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Abstract

We are concerned with the energy equality for weak solutions to Newtonian and non-

Newtonian incompressible fluids. In particular, the results obtained for non-Newtonian

fluids, after restriction to the Newtonian case, equal or improve the known results. Fur-

thermore, a new result below allows an interpretation of the classical Shinbrot condition,

coherent to the more recent results in the literature.
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1 Introduction. The Problem.

We are interested on the energy equality for weak solutions to Newtonian (r = 2) and non-

Newtonian (r 6= 2) incompressible fluids































ut + u · ∇u− div
(

|D(u)|r−2D(u)
)

+∇p = 0, in Ω× (0, T ),

∇ · u = 0, in Ω× (0, T ),

u = 0, in ∂Ω× (0, T ),

u(·, 0) = u0, in Ω,

(1.1)

where

D(u) =
1

2

(

∇u+ (∇u)T
)

is the stress tensor, and Ω ⊂ R
3 is a bounded domain, with smooth boundary ∂Ω.
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Our main results are the Theorems 5.1 and 5.2 below. However, before stating these two

results, we present an overview on some related, previous results. This is the aim of the

next two sections. In particular, in section 3, we recall Berselli and Chiodaroli’s Theorem

5.1, in reference [1]. This reference gave us motivation, and lines of reasoning, leading to the

present extension. See also the fourth chapter of G.P. Galdi’s work [3]. This last reference

also furnishes an outstanding treatment of the more important classical topics on the Navier-

Stokes equations.

It seems suitable to inform the interested readers that, as far as we know from the authors,

reference [1] is not the final version.

2 On some Newtonian Classical Results. The Shinbrot SH-

measure.

In this section we consider the Newtonian case, r = 2, which can be written in the equivalent,

more usual form,































∂tu+ u · ∇u−∆u+∇p = 0 , in Ω× (0, T ) ,

∇ · u = 0 , in Ω× (0, T ) ,

u = 0 , on ∂Ω × (0, T ) ,

u(·, 0) = u0 in Ω ,

(2.1)

In reference [12] M.Shinbrot shows that if a weak solution u to the Navier-Stokes equations

(2.1) satisfies

u ∈ Lp(0, T ;Lq(Ω)) , (2.2)

where
2

p
+

2

q
= 1 , and q ≥ 4,

then it satisfies the energy equality. This result is a generalization of previous results due to

G.Prodi [11] and J.L.Lions [7], where these authors proved the above result for p = q = 4 .

Shinbrot condition, denoted in the sequel by SH condition, may furnish a possible measure

of the strength of sufficient conditions, of integral type, to guarantee the energy equality. In a

rough sense, it is a (more questionable) counterpart of the well known Prodi-Serrin’s condition

in the regularity theory for solutions to the Navier-Stokes equations. Note that Shinbrot’s

result does not depend on the space dimension. This is quite natural, if one takes into account

that the main rule to prove the result is played by the time and not by the space.

If the SH measure (2.3) below is significant as a measure of strength, we expect that

results obtained under assumption (2.2), by essentially appealing to the same proof (even if
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for a set of distinct values of the parameters p and q), must enjoy the same value for the

quantity

θ(p, q) ≡
2

p
+

2

q
, (2.3)

independently of the particular values of p and q. Exactly as happens to the result proved by

Shinbrot.

After the above 1974 Shinbrot’s paper [12] new results, enjoying a better SH measure,

appeared, see [1] for references. Application of the SH condition to these stronger results have

brought to light a negative feature of the SH condition. It appears that it strongly depends on

the particular values of the parameters p, q . In particular the SH condition presents a peak

for some particular values of the parameters. This would show that SH does not give a correct

measure of the strength. This happens, in particular, to the quite strong results obtained by

L.C. Berselli and E. Chiodaroli in reference [1]. One of our aim is to solve, positively, this

anomaly. This study leads to the Theorem 5.2 below.

The other main aim is to extend the Berselli-Chiodarolli results to non-Newtonian fluids.

This leads to the Theorem 5.1 below. Actually, in this theorem, we also improve some of

their results.

Before going inside our main results, we recall the Berselli-Chiodarolli results.

3 The Berselli-Chiodaroli Results.

In the recent paper [1] L.C. Berselli and E. Chiodaroli gave a very important contribution

to the study of the energy equality to solutions of the Navier-Stokes equations by improving,

in a quite substantial way, several previous known results. They essentially proved new

sufficient conditions for the energy equality involving integrability conditions on the gradient

of the velocity. Note that the SH condition allows comparison between strengths of sufficient

conditions depending on integrability assumptions on the velocity, with strengths of similar

conditions on the gradient of the velocity, by appealing to well known Sobolev’s embedding

theorems, to transform integrability exponents of∇u into ”equivalent” integrability exponents

for u.

The main result in BC is the following. For covenience we replace the (i)-notation used

in this last reference by (j)-notation:

Theorem 3.1. Let u0 ∈ H be a Leray-Hopf weak solution of the Navier-Stokes equations

(2.1), and assume that ∇u ∈ Lp(0, T ;Lq(Ω)) for the following ranges of the exponents p, q:



















(j) 3
2 < q < 9

5 , and ∇u ∈ L
q

2q− 3 (0, T ;Lq(Ω)) ;

(jj) 9
5 ≤ q < 3 , and ∇u ∈ L

5q
5q− 6 (0, T ;Lq(Ω)) ;

(jjj) 3 ≤ q , and ∇u ∈ L
1+ 2

q (0, T ;Lq(Ω)) .

(3.1)
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Then u satisfies the energy equality

‖u(t)‖22 + 2

∫ t

0
‖∇u(τ)‖22 dτ = ‖u0‖

2
2 . (3.2)

Hereafter, we define H by the completion of V in L2(Ω), where V is the space of smooth

divergence free vectors with compact support in Ω.

In reference [1] other main results are proved. In particular, in Section 1.2, ”Energy

conservation and the Onsager conjecture”, the authors proved that if

u ∈ L
13
9 (0, T ;C0, 1

3 (Ω))

then u verifies the energy equality. This result substantially improves the previous main

results known in the literature.

To end this section we note that, at least in some cases, belonging to the Leray-Hopf class

may be simply replaced by belonging to the space L2
loc(R

3 × (0, T ) ) , in the distributional

sense. See [5].

4 On the Non-Newtonian Case.

In reference [13] J.Yang succeed in extending Shinbrot’s result to solutions of the non-

Newtonian system (1.1). On the other hand, as still referred, in reference [1] the authors

improved Shinbrot’s results. Hence, by putting together both results, one immediately con-

siders the possibility of extending the results proved in reference [1] to the non-Newtonian

fluids. This aim is reached in Theorem 5.1 below where, in particular, the result concerning

the case q > 3 is improved.

To guarantee the existence of weak solutions to system (1.1) we assume everywhere that

r > 8
5 . See [13], Remark 1 (in fact this restriction is included, case by case, in all the distinct

restrictions imposed in the sequel).

Remark 4.1. It is worth noting that for r ≥ 11
5 weak solutions are strong, see [6, 8, 9]. This

leads to the energy equality. See also the Remark 2 in [13], and comments. However, by

taking advantage of the treatment of the other cases considered below, a direct proof of the

above claim follows without too much additional material. So, for completeness, and for the

reader’s convenience, we do not restrict our proofs to the case r < 11
5 .

5 Main Results

We start from the extension of Berselli and Chiodarolli’s results to the non-Newtonian case.

Theorem 5.1. Let u0 ∈ H and let u be a Leray-Hopf weak solution of (1.1) in a smooth

bounded domain Ω. Let us assume that ∇u ∈ Lp(0, T ;Lq(Ω)) for the following ranges of the

exponents p , q:
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(i)1
9
5 < r ≤ 2, 9−3r

2 < q ≤ 9
5 and p = q(5r−9)

3r+2q−9 , i.e. ∇u ∈ L
q(5r−9)
3r+2q−9 (0, T ;Lq(Ω));

(i)2 2 < r < 3, 3r
5r−6 ≤ q ≤ 9

5 and p = q(5r−9)
3r+2q−9 , i.e. ∇u ∈ L

q(5r−9)
3r+2q−9 (0, T ;Lq(Ω));

(i)3 r ≥ 3, 1 < q ≤ 9
5 and p = q(5r−9)

3r+2q−9 , i.e. ∇u ∈ L
q(5r−9)
3r+2q−9 (0, T ;Lq(Ω));

(ii) q > 9
5 and p = 5q

5q−6 , i.e. ∇u ∈ L
5q

5q−6 (0, T ;Lq(Ω)) .

Then u satisfies the energy equality

‖u(t)‖22 + 2

∫ t

0
‖D(u)(τ)‖rrdτ = ‖u0‖

2
2 .

Remark 5.1. It is worth noting that the results stated in the four i-items in Theorem 5.1 glue

each other on the values reached by the parameters r and q at the extreme points of their

intervals of definition (obvious details concerning the positions of the symbols <, ≤, >, and

≥ , are left to the reader). For r = 2 the results in (i)1 and (i)2 glue perfectly and, similarly,

the results in (i)2 and (i)3 glue for the value r = 3 . Further, for q = 9
5 , the result in item

(ii) glue to the results in the three (i) items. Note that, for q = 9
5 ,

q(5r − 9)

3r + 2q − 9
==

5q

5q − 6
,

independently of r. Concerning r, recall also the above remark 4.1.

Remark 5.2. By appealing in our proofs to Gagliardo-Nirenberg’s inequalities we unify the

treatment of all cases q > 9
5 , and also improve the result obtained in reference [1], in the case

q > 3. In particular, the apparently singular case q = 3 , is treated inside the generic proof.

For r = 2, our case (i)1 coincides with case (j) in [1] theorem 3.1, and our case (ii) coincides

with case (jj) for 9
5 < q < 3 , and improves case (jjj) for q > 3 we since

5q

5q − 6
< 1 +

2

q
.

Remark 5.3. In the above theorem the “best exponent” is q = 9
5 , at the light of the corre-

sponding SH measure, equal to 10
9 . Moreover, p = 3 is independent of r. Actually, when

q ≥ 9
5 , the exponent p is independent of r. This is reasonable since we only use the estimate

u ∈ L∞(0, T ;H) in the proof of the case q ≥ 9
5 , and this estimate is independent of r. On the

contrary, in case (i) we appeal to the r− weak estimate for weak solutions, which shows that

‖∇u‖r,r is bounded.

Next we state our second main result. This result is independent of r since our proof do

not use the r−weak estimate.

Theorem 5.2. Let u0 ∈ H and let u be a Leray-Hopf weak solution of (1.1) in a smooth

bounded domain Ω. Assume that

u ∈ Lp1(0, T ;Lq1) ∩ L
9q

8q−9 (0, T ;W 1,q) , (5.1)
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where
2

p1
+

2

q1
=

10

9
, (5.2)

and the exponents q and q1 satisfy one of the following assumptions:

(i) 9
8 < q ≤ 9

5 and q1 ≥
2q
q− 1 ;

(ii) q > 9
5 and 9

5 < q1 ≤
2q
q− 1 .

Then u satisfies the energy equality

‖u(t)‖22 + 2

∫ t

0
‖D(u)(τ)‖rrdτ = ‖u0‖

2
2 .

In particular both spaces appearing in equation (5.1) have SH measure 10
9 . Hence the intersec-

tion space has the same SH measure 10
9 . So, the SH strength of all the above results coincide.

Further, for q = 9
5 , the above intersection coincides with the second space L

9q
8q−9 (0, T ;W 1,q).

Concerning the second-last statement in the theorem, note that W 1,q ⊂ Lq∗ with q∗ =
3q
3−q

(q < 3) and that
2
9q

8q−9

+
2

q∗
=

10

9
,

independently of q. So, as stated above, both spaces considered in equation (5.1) have the

maximum Shinbrot measure 10
9 . Hence the intersection space has the same maximum SH

measure, independently of the value of q.

A quite significant point is that for q = 9
5 one has

L
9 q

8q−9 (0, T ;W 1, q) ⊂ L
18 q

9+q (0, T ;L
2q
q−1 ) .

So the intersection space in (5.1) coincides with the space L
9q

8q−9 (0, T ;W 1,q) . In other words,

for q = 9
5 our condition coincides with the best condition obtained in theorem 3.1, namely

u ∈ L3(0, T ;W 1, 9
5 ) ,

implies the energy equality.

Open problem: To show that if

u ∈ L
3r

2r− 3 (0, T ;W
1
3
, r) ,

where r ∈ (32 , 9) , then u enjoys the energy equality.

Remark 5.4. Note that for q = 9
5 , the results in items (i) and (ii) glue perfectly.

Clearly, the Remark 5.2 also applies here.
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6 Sketch of the Proofs

We follow some of the main lines of the proofs shown in reference [1], to which we are strongly

indebted. See also the related proof of Theorem 4.1, in reference [3].

Proof of Theorem 5.1. Define the typical mollification operator (·)ǫ

(Φ)ǫ =

∫ t

0
kǫ(t− τ)Φ(τ)dτ ,

where the infinitely differentiable, real-valued, nonnegative, even function kǫ , has support

in (−ǫ, ǫ), and integral equal to one. Next, let {um} be a sequence in C∞(0,∞;C∞
0 (Ω))

converging to u in

Lr(0, T ;Vr) ∩ Lp(0, T ;W 1,q) ,

where Vr is denoted by the completion of V in W 1,r(Ω). As in [1], one has

(u(t0), (um)ǫ(t0)) =(u0, (um)ǫ(0))

+

∫ t0

0

[(

u,
∂(um)ǫ

∂t

)

− (u · ∇u, (um)ǫ)−
(

|D(u)|r−2D(u),D ((um)ǫ)
)

]

dt .

The main point is to single out sufficient conditions to guarantee the existence of a suitable

limit, as m → ∞. The real obstacle is the non-linear term. We write the nonlinear term as

∫ t0

0
(u · ∇u, (um)ǫ)dt =

∫ t0

0
(u · ∇u, (um)ǫ − (u)ǫ)dt

+

∫ t0

0
(u · ∇u, (u)ǫ − u)dt+

∫ t0

0
(u · ∇u, u)dt .

We start by proving that
∫ t0

0
(u · ∇u, u)dt = 0 . (6.1)

First, integrating by parts we get

∫ t0

0
(u · ∇um, um)dt = 0 .

Let us consider
∣

∣

∣

∣

∫ t0

0
(u · ∇um, um)dt−

∫ t0

0
(u · ∇u, u)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
(u · ∇um, (um − u))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t0

0
(u · ∇(um − u), u)dt

∣

∣

∣

∣

.

and show the convergence of the two terms on the right hand side to zero in the two different

cases, which implies (6.1). In the following, we set q∗ = 3q
3−q

, q′ = q
q−1 and q̃ = 2q′.
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(i) By Gagliardo-Nirenberg inequalities, E. Gagliardo [2], L. Nirenberg [10] (for a more

recent reference see for example [4] Lemma II.3.3) we have

‖u‖q̃ ≤ ‖u‖θq∗‖∇u‖1−θ
r ,

where
1

q̃
= (1− θ)

(

1

r
−

1

3

)

+
θ

q∗
,

which gives θ := 5qr−3r−6q
6(r−q) . To guarantee 0 ≤ θ ≤ 1, we need restrict 3r

5r−6 ≤ q ≤ 9
5 . Note

that when r ≥ 3, from the second exceptional case of [4] Lemma II.3.3, θ can not equal to 0,

i.e. q can not equal to 3r
5r−6 . Now, we can estimate, by Sobolev embeddings, the integral as

follows
∣

∣

∣

∣

∫ t0

0
(u · ∇(um − u), u)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖q̃‖∇(um − u)‖q‖u‖q̃dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖2θq∗‖∇u‖2(1−θ)

r ‖∇(um − u)‖qdt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖∇u‖2θq ‖∇u‖2(1−θ)

r ‖∇(um − u)‖qdt

∣

∣

∣

∣

≤‖∇u‖2θp,q‖∇u‖2(1−θ)
r,r ‖∇(um − u)‖p,q ,

where we have applied Hölder inequality in the time variable with exponents x , y , z such that

2(1 − θ)x = r, 2θy = p, z = p ,
1

x
+

1

y
+

1

z
= 1 ,

which gives p = q(5r−9)
3r+2q−9 . To guarantee that the denominator of p has a positive value, we

need restrict q > 9−3r
2 . This shows that

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0. Similarly, we have

∣

∣

∣

∣

∫ t0

0
(u · ∇um, (um − u))dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖q̃‖∇um‖q‖um − u‖q̃dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖θq∗‖∇u‖(1−θ)

r ‖∇um‖q‖um − u‖θq∗‖∇(um − u)‖(1−θ)
r dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖∇u‖θq‖∇u‖(1−θ)

r ‖∇um‖q‖∇(um − u)‖θq‖∇(um − u)‖(1−θ)
r dt

∣

∣

∣

∣

≤ ‖∇u‖θp,q‖∇u‖(1−θ)
r,r ‖∇(um − u)‖p,q‖∇(um − u)‖θp,q‖∇(um − u)‖(1−θ)

r,r .

This implies that
∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0.

From the above proof, in the three (i) cases we must restrict the values of q simultaneously

to values q ≥ 3r
5r−6 ( q > 3r

5r−6 , when r ≥ 3), and q > 9−3r
2 . These restrictions hold in

all cases since: 3r
5r−6 ≤ 9−3r

2 , when 9
5 < r ≤ 2 ; 3r

5r−6 > 9−3r
2 ,when 2 < r < 3 . And

9−3r
2 < 3r

5r−6 ≤ 1 ,when r ≥ 3 .
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(ii) In case q > 9
5 we have ∇u ∈ Lp(0, T ;Lq(Ω)) with p = 5q

5q−6 . By Gagliardo-Nirenberg

inequalities again, we have

‖u‖q̃ ≤ ‖u‖θ2‖∇u‖1−θ
q ,

where
1

q̃
= (1− θ)

(

1

q
−

1

3

)

+
θ

2
.

Hence θ = 5q−9
5q−6 . Now, we can estimate the integral as follows

∣

∣

∣

∣

∫ t0

0
(u · ∇(um − u), u)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖q̃‖∇(um − u)‖q‖u‖q̃dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖2θ2 ‖∇u‖2(1−θ)

q ‖∇(um − u)‖qdt

∣

∣

∣

∣

≤‖u‖2θ∞,2‖∇u‖2(1−θ)
p,q ‖∇(um − u)‖p,q ,

where we have applied Hölder inequality in the time variable with exponents γ1 , γ2 such that

2(1 − θ)γ1 = p , γ2 = p ,
1

γ1
+

1

γ2
= 1 ,

which gives p = 5q
5q−6 . This shows that

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0. Similarly, we can

conclude that
∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0.

Hence, we have

0 =

∫ t0

0
(u · ∇um, um)dt →

∫ t0

0
(u · ∇u, u)dt .

Going through the same lines of the previous estimates, we can bound the terms
∫ t0
0 (u ·

∇u, (um)ǫ − (u)ǫ)dt and
∫ t0
0 (u · ∇u, (u)ǫ − u)dt by some finite quantity, times appropriate

norms of ((um)ǫ − (u)ǫ) and ((u)ǫ − u) respectively, which converge to zero. All of this shows

that
∫ t0

0
(u · ∇u,∇(um)ǫ)dt → 0 .

The integral
∫ t0
0 (u, ∂t(um)ǫ)dt vanishes since kǫ is even. By appealing to the properties of

mollifiers,
∫ t0

0

(

|D(u)|r−2D(u),D ((um)ǫ)
)

dt →

∫ t0

0

∫

Ω
|D(u)(t)|rdxdt .

Hence, in the limits, one has

‖u(t0)‖
2
2 + 2

∫ t0

0

∫

Ω
|D(u)(t)|rdxdt = ‖u0‖

2
2 ,

for all t0.

9



Proof of Theorem 5.2. In the following we always assume p = 9q
8q−9 . We state by proving

∣

∣

∣

∫ t0
0 (u · ∇um, (um − u))dt

∣

∣

∣
→ 0 and

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0, as m → ∞, where {um}

is a sequence in C∞(0,∞;C∞
0 (Ω)) converging to u in

Lr(0, T ;Vr) ∩ Lp1(0, T ;Lq1) ∩ Lp(0, T ;W 1,q) .

(i) In case 9
8 < q ≤ 9

5 we have u ∈ Lp1(0, T ;Lq1) with 2
p1

+ 2
q1

= 10
9 , and q1 ≥ 2q′. We can

interpolate and write q̃ as
1

q̃
=

θ

q∗
+

1− θ

q1
. (6.2)

Now, we can estimate the integral as follows

∣

∣

∣

∣

∫ t0

0
(u · ∇(um − u), u)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖q̃‖∇(um − u)‖q‖u‖q̃dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖2θq∗‖u‖

2(1−θ)
q1

‖∇(um − u)‖qdt

∣

∣

∣

∣

≤‖∇u‖2θp,q‖u‖
2(1−θ)
p1,q1

‖∇(um − u)‖p,q ,

where we have applied Hölder inequality in the time variable with exponents x , y , z such that

2(1− θ)x = p1, 2θy = p, z = p ,
1

x
+

1

y
+

1

z
= 1 ,

which gives
2(1− θ)

p1
+

2θ

p
= 1−

1

p
. (6.3)

From (6.2), one has
2(1− θ)

q1
+

2θ

q∗
= 1−

1

q
. (6.4)

We deduce from (6.3) and (6.4) that

(1− θ)

(

2

p1
+

2

q1

)

= 2−
1

p
−

1

q
− θ

(

2

q∗
+

2

p

)

=
10

q
(1− θ) ,

which implies 2
p1

+ 2
q1

= 10
9 . Note that, when θ = 1, i.e. q = 9

5 , it is not necessary to impose

the condition u ∈ Lp1(0, T ;Lq1). This is reasonable due to Theorem 5.1. This shows that
∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0. Similarly, we have

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0.

(ii) In case q > 9
5 we have ∇u ∈ Lp1(0, T ;Lq1) with 2

p1
+ 2

q1
= 10

9 , and
9
5 < q1 ≤ 2q′.

Here we assume q1 > 9
5 to make the denominator of p1 = 9q1

5q1−9 be a positive value. By

Gagliardo-Nirenberg inequalities, we have

‖u‖q̃ ≤ ‖u‖θq1‖∇u‖1−θ
q ,

where
1

q̃
= (1− θ)

(

1

q
−

1

3

)

+
θ

q1
. (6.5)
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Now we can estimate, by Sobolev embeddings, the integral as follows

∣

∣

∣

∣

∫ t0

0
(u · ∇(um − u), u)dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖q̃‖∇(um − u)‖q‖u‖q̃dt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t0

0
‖u‖2θ2 ‖∇u‖2(1−θ)

q ‖∇(um − u)‖qdt

∣

∣

∣

∣

≤‖u‖2θp1,q1‖∇u‖2(1−θ)
p,q ‖∇(um − u)‖p,q ,

where we have applied Hölder inequality in the time variable with exponents x , y , z such that

2(1− θ)x = p, 2θy = p1, z = p ,
1

x
+

1

y
+

1

z
= 1 ,

which gives
2(1− θ)

p
+

2θ

p1
= 1−

1

p
. (6.6)

From (6.5), one has

2(1 − θ)

(

1

q
−

1

3

)

+
2θ

q1
= 1−

1

q
. (6.7)

We deduce from (6.6) and (6.7) that

θ

(

2

p1
+

2

q1

)

= 2−
1

p
−

1

q
− (1− θ)

(

2

p
+

2

q
−

2

3

)

=
10

q
θ , (6.8)

which gives 2
p1

+ 2
q1

= 10
9 . This shows that

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0. Similarly, we have

∣

∣

∣

∫ t0
0 (u · ∇(um − u), u)dt

∣

∣

∣
→ 0.

Hence, we have

0 =

∫ t0

0
(u · ∇um, um)dt →

∫ t0

0
(u · ∇u, u)dt .

The remaining procedure is same as the proof of Theorem 5.1.
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[8] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-valued Solutions to

Evolutionary PDEs, Vol. 13. CRC Press, 1996.
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