This paper proposes two approaches, including an exper-
imental method and a theoretical method, to determine the
bulk modulus of the colloidal crystal formed by highly charged
particles. The value through the experimental method is the
measurement by exerting an electric field and that through the
theoretical method is the reciprocal of compressibility due to
the osmotic pressure of existing counterions.
As previously discussed, only when eq 17 is satisfied, eqs 29

and 34 become applicable. In other words, the prerequisite for
eqs 29 and 34 to be valid is that the interparticle separation
distance should be significantly greater than the individual
particle diameter, namely, ϕ ≪ 1. Actually, to form crystals
with ϕ ≪ 1, their constituent particles have to be highly
charged. In this study, four different volume fractions were
used for particles PS-1 and they were 0.6, 0.8, 1.0, and 1.2%,
respectively. Also, three different volume fractions were used
for particles PS-2 and they were 1.2, 1.3, and 1.4%,
respectively. According to parameters listed in Table 1, it can
be confirmed that the assumption for eq 17 is satisfied for both
two kinds of colloidal particles in this study.
All of the theoretical and experimental results of the bulk

moduli of colloidal crystals with different particle volume
fractions are given in Table 2. From the table, we can find that

the experimental result is quite consistent with the theoretical
one for each particle volume fraction. It also demonstrates that
the higher the particle volume fraction, the bigger the bulk
modulus. This variation trend is also shown in Figure 7.
Since the structure factor contains structural information of

colloidal suspension, it also can be used to determine the bulk
modulus, which is the reciprocal of compressibility. According
to the previously reported formula of isothermal osmotic
compressibility, the bulk modulus of the colloidal crystal18,20,57

can be evaluated by

=
→

K
n

S qlim ( )
q

S
P

0 (36)

where nP is the number density of colloidal particles, S is the
static structure factor, and q is the scattering wavenumber of
the principal peak in S(q). Gapinski et al.20 indicated that the

Figure 5. Reflection spectra of colloidal crystal at different x
coordinate (particle: PS-1, volume fraction: 0.8%, electrode voltage:
0.4 V).

Figure 6. Nearest interparticle distances of the colloidal crystal. Slop
of the fitting line: dexp(x)/dx = 2.05 × 10−7 (particle: PS-1; volume
fraction: 0.8%; electrode voltage: 0.4 V).

Table 2. Theoretical and Experimental Results of Bulk
Moduli for Colloidal Crystals with Different Particle
Volume Fractions

ϕ (%) Ktheoretical/Pa Kexperimental/Pa

(a) PS-1
0.6 15.5 16.9 ± 4.1
0.8 19.3 20.6 ± 1.7
1.0 22.7 22.4 ± 2.2
1.2 27.5 28.4 ± 2.7

(b) PS-2
1.2 41.4 40.9 ± 2.5
1.3 43.8 42.3 ± 2.3
1.4 46.2 44.9 ± 2.4
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zero limit static structure factor
→

S qlim ( )
q 0

is only the function of

λ, the reduced screening parameter of the colloidal suspension
as shown in Figure 15 in their paper. By this function, we also
give the lines of results using this calculation method in Figure
7. As mentioned above, the effective elasticity charge, Z*′, is
adopted to evaluate the reduced screening parameter λ.
Now, we have three results coming from three different

approaches, respectively. The first is the experimental
measurement by applying the DC electric field; the second is
the evaluation of the theoretical model; and the third is the
calculation by the aid of the static structure factor. Upon
comparing the three results, we can see that they are quite
consistent.

■ CONCLUSIONS
This paper first clarifies that neither the sedimentation
equilibrium nor electrostatic field method is suitable for
measuring Young’s modulus of the colloidal crystal because the
crystal will be unable to expand in other directions under
unidirectional compression due to the container wall restraints.
Then, we present an experimental scheme with corresponding
theoretical formulation for measuring the bulk modulus by the
electrostatic field method. Meanwhile, based on van’t Hoff’s
law of osmotic pressure and the theory of Ohshima, a
theoretical expression to independently predict the osmotic
bulk modulus is also proposed. In our experiments to
determine the bulk moduli by electrostatic field method, four
different volume fractions (0.6, 0.8, 1.0, and 1.2%) were used
for particles PS-1 and three different volume fractions (1.2, 1.3,
and 1.4%) were used for particles PS-2. The experimental
results are in good agreement with those predicted by the
proposed theoretical model as well as the calculation involving
the zero-wavenumber static structure factor.

We hope that the result of this paper would be of certain
significance for a better understanding of the elastic behavior of
a colloidal crystal.
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