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A B S T R A C T

The mixed type crack is common to be found in engineering practices, however, the characteristics of mixed I/II
creep crack tip fields have not been studied thoroughly. The aim of this part of the paper is to study the
dominance of C(t)-integral for mixed I/II type creep crack tip field under transient creep. The boundary layer
model is presented to investigate the dominance of C(t) under various mixed mode cases. For transient mixed
mode creep crack under boundary layer model, C(t)-integral is related with the effective stress intensity factor
(SIF). The near field of mixed creep crack tip field can be influenced by the remote T-stress greatly. The max-
imum tangential stress direction also can be influenced if the remote T-stress level is large enough. The loss
dominance of the C(t) presents more remarkable under negative stress under transient creep. The relations of
creep mixity factor with remote elastic mixity factor of the boundary layer model is also presented. The T-stress
effects on the constraint parameter Q’ and Q* are presented. The case that near the pure mode I case presents the
most significant loss of constraint compared with the other mixed mode cases. The comparison between the
sharp crack and blunted crack is made, and the sharpening effect is found be existed in the pure mode II case
which reveals that the situation of mode II case may have a more severe damage process than that of mode I case.

1. Introduction

Estimation of creep crack tip field accurately is a foundation to
make better prediction of the service lifetime for flaw contained
structures operated at high temperature. The potential influence of the
so-called “constraint effect” (attributed as the influences of geometry
size, loading level and even material mismatch) may cause significant
influence on the creep crack growth and the integrity assessment of a
structure at elevated temperature [1,2]. As the influence of so-called
“constraint effect” [3–5], the understanding of the dominance of C(t) in
creeping solids is concerned by both researchers and engineers in recent
years [6–10].

In fact, mixed mode crack problem is an important topic in fracture
mechanics and the mixed creep crack is commonly found in actual
engineering structures [11–14]. With the foundation work of Shih [15],
the mixed mode crack under small scale yielding condition was ana-
lyzed, and detailed dimensionless angular stress functions under dif-
ferent plastic mixity factors have been tabled by Symington and cow-
orkers [16]. Aoki et al. [17] presented a study on the crack tip
deformation for mixed mode crack tip field of elastoplastic material,

and they found that there exists both sharpening and blunting effect
under the large deformation of mixed type crack. Later, Du et al. [18]
discussed the J-dominance for mixed type crack and found that the
application of J-T two parameter theory under mixed mode is not as
good as pure mode I case. Roy and Narasimhan [19] made a thorough
investigation on the J-dominance of mixed type elastoplastic material,
and the dominance of J decreases as the mixity approaches to 1 ac-
cording to their study. The experimental work given by Roy and Nar-
asimhan [20] also showed that the influence of constraint effect on
fracture toughness of aluminum alloy for mixed mode crack.

To characterize the constraint effect of the mixed type crack, some
researchers proposed different constraint parameters for mixed I/II
crack in plastic materials, e.g. Sutton et al. [21] defined the stress
triaxiality as the constraint parameter. Ayatollahi et al. [22] proposed a
QII-parameter in the maximum tangential stress direction in a mode II
boundary layer model, and their solutions is quite similar to the Q-
parameter given by O'Dowd and Shih [23]. Subramanya et al. [24]
proposed a numerical study of three dimensional mixed mode cracked
boundary layer formulation considering the influence of out-of-plane
constraint effect. Yang et al. [25] presented a high order term solutions
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for both mode I and mode II cases, and they found that the mode II case
contains the smaller constraint effect than that of mode I. Tvergaard
[26] also found that the fracture toughness for mode II case is higher
than that of mode I case. There are also some other researchers who
have concerned the constraint effect for mixed type crack, e.g. Roy and
Narasimhan [20] presented the constraint effect for a hole ahead of
blunted crack. Though there are many works [26–30] related with the
elastic and plastic mixed type crack have been presented, discussions on
the dominance of C(t)-integral for mixed type creep crack have not been
reported yet in the available literatures.

For creep crack, Brockenbrough et al. [31] presented the transient
creep crack tip field of mixed type, and they found that the deformation
mode for mode I and mode II are different, and the growth rate for
creep zone for mode II is several times larger than that of mode I. Busso
et al. [32] presented a singular analysis for mixed type creep crack.
Gordon and McDowell [33] used the triaxiality criterion to predict the
crack initiation angle of bimaterial interface creep crack for Arcan-like
specimen. It should be mentioned that the aforementioned results were

based on crack tip field analysis.
In recent advances, though some works [6–12] have been made to

characterize the constraint effect for pure mode I or pure mode II creep
crack with different considerations, however, there is no literature
available to discuss the dominance of C(t) in mixed mode I/II type creep
crack tip field as far as the authors’ knowledge. According to the recent
investigation reported by Dai et al. [34,35], the constraint level can be
influenced by T-stress under transient creep within small scale creep for
mode I creep crack, however, the T-stress effect as well as the loss of
dominance C(t) have not been studied yet under mixed I/II condition.

The aim of the whole paper is to investigate the dominance of C(t)-
integral for mixed I/II creep crack. Towards this aim, the transient
creep for mixed type creep crack tip is studied in the Part I of the paper,
and the investigations of mixed mode type creep crack under extensive
creep will be presented in the Part II of the paper. The organization of
the Part I of this paper is as follows. Framework of mixed mode creep
crack tip fields for mixed mode I/II creep crack is presented in Section

Fig. 1. Coordinate system used in the analysis.

Table 1
Loading conditions used in calculations.

KI KII Me

150 0 1.0
150 75 0.7
150 150 0.5
75 150 0.3
0 150 0.0

Fig. 2. FE meshes for (a) boundary layer model, (b) sharp crack tip and (c) blunted crack tip.

Table 2
Material properties used in calculations.

Young’s
modulus

Yielding
stress

Poisson’s ratio Creep coefficient Creep
exponent

125 GPa 180MPa 0.3 2.64× 10−16 5

Fig. 3. Comparisons of C(t)-integral under different remote elastic mixity fac-
tors with Eq. (25) and FE solutions.

Y. Dai, et al. Theoretical and Applied Fracture Mechanics 103 (2019) 102314

2



2. The finite element model and numerical procedures are given in
Section 3. The results and analyses are given in Section 4. The discus-
sions is presented in Section 5. The concluding remarks are drawn in
the last section.

2. Framework of mixed I/II creep crack tip field

2.1. Constitutive equation

For the multiaxial state, the strain rate-stress relation of power-law
creep is written as [36]

Fig. 4. Angular distributions for (a) equivalent stress ∼σe, (b) shearing stress ∼σrθ, (c) tangential stress ∼σθθ and (d) radial stress ∼σrr under different remote elastic mixity
factors.

Fig. 5. Relations between remote elastic mixity factor and creep mixity factor.

Table 3
Comparisons of elastic, plastic and creep mixity factors.

Me 0.0 0.3 0.5 0.7 1.0
M p 0.00000 0.4232 0.6348 0.7958 1.0
Mc(t0.5) 0.00459 0.339 0.500 0.747 0.992
Mc(10 t0.5) 0.00432 0.402 0.634 0.789 0.990
Mc (10,000 hr.) 0.00278 0.423 0.638 0.797 0.992
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where E, v, n and δij are the elastic modulus, Poisson’s ratio, creep ex-
ponent and Kronecker delta, respectively. As the question discussed in
this paper is for two-dimensional plane strain condition, the subscript i,
j take r, θ respectively. The polar coordinate for the crack tip used in the
following content is shown in Fig. 1. The creep constant is defined as

=B ε σ̇ / n
0 0 .

2.2. Asymptotic crack tip field for mixed mode creep crack

In this analysis, small strain is assumed and the stress-strain fields
are treated to be separable in r and θ. The stress components of a power-
law creeping material with two terms expansion in the asymptotic form
are given as [7]:
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in which C t( ), si, In and L are the C t( )-integral, stress exponent, integral
constant and characteristic length of the crack tip field, respectively.
∼σ θ( )ij

(1) are the angular functions of stress distributions of the first order.
C t( ) is defined as [37]
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in which, as shown in Fig. 1, Γ is a counterclockwise integration

contour around the crack tip, andTi, u ̇i, yd and sd are the traction vector
on Γ, the displacement rate, the increments in y-direction and along Γ,
respectively. Under steady state creep or extensive creep, C t( ) can be
replaced by a path-independent integral C*. For the first order term, the
stress exponent s1 is equal to − +n1/( 1) for both mixed I/II mode
cracks.

The asymptotic expansion for the rate of strains can be presented as
[7]:
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With the strain rate relation Eq. (7), the dimensionless displacement
rate can be written as:

= ++ ∼u r θ t
ε L

A r u θ̇ ( , , )
̇

¯ ( ) higher order terms̲̲
i n ns

i
0

1
1 (1)

1
(9)

in which

⎧

⎨
⎪

⎩⎪

∼ =

∼ =

∼

+
∼ − ∼

u

u

r
ε

ns

θ
ε u

ns

(1)
1

(1) 2

rr

rθ r θ

(1)

1
(1)

,
(1)

1 (10)

Substituting the basic governing Eq. (4), Eq. (7) and Eq. (9) into
equilibrium equation, strain rate and displacement rate relation, the
following ordinary differential equation systems with first order term
can be obtained:

Fig. 6. Equivalent creep zone under different T-stress levels for (a) =M 0.3e and (b) =M 0.7e .

Table 4
Variations of creep zone area under different T-stress levels.

T= −36 −10 −5 −1 0 1 5 10 36

Me= 0.3 9.678 5.831 5.172 4.847 4.794 4.714 4.594 4.527 7.495
Me= 0.7 2.507 1.865 1.521 1.382 1.351 1.333 1.278 1.311 4.461
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Fig. 7. Angular distributions for dimensionless tangential stress and shearing stress component under various T-stress level with different elastic mixity factors.
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In order to solve Eq. (11), creep mixity factor is defined as a sup-
plement boundary condition which is given as below:
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where ∼σθθ
(1) and ∼σrθ

(1) are the angular distribution function of tangential
stress and shearing stress of the first order solutions, respectively. The
solution of Eq. (11) has been recently solved by Dai [38] and demon-
strated that the solutions coincide with the solutions presented by Shih
[15] and solutions recently revisited by Shlyannikov and Tumanov [29]
very well.

2.3. Maximum tangential stress criterion in mixed mode creep crack

The maximum tangential stress (MTS) criterion was commonly
adopted for both homogeneous linear material and elastoplastic

material to predict the crack initiation direction of mixed mode [39].
Herein, the MTS direction for mixed mode creep crack field can be
calculated as follows [39]:

∂
∂

= ∂
∂

<σ
θ

σ
θ

0, 0θθ θθ
2

2 (13)

Considering Eq. (13), the above formula can be rewritten as:

∂∼

∂
= ∂ ∼

∂
<σ

θ
σ
θ

0, 0θθ θθ
2

2 (14)

in which ∼σθθ is the dimensionless angular distribution of tangential
stress of the first order. The angle which satisfies Eq. (14) is denoted as
θMTS.

2.4. Constraint characterization parameter

According to the asymptotic crack tip field analysis in Section 2, the
higher order term may be used to characterize the constraint effect of
the mixed mode creep crack. Herein, the following constraint para-
meters for mixed I/II creep crack tip field are selected as the higher
order terms given in Eq. (4) which are presented as below [22]:

′ =
−

=Q
σ σ

σ
θat 0θθ θθ

ref

0 (15)

Fig. 8. Angular distribution for dimensionless tangential stress and shearing stress component under various T-stress level with different elastic mixity factors.
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where σθθ
ref is the tangential stress calculated with the selected reference

stress field, and σ θ( )θθ
ref

MTS is also the obtained tangential stress of HRR
field under the theoretical analysis along MTS direction. The difference
between these two equations mentioned above are also needed to be
compared so as to confirm the application of these two equations. For
creep crack tip field, the maximum tangential stress direction is de-
termined by Eq. (14).

Herein, the σθθ
ref can be also represented by the opening stress of T-

stress with zero if it is under small scale creep. Hence, ′Q and Q* is
defined as below under small scale creep condition according to the
previous investigations given by Dai [33,34] and by Zhao et al. [40].
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3. Numerical procedures

In order to achieve transient creep, the boundary layer model with

Fig. 9. Radial distribution for dimensionless opening stress under various T-stress level for remote elastic mixity factor (a) 0.3, (b) 0.5 and (c) 1.0.

Fig. 10. Variations of stress triaxiality under different remote elastic mixity
factors.

Y. Dai, et al. Theoretical and Applied Fracture Mechanics 103 (2019) 102314

7



mixed type crack is adopted [34,41]. The detail specimen configura-
tions, boundary conditions and material properties are given in Section
3.1. Modelling verifications are presented in Section 3.2.

3.1. Specimen configurations, boundary conditions and material properties

The boundary layer model was widely used to characterize the
constraint effect of small scale yielding problem. This model is recently
developed to analyse the effect of constraint effect for small scale creep
for mode I creep crack [6,35] and this model is only applicable under
transient creep. The boundary layer model is always a circle plate in
which the crack is placed in radius direction with an enforced boundary
condition. The applied outer boundary conditions is written as below
[18]:

= ⎡
⎣

− + + + + ⎤
⎦

+

+

−

( ) ( )u K k K k

T r θ

cos 1 2sin sin 1 2cos
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(20)

where ux and uy are the displacements in x-direction and y-direction,
respectively. KI, KII, r, θ, T and E are stress intensity factor (SIF) of
mode I, mode II, distance from crack tip, T-stress and Young’s modulus,
respectively. In Eqs. (15) and (16), = −k v3 4 for plane strain condi-
tion.

Herein, the radius of the boundary layer model is taken as 1000mm,
with a reasonable loading level the results are ensured to be under small
scale creep regime. Under boundary layer model, the applied load at the
outer boundary of the model is list in Table 1 if it’s not stated specially
in this paper. The applied loading level is controlled with different re-
mote elastic mixity factors so as to govern the mixity of the creep crack
front, and the remote elatic mixity factor here is defined as:

⎜ ⎟= ⎛
⎝

⎞
⎠

M
π

K
K

2 arctane I

II (21)

in which KI and KII are mode I SIF and mode II SIF, respectively. In
order to characterize the creep mixity factor under the numerical
computations, a finite element based creep mixity factor is defined as
below:

⎜ ⎟= ⎛
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=
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σ θ

2 arctan ( 0)
( 0)

θθ
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where σθθ and σrθ are the tangential stress and shear stress components,
respectively.

Fig. 11. Variations of stress triaxiality under different T-stress level in angular direction.
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The finite element (FE) models for boundary layer model is pre-
sented in Fig. 3. The element type used for boundary layer model is
eight nodes plane strain element with reduced integration (CPE8R).
Two crack tip models are adopted here in which one is the sharp crack
tip (see Fig. 2(b)) and another is the blunted crack tip (see Fig. 2(c)).
For sharp crack tip, the element type of the first ring is the singular
element with single node collapsed element. There are around 8611
elements with 26,052 nodes in the entire modelling. For the blunted
type crack tip mode, the notch radius for the blunted crack, r0, takes
0.001mm.

Herein, the power-law creep constitutive equation presented in Eq.
(1) is adopted here. The material properties used in calculations are
shown in Table 2. The Young’s modulus E, nominal yielding stress σ0,
Poisson’s ratio v are kept as 125 GPa, 180MPa and 0.3, respectively.
The creep coefficients, i.e. denoted as B in Eq. (1), are selected as
2.64×10−16 corresponding with creep exponent n=5. The material
properties selected here are backgrounded with P92 steel [40].

3.2. FE verification

To validate the mesh quality and accuracy of the modelling, FE
calculations are performed before the analysis of the investigation. For
the boundary layer model, the stress intensity factor (SIF) and T-stress
are verified here. The SIF is calculated with the contour integral method

implemented by ABAQUS itself. As a verification of the result, the ap-
plied KI, KII and T-stress at the outer boundary of the boundary layer are
75MPa•mm1/2, 75MPa•mm1/2 and −10MPa, respectively. SIF and T-
stress of the near field extracted from FE code ABAQUS are
75.35MPa•mm1/2, 73.98MPa•mm1/2 and −10.04MPa, respectively. It
can be found that relative error between the applied KI, KII and T-stress
and the extracted solutions are 0.467%, 1.36% and 0.4%, respectively.
Hence, the mesh quality and FE accuracy presented in the analysis are
fine enough.

4. Results and analyses

4.1. Basic characteristics of mixed I/II creep crack tip fields under transient
creep

4.1.1. C(t)-integral estimation of mixed I/II creep crack
For mode I creep crack, a transition time to characterize the tran-

sition between transient creep and extensive creep which can be pre-
sented as below [42]:

=
−
+

t
v K

n EC
(1 )
( 1) *T

I
2

I
2

(23)

The superscript of tT
I is denoted as the mode I case. The C(t)-integral

under mode I condition can be estimated as follows:

Fig. 12. Variations of stress triaxiality under different T-stress levels in radial direction.
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=
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n Et
( )

(1 )
( 1)

2
I
2
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where t is the creep time.
Similar to the derivation of Eq. (24), the following formula is pro-

posed to calculate C(t)-integral for creep crack under mixed mode
condition as below and the detail derivation is presented in Appendix A.

=
− +

+
C t

v K K
n Et

( )
(1 )( )

( 1)

2
I
2

II
2

(25)

in which KI and KII are the mode I stress intensity factor and mode II
stress intensity factor for the same cracked specimen, respectively. The
limit condition for application of Eq. (24) is that the creep regime is
transient which represents that the creep condition is under transient
creep.

In order to verify Eq. (25), comparisons of the solutions calculated
with Eq. (25) and numerical results extracted from FE code ABAQUS
are presented in Fig. 3 where C(t)-integral are calculated under dif-
ferent remote elastic mixity factors. Herein, the results extracted from
FE code ABAQUS are computed by averaging ten integration contours
ahead of crack tip. From Fig. 3, it can be seen that the solutions pre-
sented by Eq. (25) coincide quite reasonably with the solutions com-
puted with FE. It indicates that C(t)-integral can be estimated with the

proposed Eq. (25).

4.1.2. Angular stress distribution function
With the characteristics of creep crack front for mixed mode creep

crack tip field presented in Section 2, the distributions of dimensionless
stress component under various remote elastic mixity factors are given
in Fig. 4. It should be pointed out that remote elastic mixity factor Me is
determined by the applied SIF at the outer boundary. It is considered to
be the pure mode II case for Me= 0.0 and pure mode I case for
Me= 1.0. It is considered to be mixed type if 0.0 < Me < 1.0. The
corresponding loading conditions is presented in Table 1. The solutions
are obtained at a creep time of 10,000 h.

Herein, the angles of maximum angular tangential stress under
various mixity factors are −72°, −58.5°, −49.5°, −36° and 0°, re-
spectively. Except the MTS direction, the maximum value of the angular
tangential stress also increases with the rise of elastic mixity factor. The
maximum value of normalized radial stress is also found to be influ-
enced by the elastic mixity factor of the far field under the boundary
layer model and the radial stress heightens with the increase of the
remote elastic mixity factor.

4.1.3. Relations between creep mixity factor and elastic mixity factor
Due to the important role of the applied outer boundary loading of

Fig. 13. Variations of ′Q with radial distance under various T-stresses.
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the boundary layer model, herein, the relation between elastic mixity
factor and creep mixity factor is presented in Fig. 5 which could take
the influence of creep exponent into consideration. It can be found that
the creep mixity factor is higher than that of elastic mixity factor and
presents a nonlinear relations. The relations presented here are not only
dependent on creep exponent, but also dependent on creep coefficient.

As the difficulty of obtaining the extensive creep for boundary layer
model, the transition time is hardly be reached. Herein, a parameter t0.5
is defined here which represents that the creep time when equivalent
creep strain level of 0.001 reaches to 0.5 mm away from crack tip. The
t0.5 for different elastic mixity factors are respectively 10000, 490,
25.52, 42.34 and 43.55 h corresponding to elastic mixity factors
varying from 1.0 to 0.0.

With the given normalized stress method, the creep mixity factor

can be obtained at any creep time. Herein, the creep mixity factors at
creep time of t0.5, 10t0.5 and 10,000 h are presented in Table 3, and the
comparisons between plastic mixity factors and creep mixity factors are
also made in Table 3. The plastic mixity factors are obtained from Shih
[15] with his proposed relationship between elastic mixity factor and
plastic mixity factor. It can be found that the creep mixity factors under
various far field at creep time of 10t0.5 and 10,000 h are almost equal to
the plastic mixity factors which quite coincide well with our numerical
analyses. For creep time of t0.5, the creep mixity factors present some
slight difference compared with creep mixity factor of longer creep
time. The reason is that some region of the creep crack tip field is still
under control of elastic field so that elastic mixity factor approaches to
the creep mixity factor gradually with accumulation of creep strain.

4.2. Influence of T-stress

The creep zone can reflect the dominance of C(t) to some extent, the
influence of T-stress level on the equivalent creep strain area of the
mixed type creep crack is presented in Fig. 6. The results here are ob-
tained under the same remote elastic mixity factor, i.e. the same ef-
fective SIF. The specific value of equivalent creep zone area surrounded
around the mixed creep crack tip is list in Table 4. It can be seen clearly
that the equivalent creep strain area is strongly influenced by the ap-
plied remote T-stress level. Compared with the area of the equivalent

Fig. 14. Variations of Q* along radial distance under various T-stresses.

Table 5
Applied loading and effective SIF.

Me KI KII Effective SIF

0.0 0.0 212.13 212.13
0.3 94.868 189.736 212.13
0.5 150 150 212.13
0.7 189.736 94.868 212.13
1.0 212.13 0.0 212.13
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creep strain region under T=0, the equivalent creep strain region
under non-zero T-stresses are always the higher than that of T=0.
Compared with the lower remote elastic mixity factor, the crack tip
field of higher remote elastic mixity factor has the lower creep region.
For <T σ| / | 0.10 , the influence of T-stress on the area of the creep zone is
not as significant as the elastic mixity factor, e.g. the region under

=M 0.3e at T=−10 is more than three times of =M 0.7e . Hence, the
mixity factors plays significant role on determining of the loss of con-
straint effect.

4.2.1. Angular distributions of stress components
Angular distributions for tangential stress and shearing stress under

different T-stress level for mixed type creep crack tip are presented in
Fig. 7. These results are obtained at a fixed distance 0.5mm from crack
tip. Only mixed factors with 0.3, 0.5 and 0.7 (shown in Fig. 7) are
presented here to study the influence of T-stress level on the near creep
crack tip field. The applied T-stress level varies from −36, −10, −5,-1,
0, 1, 5, 10 and 36. We considered that the T-stress value here are
classified to be two levels: the <T σ| / | 0.10 including −10, −5,-1, 0, 1,
5, 10 and the >T σ| / | 0.10 with ± 36. For <T σ| / | 0.10 , the creep crack

tip field is considered to be transient creep as the creep region here is
much smaller than that of elastic region.

However, the tangential stress or so-called opening stress increase
greatly under the positive T-stress and decrease significantly for nega-
tive T-stress if >T σ| / | 0.10 according to the numerical results presented
here. This phenomenon here is quite different from that of elastoplastic
solutions given by Ref. [43] which presents the positive opening stress
even for negative T-stress level. It should be mentioned that the T-stress
defined in the elastic far field may vary with the increase of the creep
time, however, it can be treated as a constant if the creep strain is so
much less than the elastic strain at the far field under the transient
creep.

Comprehensively considering the influence of T-stress on opening
stress, it can be found that the opening stress under different remote
elastic mixity factors are influenced by the T-stress level though they
are under the same external loading. The opening stress increase with
the enhancement of positive T-stress even for mixed type creep crack tip
field, and also decrease with the reduce of the negative T-stress. The
larger decrease of the T-stress level, the opening stress drops more
significantly. This conclusion here is also suitable for Me= 0.5 and 0.7.
However, it should be pointed out that the difference of opening stress
between the zero T-stress and non-zero T-stress enlarges with the in-
crease of remote elastic mixity factors. It implies the influence of T-
stress on the creep crack tip field heightens as the crack tip field ap-
proaches to be the standard mode I type creep crack. For the shearing
stress of far field Me= 0.3, the influence of T-stress on the shearing
stress component is not that significant except for the locations for the
minimum value if <T σ| / | 0.10 . The shearing component varies greatly
if >T σ| / | 0.10 .

To make a comparison of the variations of dimensionless opening
stress under a specific T-stress level, Fig. 8 is presented to state the
influence of the remote elastic mixity factor. It can be seen that the
minimum value of opening stress decreases with the rise of elastic
mixity factors for = −T σ/ 0.20 . The minimum value of opening stress
shown here under negative T-stress is compressive stress. However, the
opening stress increases with the enhancement of the elastic mixity
factor for = −T σ/ 0.20 . The opening stress is strongly based on the ap-
plied elastic mixity factors of far field for BLF model. It’s sure that the
opening stress approaches to be the mode I case as the increase of the
far field elastic mixity factor. The variation tendencies are quite similar
with T= ±10 for the small level of T-stress, e.g. T= ±1 and ± 5.

Fig. 15. Comparisons of opening stress and triaxiality for mixed mode crack tip field along crack line.

Fig. 16. Stress triaxiality under various mixity factors for blunted crack tip.
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4.2.2. Radial distributions of opening stress
Except for the angular distribution function, the stress field char-

acterization in the radial direction is also needed. According to the
investigations presented by Wang et al. [10], the opening stress within
distance away from crack tip are selected as 0–2mm which includes the
fracture process zone. Herein, results of three elastic mixity factors are
presented here (shown in Fig. 9). The opening stress here are obtained
at θ=0° with three different elastic mixity factors, e.g. 0.3, 0.5 and 0.7.
As the boundary layer model presents that the small scale creep at
10,000 h, there is no much difference at different creep time except for
a slight relaxation. It can be seen that the opening stress are sig-
nificantly influenced by the T-stress level of far field for different elastic
mixity factors.

Clearly, the T-stress level also influence the constraint level of mixed
mode creep crack tip field. It can be seen that the deviation from the
HRR field, i.e. the T-stress equals to zero condition, increase as the rise
of T-stress level. For positive T-stress, the opening stress is larger than
that of T=0. The loss dominance C(t) is significant for negative T-
stress. Similarly, the opening stress is smaller than that of T=0 for
negative T-stress conditions. It reveals that the positive T-stress obtains
the higher constraint level and the negative T-stress can get the lower
constraint level under small scale creep. This conclusion presented here
is quite similar to that of elastoplastic condition under small scale
yielding.

4.2.3. Stress triaxiality
Stress triaxiality, which is defined as the ratio of hydrostatic stress

σm and Mises equivalent stress σe, is also considered to be a parameter
which is related with the constraint level. Stress triaxiality is also
considered to be related with nucleation of voids and damage of mi-
crostructure. Herein, the variations of stress triaxiality in angular di-
rection under different elastic mixity factors are presented in Fig. 10.
The tendencies presented here shows the triaxiality mode for different
mixed type of creep crack behaves quite differently. For =M 0.0e , the
stress triaxiality is antisymmetric along the crack front, and the stress
triaxiality is symmetric about the crack front line for =M 1.0e . The
others conditions are among the pure mode I and mode II. It should be
pointed out that there would be negative region for the mode II case
and the compressive region will decrease as the increase of remote
elastic mixity factor.

It means that the stress triaxiality relies on the mixity factors. To
investigate the influence of T-stress on the stress triaxiality under dif-
ferent mixity factors, the stress triaxiality for different mixity factors are
presented in Fig. 11. It can be found that stress triaxiality is also in-
fluenced by the T-stress level under various elastic mixity factors. For
example of =M 0.3e , the stress triaxiality changes with the variation of
remote T-stress level between −115° to 120°. Except these regions, the
stress triaxiality is almost not changed. Similar rule can be seen for

=M 0.5e and 0.7, however, the varied region is between about −90° to

Fig. 17. Influence of T-stress on opening stress of blunted crack tip under various mixity factors along angular direction.
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120° and −60° to 130°. For the regions which are not located at these
presented region mentioned above, the stress triaxiality is almost not
affected by the remote T-stress. It can be also found that there exists a
so-called parallel region for the stress triaxiality. Among these parallel
regions, the stress triaxiality almost have the same slope, and the dis-
tance between these two paralleled lines enlarges with the increase of
mixity factors. It reveals that the stress triaxiality plays more dominant
role as the mixity factor approaches to pure mode I. It also demonstrates
that the loss dominance C(t) becomes more remarkable under the case
where the mode I dominates most.

Except for the stress triaxiality in angular direction, the triaxiality
along the crack line in radial direction under different T-stress for
various remote elastic mixity factors are presented in Fig. 12. It can be
seen that the stress triaxiality under mixed mode cases also heightens
with the increase of T-stress level. However, the stress triaxiality is
independent on distance from crack tip r if remote elastic mixity factors
approaches to mode II case, i.e. Me= 0.0. However, the stress triaxi-
ality is strongly dependent on radial distance.

4.3. Constraint effect characterization of mixed I/II creep crack tip under
transient condition

The MTS direction θ* under the remote elastic mixity factors with

Fig. 18. Influence of T-stress on opening stress of blunted crack tip under various mixity factors in radial direction.

Fig. 19. CEEQ distribution under different mixity factors.
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Me= 0.3, 0.5 and 0.7 are respectively −63°, −49.5° and −40.5°. With
the Eq. (17), the constraint effect parameter ′Q are presented in Fig. 13.
It can be seen that ′Q is slightly increase with the rise of T-stress level.
For the negative T-stress, this will lead to negative ′Q and the positive T-
stress level will lead to positive ′Q . For the same level of T-stress, the ′Q
slightly heightens with the increase of mixity factor. The ′Q here de-
creases slightly with the distance away from the creep crack tip. These
results here are obtained at a creep time of 10,000 h.

Q* for various remote elastic mixity factors under different T-stress
level are presented in Fig. 14. It can be found that Q* under positive T-
stress slightly increase with the improvement of elastic mixity factor.Q*
under positive T-stress is large than zero, while Q* under negative T-
stress is smaller than zero. Compared with the value of ′Q and Q*, Q*
has a smaller value than that of ′Q though they are under the same
loading level and same mixity factor. It can be seen that there is a
platform which is almost not dependent on the distance away from
crack tip within range of 0 to 1mm which can include the fracture
process zone. It is interesting as the constraint parameter presented in
the direction of MTS presents to be independent of distance away from
crack tip. However, ′Q presented here is strongly dependent on distance
away from crack tip. It should be noted that the value of ′Q and Q* are
not the same where maximum value of ′Q is almost two times larger
than that of Q*. It may reveal that the two characterization mechanism
here is totally different. Though the Q* under different remote elastic

mixity factors.

5. Discussions

According to Aoki et al. [17], there exist both the blunting effect for
mode I type crack and sharpening effect for mode II type crack of
elastoplastic material. Under creep condition, the creep damage will
play a much more significant role in the blunting effect of mode I cased
creep crack tip field given by Wang et al. [10]. Hence, the finite strain
deformation mode should be taken into consideration. In this section,
the effective SIF for MBL formulation are kept as the same so that the
C(t)-integral can be kept as the same in transient creep regime, and the
detailed applied loading information is list in Table 5.

5.1. Influence of blunting effect

Herein, a boundary layer model with a blunted crack tip is used and
the loading conditions, geometry sizes and FE meshes has also been
stated in Section 3. The detailed influence of the blunting effect on the
creep crack tip field is needed here. The blunted crack tip radius is
1× 10−3 mm which is about 1×10−6 times of the radius of the
boundary layer model. Fig. 15 is presented to state the influence of
blunting effect. It can be found that the difference region between the
blunted one and sharp one with HRR singularity is about ten times of

Fig. 20. Influence of T-stress on CEEQ of blunted crack tip under various mixity factors.
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radius of the blunted crack tip. The location where the maximum value
of the opening stress appears is about the same length as the crack tip
radius. For both opening stress and stress triaxiality for these presented
conditions of mixed type crack, the influenced region is about ten times
of the radius of blunted crack tip. The values of opening stress and stress
triaxiality rise with the improvement of the mixity factor.

The stress triaxiality heightens as the mixity factor approaches to
mode I case. It should be also noted that there exists the platform region
which is independent of distance from the crack tip. However, the
platform region diminishes as the crack type approaches to mode I case.
The stress triaxiality for the blunted crack tip field is presented in
Fig. 16 so as to investigate the stress triaxiality more clearly. It shows
that the stress triaxiality presented here is quite similar to that of sharp
crack with the remote elastic mixity factors. The characterization of the
stress triaxiality under different elastic mixity factors shows that there
exists the negative value for the stress triaxiality under mixed condi-
tions as mixity factor are less than 1. The negative region is un-
symmetrical along the crack line for pure mode II case. With the in-
crease of the remote elastic mixity factor, the negative region decrease
to zero as the remote mixity factor approaches to 1.

5.2. Blunting effect under different T-stress level

To investigate the influence of T-stress on the blunted crack tip, the
distribution of opening stress in angular direction under different level
of T-stress are figured out in Fig. 17. It can be found that the whole
opening stress heightens with the increase of T-stress for all these
mixity factors. It reveals that the stress level also can be influenced by
remote T-stress for blunted crack tip field. It should be pointed out that
the most significant region that influenced by the T-stress locates at the
upper part of the crack tip field. For the lower part of the crack tip field,
the opening stress seems to be not affected that much. Compared with
the sharp crack model presented in Section 4.1, the opening stress level
here is higher.

As discussed above, the blunting effect can affect the opening stress
in ten times of the radius of crack tip. Hence, the opening stress along
the crack line within a range of blunting effect region has been given in
Fig. 18. The peak value locations for these different T-stress levels are
almost not influenced, i.e. near the length of the crack tip radius. The
opening stress heightens with the increase of the T-stress level. In
blunted effect region, the opening stress become larger as the increase
of the mixity factors though they are under the same effective SIF at far
field.

Fig. 21. Crack tip deformation under different remote elastic mixity factors, i.e. (a) 0.0, (b) 0.3, (c) 0.5, (d) 0.7 and (e) 1.0.
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5.3. Creep strain distribution and crack tip deformation under finite strain
deformation

The accumulation of creep strain can cause the damage of the crack
front which can lead to the formation of the crack and may cause the
failure of the structure eventually. The distribution of creep strain
under different remote mixity factors are given in Fig. 19. It can be seen
that the maximum value of equivalent creep strain (CEEQ) under mode
II case has the largest creep strain compared with the other conditions.
The peak value of the maximum strain decrease with the increase of
remote elastic mixity factors. However, the locations of maximum
CEEQ present differently with a variation from −30° at mode II case to
about± 90° at mode I case. It can be seen that the blunting effect is
easy to be understood as the accumulation of CEEQ is the smallest along
the crack line.

The distribution of CEEQ under different T-stress levels for various
remote elastic mixity factors, i.e. 0.3, 0.5 and 1.0, are presented in
Fig. 20. It can be seen that the CEEQ are surely related with the remote
T-stress level. The high level of T-stress will lead to higher level of
CEEQ, and the decrease of T-stress level will also lead to the decrease of
CEEQ. With the decrease of remote elastic mixity factor, the whole level
of CEEQ decreases.

As shown in Figs. 19 and 20, the extent for accumulation of creep
strain is dependent on different remote elastic mixity factors. Under the
same level of effective SIF, the pure mode II case has the higher creep
strain level compared with the other mixity factors. It implies that the
crack initiation for mode II case will be much earlier than that of mode I
case though they are under the same loading level. It can be seen that
the pure mode II case (shown as Fig. 21(a)) presents the sharpening
effect at the upper flank of the crack. However, the sharpening effect
becomes weaker and weaker as the crack mode approaches to pure
mode I case (shown as Fig. 21(e)). It means that the crack deformation
form of pure mode II may be dangerous as the sharpening effect can
accelerate the damage process compared with that of mode I case. This
phenomena presented here has been observed in experimental work
given by Poquillon et al. [44].

6. Concluding remarks

As the Part I of this paper, the dominance of C(t) of mixed mode
creep crack under transient creep is presented and discussed. According
to the investigations carried out in this paper, the following conclusions
are obtained:

(1) For the transient creep, C(t)-integral is related with the level of
effective SIF. The influence of remote elastic mixity factor on near
field of mixed type creep crack is presented. With the increase of the

remote elastic mixity factor, the maximum value of opening stress
heightens with the rise of remote elastic mixity factor. Furthermore,
the larger or lower T-stress level can lead to the significant influ-
ence on the mixed mode type crack tip field. The T-stress can also
influence the creep zone remarkably under transient creep.

(2) The negative T-stress can increase the loss dominance of C(t), on the
contrary, the positive T-stress can decrease the loss dominance of
C(t) for mixed mode creep crack under transient regime. The rela-
tions of remote elastic mixity factors and creep mixity factors are
nonlinear. With the definition of ′Q and Q*, it can be found that ′Q
relies on the distance away from crack tip and the positive T-stress
will cause higher constraint level compared with that of negative T-
stress. However, Q* defined in MTS direction are independent on
distance away from crack tip though they have a smaller value than
that of corresponding Q*.

(3) The stress triaxiality is independent on distance away from crack tip
only under these conditions where mode II loading dominants most
for sharp crack. There is also the radial-distance independent region
for blunted crack under the condition that the mode II loading fa-
vours most. Moreover, the negative T-stress can reduce the stress
triaxiality and positive T-stress can improve the stress triaxiality.
The difference between the stress triaxiality enlarges with the rise
of remote elastic mixity factor though the T-stress level is the same.

(4) Comparisons between the sharp crack tip and blunted crack tip are
made. It can be found that the influenced region is around ten times
of radius for blunted crack tip. There is no difference if the radius
exceeds ten times of the crack tip radius. The peak value of the
opening stress for blunted crack tip field locates at the one times of
crack tip radius. The maximum value of equivalent creep strain
obtains under pure mode II case, and minimum value of equivalent
creep strain presents under pure mode I case. There exists the
sharpening effect for mode II case which implies the mode II case
maybe much dangerous than that of mode I case as the sharpening
effect will accelerate the creep damage. The sharpening effect be-
comes weaker and weaker if the mixity factor decreases, and van-
ishes under mode I case where the blunting effect prefers.

The work presented in this paper could promote the understanding
of the mixed I/II creep crack tip field under transient condition from
numerical side, and experimental work will be carried out in further
investigations.
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Appendix A

Assuming that a structure containing a mixed mode type crack under a constant load at the creep time t=0, the near tip of the crack tip can be
characterized by J-integral at this moment as below

= + + =
+
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+J J J C t t

K K
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C t t( ) ( )I II
I
2

II
2
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where ′ =E E under plane stress condition and ′ = −E E v/(1 )2 for plane strain condition, E here is the Young’s modulus. If the creep time is long
enough, C t( ) approaches to C*. According to Riedel and Rice [42], there exists the following relations based on the assumption that the strain rate
field is proportional to the time.
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Under the mixed mode type creep crack, this above deduce is the same as the mode I case as they presents the same singularity. Regardless of the
mixed type, the J-integral can be presented as

∫= + +J C t C τ τ[ ( )] [ ( )] dn t n n1/( 1)
0

/( 1)
(A3)
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By differentiating the Eq. (A3), there can be derived as below
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The following relations can be obtained as
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Substituting Eq. (A1) into Eq. (A5), the following formulae can be obtained.
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For transient creep time, C(t) can be presented as
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Thus, transition time under mixed I/II loading can be obtained as
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Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tafmec.2019.102314.
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