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An artificial neural network (ANN) is used to establish the relation between the resolved-scale flow field 

and the subgrid-scale (SGS) stress tensor, to develop a new SGS model for large-eddy simulation (LES) of 

isotropic turbulent flows. The data required for training and testing of the ANN are provided by perform- 

ing filtering operations on the flow fields from direct numerical simulations (DNSs) of isotropic turbulent 

flows. We use the velocity gradient tensor together with filter width as input features and the SGS stress 

tensor as the output labels for training the ANN. In the a priori test of the trained ANN model, the SGS 

stress tensors obtained from the ANN model and the DNS data are compared by computing the correla- 

tion coefficient and the relative error of the energy transfer rate. The correlation coefficients are mostly 

larger than 0.9, and the ANN model can accurately predict the energy transfer rate at different Reynolds 

numbers and filter widths, showing significant improvement over the conventional models, for example 

the gradient model, the Smagorinsky model and its dynamic version. A real LES using the trained ANN 

model is performed as the a posteriori validation. The energy spectrum computed by the improved ANN 

model is compared with several SGS models. The Lagrangian statistics of fluid particle pairs obtained from 

the improved ANN model almost approach those from the filtered DNS, better than the results from the 

Smagorinsky model and dynamic Smagorinsky model. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Large-eddy simulation (LES) has emerged as an important nu-

erical tool for turbulent flows. Compared with direct numeri-

al simulation (DNS), LES resolves the turbulent flow fields at a

oarser grid resolution and much lower computational cost. Ad-

itionally, the unsteady flow structures in high-Reynolds-number

urbulent flows can be resolved using LES. In LES of incompress-

ble turbulent flows, the resolved-scale flow fields are directly ob-

ained by integrating the filtered Navier-Stokes equations, while

he effects of the nonresolved subgrid-scale (SGS) motions are rep-

esented by an SGS stress tensor, which is usually modeled by an

GS model. It is a central issue to model the SGS stress tensor us-

ng the resolved-scale flow field in LES. 

Currently, a variety of SGS models have been proposed to close

he filtered Navier-Stokes equations [1,2] . These SGS models in-

lude the classic Smagorinsky model [3] , the similarity model [4,5] ,

he gradient model [6] , the explicit nonlinear model [7] , the mixed

odel [8] , and the dynamic versions of these models [9–15] . Since
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here is no backward scatter of SGS energy into the resolved scales

n the Smagorinsky model, this model is usually too dissipative for

he turbulent kinetic energy. Recently, Yang and Wang [16] have

tudied the topology of the SGS model using a proposed method

ased on the Euler angle and Euler axis of the relative rotation be-

ween the eigenframes of the SGS stress tensor and the resolved

train rate tensor, and they have pointed out that the topology

f the Smagorinsky model deviates drastically from the DNS re-

ults. In contrast, the similarity model is insufficiently dissipative

ecause of giving too much backward scatter of SGS energy into

he resolved scales. The gradient model, based on the Taylor ex-

ansion, is accurate in estimating the local SGS stress tensor when

he grid size is small, but this model becomes unstable with in-

reasing grid size due to the incorrect prediction of energy transfer.

odulated gradient models have been proposed by controlling the

nergy transfer from the subgrid scales to the resolved scales, and

hey are limited to special conditions [17,18] . The dynamic versions

f the aforementioned models and the mixed model can overcome

he limitation of energy dissipation and give more accurate results

n most cases, but these models are accompanied by high compu-

ational cost. Therefore, it is still desirable to develop a new SGS
odel for LES. 

https://doi.org/10.1016/j.compfluid.2019.104319
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104319&domain=pdf
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It is a great challenge to develop a new SGS model of high-

fidelity. A feasible solution is to directly establish closure mod-

els for SGS stress based on existing DNS data. Due to the rapid

growth in computing power, the computing scale for DNS is in-

creasing quickly, and we can easily obtain large amounts of DNS

data of turbulent flows at different Reynolds numbers. However,

it is rather difficult to search for valuable information from such

big data and establish reasonable SGS models. To solve these kinds

of problems, machine learning has become a powerful tool due to

improvements in computer hardware and algorithms. As a rapidly

developing subject, machine learning has been applied to a wide

range of fields, such as speech recognition [19] , image recogni-

tion [20] , natural language processing [21] , and autonomous driv-

ing [22] . In this paper, we use an artificial neural network (ANN),

a machine learning method, to develop a new SGS model based on

DNS data. 

The machine learning methods have been increasingly used to

solve turbulent flow problems [23–28] . Duraisamy et al. [29] ap-

plied the ANN and Gaussian process regression methods to re-

construct improved functional forms of turbulence and transition

modeling. Ling et al. [30] presented a deep neural network for

Reynolds-averaged Navier-Stokes (RANS) turbulence modeling on

an invariant tensor basis [31] , which ensures Galilean invariance of

the predicted Reynolds stress. Wang et al. [32] applied a random

forests algorithm to learn the discrepancies between the Reynolds

stresses from traditional RANS models and DNS and to predict

Reynolds stress discrepancies in new flows using the obtained

functions. Recently, Wu et al. [33] presented a comprehensive

framework for physics-based implicit treatment to model Reynolds

stress and successfully predicted the mean velocity field. In addi-

tion, there have been many applications of machine learning algo-

rithms to quantify and eliminate the uncertainties of RANS models

[34–37] and evaluate the extrapolation of Reynolds stress discrep-

ancies between different flows [38–40] . For the application of ma-

chine learning in LES, Sarghini et al. [41] used a multilayer feedfor-

ward neural network as an SGS model to identify and reproduce

the nonlinear behavior of turbulent flows. Vollant et al. [42] for-

mulated new strategies based on an ANN to develop SGS models,

and the LES results were very close to the filtered DNS (FDNS) re-

sults. Maulik and San [43] proposed a blind deconvolution ANN

that performed well in a priori testing of Kraichnan, Kolmogorov

and compressible stratified turbulent flows. They demonstrated

that ANN is the optimal map for convolution and deconvolution

of coarse-grained flow fields to close the two-dimensional Navier-

Stokes equations [44] . Besides, Gamahara and Hattori [45] per-

formed top-hat filtering on the DNS of turbulent channel flow to

produce the flow data and used a single-hidden-layer ANN to find

a new SGS model for the LES of turbulent channel flow. The data

used for training is the resolved-scale flow field and SGS stress at

one instant and a fixed filter width. Then they applied the trained

ANN model to predict the spatial patterns of SGS stress at different

Reynolds numbers and perform an a posteriori test in an real LES.

Wang et al. [46] established the data-driven SGS model for an LES

of decaying isotropic turbulence using the random forests and ANN

algorithm. The data was also provided by performing top-hat filter-

ing on the DNS flow field, and the sampled snapshots with a fixed

filter width were chosen for the training and test. Their a priori and

a posteriori test showed that ANN has better performance than the

random forests algorithm for the regression problem. According to

the eddy-viscosity assumption and the mixing-length theory of the

SGS model, the SGS stress tensor not only depends on the veloc-

ity gradient tensor at the resolved scales but also the filter width

which is a characteristic measure of the mixing-length. The rela-

tion between the SGS stress tensor and the velocity gradient tensor

together with the filter width in the context of machine learning

is in need of further study. 
The objective of this paper is to establish and evaluate the rela-

ion between the resolved-scale flow field and the SGS stress ten-

or using an ANN in incompressible, homogeneous and isotropic

urbulent flows. One important issue is to find a data-driven SGS

odel that works well in turbulent flows with different filter

idths. The data required for training and testing of the ANN are

he resolved-scale flow fields with different filter widths, which are

btained by performing filtering operations on the flow fields from

NSs of isotropic turbulent flows. The prediction accuracy and gen-

ralization of the trained ANN model are evaluated using DNS data

t various Reynolds numbers, filter widths and time steps. Then,

he a posteriori validation is performed by coupling the trained

NN model with a real LES of isotropic turbulent flows. 

The paper is organized as follows: The DNS and FDNS of

sotropic turbulent flows are introduced in Section 2 . The corre-

ation coefficient and the relative error of the energy transfer rate

etween the SGS stress tensor from the SGS model and that from

he DNS data are used as two metrics for evaluating the Smagorin-

ky model and the gradient model. Based on the results, a suitable

lter function, input features and output labels are chosen to pro-

uce the data for training and testing of the ANN. In Section 3 ,

he basic procedures of a single-hidden-layer feedforward ANN are

escribed in detail and the FDNS data with different filter widths

re used to train the ANN model. In Section 4 , we use the trained

NN model to predict the SGS stress tensors at different Reynolds

umbers, filter widths and time steps. The results of correlation

oefficients, the relative errors of the energy transfer rate and spa-

ial structures of the SGS stress tensor are presented as the a priori

est of the ANN model. In the a posteriori validation, we couple the

NN model with a real LES and compare the Eulerian energy spec-

ra and Lagrangian statistics of fluid particle pairs from several SGS

odels. Section 5 gives the conclusion of this research. 

. Data preparation 

To obtain the data for ANN training and testing, we performed

ltering operations on the flow fields from DNS of isotropic tur-

ulent flows [47–49] . The filtering operations using various filter

unctions and filter widths are carried out in this section. 

.1. Direct numerical simulation 

The Navier-Stokes equations for incompressible flows are 

∂u 

∂t 
= u × ω − ∇ 

(
p 

ρ
+ 

1 

2 

u 

2 
)

+ ν∇ 

2 u + f ( x , t ) , (1)

 · u = 0 , (2)

here u denotes the velocity field, ω = ∇ × u denotes the vorticity

eld, p is the pressure, ρ is the fluid density, ν is the kinematic

iscosity, and f ( x , t ) denotes the forcing term to inject energy and

aintain the turbulent state. 

DNS of homogeneous and isotropic turbulent flows was per-

ormed using a standard pseudo-spectral method in a periodic cu-

ic flow domain with each edge length L = 2 π . In Fourier space,

qs. (1) and (2) can be represented as 

∂ 

∂t 
+ νk 2 

)̂ u ( k , t ) = P ( k ) F ( u × ω ) + ̂

 f ( k , t ) , (3)

here ̂ u ( k , t ) denotes the Fourier coefficient or the fluid veloc-

ty in Fourier space and F denotes the Fourier transformation.

he projection tensor P ( k ) = δi j − k i k j / k 
2 ( i, j = 1 , 2 , 3 ) projects

 ( u × ω ) onto the plane normal to the wavenumber vector k and

liminates the pressure gradient term in Eq. (1) . The turbulent

ow is driven by the deterministic forcing term ̂

 f ( k , t ) , which is
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Table 1 

DNS parameters of isotropic turbulent flows in 

a statistically steady state. 

Re λ Grid size dx k max N 3 

128.78 0.0245 256/3 256 3 

205.51 0.0123 512/3 512 3 

302.04 0.00614 1024/3 1024 3 
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Table 2 

Different filter functions used in this work. 

Filter function FDNS velocity u ( x , t ) = 

∑ k max 

| k | =1 ̂
 u ( k , t ) e i k ·x 

Sharp spectral filter ̂ u ( k , t ) = ̂

 u ( k , t ) · H ( k c − | k | ) , � = π/ k c 

Gaussian filter ̂ u ( k , t ) = ̂

 u ( k , t ) · exp 

(
− | k | 2 �2 

24 

)
Box filter ̂ u ( k , t ) = ̂

 u ( k , t ) · sin ( | k | �/ 2 ) 

| k | �/ 2 

Table 3 

The cutoff wavenumber and filter width � at different Re λ . 

Re λ (DNS) k c / k max �

128.78 (256 3 ) 0.125 0.2945 

0.25 0.1473 

0.5 0.0736 

205.51 (512 3 ) 0.0625 0.2945 

0.125 0.1473 

0.25 0.0736 

0.5 0.0368 

302.04 (1024 3 ) 0.03125 0.2945 

0.0625 0.1473 

0.125 0.0736 

0.25 0.0368 

0.5 0.0184 
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onzero with a wavenumber magnitude | k | ≤ 2. Using this deter-

inistic forcing method, a stationary turbulence was generated

y maintaining the constant total energy in each of the first two

avenumber shells, and the energy ratio between the two shells

as consistent with the k −5 / 3 scaling law. 

The cubic flow domain of isotropic turbulent flows was

niformly discretized into N 

3 grids. The wavenumber compo-

ents in Fourier space were defined as k j = n j ( 2 π/L ) , where

 j = −N/ 2 , . . . , −1 , 0 , 1 , . . . , N/ 2 − 1 for j = 1 , 2 , 3 . The maximum

avenumber was approximately k max = N/ 3 . The spatial resolution

as monitored by the value of k max η, where η is the Kolmogorov

ength scale. The value of k max η should be larger than 1.0 so that

he Kolmogorov scale of the flow is well resolved [50–52] . This

alue was always nearly 1.5 in our simulations. The Fourier coeffi-

ients of the flow velocity were advanced in time using a second-

rder Adams-Bashforth method for the nonlinear term and an ex-

ct integration for the linear viscous term. The time step was cho-

en to ensure that the Courant-Friedrichs-Lewy (CFL) number was

.5 or less for numerical stability and accuracy. 

Table 1 presents the DNS parameters of isotropic turbulent

ows in a statistically steady state, and the Taylor microscale

eynolds number Re λ = u ′ λ/ν = 128.78, 205.51 and 302.04, where

 

′ = 

√ 〈 u i u i 〉 / 3 is the root mean square (rms) of the turbulent fluc-

uation velocity, λ = ( 15 νu ′ 2 /ε ) 1 / 2 is the Taylor microscale, and ε
s the energy dissipation rate. 

.2. Filtered DNS and resolved-scale flow fields 

The velocity field after performing filtering operations is given

y the convolution 

 ( x ) = 

∫ 
G ( r ) u ( x − r ) d r , (4) 

here G is the filter function. The integration is carried out over

he whole flow domain. The filtered Navier-Stokes equations for in-

ompressible turbulent flows are 

∂ u i 

∂t 
+ 

∂ 
(
u i u j 

)
∂ x j 

= − 1 

ρ

∂ p 

∂ x i 
+ ν

∂ 2 u i 

∂ x k ∂ x k 
− ∂ τi j 

∂ x j 
+ f i , (5)

∂ u j 

∂ x j 
= 0 , (6) 

here the SGS stress tensor is defined as 

i j = u i u j − u i u j , (7) 

he SGS stress tensor is unknown and is usually modeled with an

GS model. In this work, we use Eqs. (4) and (7) to compute the

ltered flow field and SGS stress tensor by filtering the DNS data

f isotropic turbulent flows in an a priori study. In an a posteriori

tudy, the flow field is resolved using Eqs. (5)–(7) with different

GS models to represent the SGS stress tensor. 

The three types of filter functions listed in Table 2 are used to

erform filtering operations on the DNS data. � = π/ k c denotes

he filter width, where k c is the cutoff wavenumber and it is se-

ected to be k c / k max = 0.03125, 0.0625, 0.125, 0.25 and 0.5 to vary

he filter width. The parameters corresponding to different cutoff

avenumbers are shown in Table 3 . N x × N y × N z = 64 × 64 × 64
enotes the number of output grid points from the FDNS flow

eld. For each case corresponding to different Reynolds numbers

nd filter widths, the FDNS flow fields at five different time steps

re extracted for ANN training and testing, and these time steps

re labeled as t i ( i = 1 , . . . , 5 ) . 

.3. Subgrid-scale model and correlation coefficient 

We choose the commonly-used Smagorinsky model and the

radient model to estimate the SGS stress tensor. The SGS stress

ensors obtained from the two SGS models and the DNS data are

ompared. The correlation coefficient between the SGS stress ten-

or computed by the SGS model and that from the DNS data is

sed as a metric to select suitable input features for the ANN train-

ng in the next section. 

The Smagorinsky model [3] is expressed as 

i j = −2 ( C S �) 
2 
∣∣S ∣∣S i j + ( 1 / 3 ) τkk δi j , (8) 

S 
∣∣ = 

(
2 S i j S i j 

)1 / 2 
, (9) 

here S i j = 

1 
2 ( 

∂ u i 
∂ x j 

+ 

∂ u j 
∂ x i 

) denotes the strain rate tensor, C S =
1 
π ( 2 

3 C K 
) 3 / 4 denotes the Smagorinsky coefficient [53] . In this work,

e set Kolmogorov constant C K = 2 . 0 , so that C S ≈ 0.14. 

The gradient model has been proposed by Clark et al. since

979 [6] . Based on a Taylor series expansion of the filterd veloc-

ty field, the gradient model is expressed as 

i j = 

3 ∑ 

k =1 

�2 

12 

∂ u i 

∂ x k 

∂ u j 

∂ x k 
. (10) 

The performance of the SGS models is evaluated by two phys-

cal quantities. One is the correlation coefficient between the SGS

tress tensor computed by the SGS model and that from the DNS

ata. The other is the relative error of the energy transfer rate be-

ween that computed by the SGS model and the DNS data. 

The correlation coefficient between the SGS stress tensor com-

uted by the SGS model and that from the DNS data is expressed
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Table 4 

The correlation coefficients between the SGS stress tensors obtained from the SGS models and those from the DNS data with different filter 

functions at Re λ = 128 . 78 . 

k c / k max SGS model filter τ xx τ xy τ xz τ yy τ yz τ zz 

0.125 Smagorinsky 

model 

Sharp 0.05282 0.10336 0.08979 0.07656 0.09703 0.05026 

Box 0.12737 0.27656 0.24705 0.16409 0.25868 0.11469 

Gaussian 0.14153 0.31008 0.27705 0.18233 0.29134 0.12607 

Gradient model Sharp 0.43892 0.41919 0.39670 0.45129 0.41605 0.43542 

Box 0.86863 0.86234 0.86155 0.86176 0.86240 0.86290 

Gaussian 0.93740 0.94453 0.94516 0.93238 0.94476 0.93435 

0.25 Smagorinsky 

model 

Sharp 0.05058 0.05818 0.05976 0.05778 0.06082 0.03811 

Box 0.13684 0.24233 0.22500 0.16558 0.23192 0.11554 

Gaussian 0.14408 0.26200 0.24280 0.17506 0.25009 0.12163 

Gradient model Sharp 0.43379 0.42209 0.41028 0.45350 0.42470 0.43449 

Box 0.95819 0.95150 0.95166 0.95621 0.95189 0.95563 

Gaussian 0.97669 0.97683 0.97715 0.97526 0.97686 0.97549 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Energy spectra of the FDNS ( k c / k max = 0 . 125 ) with three filter functions: 

dashed line, sharp spectral filter; dash-dotted line, box filter; long-dashed line, 

Gaussian filter. 
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 i j ( M, X ) = 

〈(
τ ( M ) 

i j 
−
〈
τ ( M ) 

i j 

〉)(
τ ( X ) 

i j 
−
〈
τ ( X ) 

i j 

〉)〉√ 〈 (
τ ( M ) 

i j 
−
〈
τ ( M ) 

i j 

〉)2 
〉 √ 〈 (

τ ( X ) 
i j 

−
〈
τ ( X ) 

i j 

〉)2 
〉 , (11)

where M and X denote the SGS stress computed by the SGS model

and the DNS data, respectively, and 〈 〉 denotes the average over

the flow domain and time. 

The rate of energy transfer from the resolved scales to the sub-

grid scales, also called the SGS energy dissipation rate [53] , is de-

fined as 

D τ = −τi j S i j . (12)

Table 4 shows the correlation coefficients between the SGS

stress tensors computed by the SGS models according to Eqs. (8)–

(10) and those from the DNS data according to Eq. (7) . For the

three filter functions, the correlation coefficients between the SGS

stress tensors computed by the Smagorinsky model and the DNS

data are mostly less than 0.3. This finding demonstrates that the

Smagorinsky model has little correlation with the real SGS stress

tensor from DNS data [6,54] . 

For the gradient model, the correlation coefficients are very

small, approximately 0.4 ∼ 0.5, when a sharp spectral filter is used.

The correlation coefficients are larger than 0.85 for different filter

widths when a box or Gaussian filter is used. This result is be-

cause the sharp spectral filter is sharp in spectral space but decid-

edly nonlocal in physical space. The velocity gradient at a specific

position is globally influenced by the filtering operation in physi-

cal space and cannot be used to model the local SGS stress tensor.

In contrast, the box filter is local in physical space, but this filter

is nonlocal in spectral space [53] and causes intense oscillations on

the filtered energy spectrum, as shown in Fig. 1 . Obviously, the box

filter is not effective at filtering the energy at high wavenumbers.

Among the three filters, only the Gaussian filter is reasonably com-

pact in both physical and spectral space. Therefore, we choose the

Gaussian filter to obtain the FDNS data for ANN training and test-

ing. Furthermore, we choose the velocity gradient tensor and filter

width as the ANN input features and the SGS stress tensor as the

ANN output labels to train the SGS model, as described in the next

section. 

Table 5 shows the correlation coefficients between the SGS

stress tensor computed by the gradient model and that computed

by Eq. (7) using the DNS data and Gaussian filter. The correlation

coefficients at different Reynolds numbers and filter widths are

mostly larger than 0.9 and show a slight decrease with increasing

filter width. Those results mean that the gradient model physically

describes the relation between the SGS stress tensor and velocity

gradient tensor at the resolved scales over a wide range of filter

widths. 
Table 6 shows the energy transfer rates obtained from the gra-

ient model and the DNS data and the relative error between

hem. D τ ,X and D τ ,M 

are the energy transfer rates obtained from

NS and the modeled SGS stress tensor, respectively, 

 τ,X = 

1 

N g 

N g ∑ 

n =1 

−τ ( X ) 
i j ( n ) S i j ( n ) , (13)

 τ,M 

= 

1 

N g 

N g ∑ 

n =1 

−τ ( M ) 
i j ( n ) S i j ( n ) , (14)

here N g denotes the number of grid points in the FDNS flow field

nd N g = 64 × 64 × 64 for all the filter widths and flows at differ-

nt Reynolds numbers. 

The relative error of the SGS energy transfer rate between the

odeled and DNS stress tensors is defined as 

 D = 

( D τ,M 

− D τ,X ) 

D τ,X 

× 100% . (15)

In Table 6 , the relative error E D monotonically increases with

he filter width. This result means that although the correlation

oefficient approaches 1.0, the value of the SGS stress tensor is un-

erestimated due to the coefficient used in the gradient model. 

Therefore, it is necessary to establish the relation between the

elocity gradient tensor together with the filter width and the SGS

tress tensor using the ANN method. 
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Table 5 

The correlation coefficients between the SGS stress tensors obtained from the gradient model and those from the DNS data 

with a Gaussian filter. 

Re λ � τ xx τ xy τ xz τ yy τ yz τ zz 

128.78 0.2945 0.93740 0.94453 0.94516 0.93238 0.94476 0.93435 

0.1473 0.97669 0.97683 0.97715 0.97526 0.97686 0.97549 

0.0736 0.99456 0.99427 0.99434 0.99427 0.99417 0.99426 

205.51 0.2945 0.89927 0.91747 0.91432 0.89270 0.91390 0.89910 

0.1473 0.94192 0.94788 0.94841 0.94025 0.94678 0.94227 

0.0736 0.97740 0.97726 0.97769 0.97702 0.97690 0.97748 

0.0368 0.99440 0.99401 0.99409 0.99439 0.99400 0.99447 

302.04 0.2945 0.90447 0.91856 0.90786 0.87630 0.89712 0.86402 

0.1473 0.91602 0.92859 0.92574 0.91070 0.92267 0.90696 

0.0736 0.95474 0.95483 0.95470 0.95044 0.95270 0.95018 

0.0368 0.98030 0.97986 0.97969 0.98099 0.98000 0.98146 

0.0184 0.99572 0.99520 0.99531 0.99554 0.99514 0.99579 

Table 6 

The energy transfer rates generated by the gradient model and the 

DNS stress tensor using a Gaussian filter and the relative error between 

them. 

Re λ � D τ ,X D τ ,M E D 

128.78 0.2945 0.15248 0.12097 −20.66% 

0.1473 0.09484 0.08871 −6.46% 

0.0736 0.04119 0.04070 −1.20% 

205.51 0.2945 0.16938 0.10516 −37.92% 

0.1473 0.13604 0.10909 −19.81% 

0.0736 0.08276 0.07749 −6.37% 

0.0368 0.03563 0.03519 −1.24% 

302.04 0.2945 0.17752 0.09286 −47.69% 

0.1473 0.15864 0.10525 −33.66% 

0.0736 0.12446 0.10361 −16.76% 

0.0368 0.07808 0.07399 −5.25% 

0.0184 0.03000 0.02972 −0.94% 
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Fig. 2. Schematic diagram of the single-hidden-layer feedforward ANN. 
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. Artificial neural network 

.1. Structure of the ANN 

We use a single-hidden-layer feedforward ANN to establish the

elation between the resolved-scale flow field and the SGS stress

ensor. This ANN consists of an input layer, a hidden layer and an

utput layer. 

The input layer is 

 = [ x 1 , x 2 , . . . , x n I ] 
T 
, (16) 

here x i denotes the i th input feature, n I is the number of neu-

ons in the input layer. The matrix of weight and bias coefficient

onnecting the input layer and the hidden layer are 

 

1 = 

⎡ ⎢ ⎢ ⎣ 

w 

1 
11 w 

1 
12 · · · w 

1 
1 n I 

w 

1 
21 w 

1 
22 · · · w 

1 
2 n I 

. . . 
. . . 

. . . 
. . . 

w 

1 
n H 1 

w 

1 
n H 2 

· · · w 

1 
n H n I 

⎤ ⎥ ⎥ ⎦ 

, B 

1 = 

⎡ ⎢ ⎢ ⎣ 

b 1 1 

b 1 2 
. . . 

b 1 n H 

⎤ ⎥ ⎥ ⎦ 

, (17) 

here w 

1 
i j ( i = 1 , 2 , . . . , n H ; j = 1 , 2 , . . . , n I ) denotes the weight co-

fficient connecting the i th neuron in the hidden layer and the j th

euron in the input layer, b 1 
i 

denotes the bias coefficient for the

 th neuron in the hidden layer, n H is the number of neurons in

he hidden layer. Initially, the weight coefficients are set to be ran-

om numbers from truncated normal distribution (0.0 mean and

.1 standard deviation) and the bias coefficients are set to zero. 

The output of the hidden layer is 

 

T = f 
(
W 

1 X + B 

1 
)

= [ h 1 , h 2 , . . . , h n H ] 
T 
, h i = f 

( 

n I ∑ 

j=1 

w 

1 
i j x j + b 1 i 

) 

,

(18) 
here f denotes the activation function to carry out the nonlinear

apping of the ANN, and the superscript “T” denotes the transpose

f matrix. The matrix of weight and bias coefficient connecting the

idden layer and the output layer are 

 

2 = 

⎡ ⎢ ⎢ ⎣ 

w 

2 
11 w 

2 
12 · · · w 

2 
1 n H 

w 

2 
21 w 

2 
22 · · · w 

2 
2 n H 

. . . 
. . . 

. . . 
. . . 

w 

2 
n O 1 

w 

2 
n O 2 

· · · w 

2 
n O n H 

⎤ ⎥ ⎥ ⎦ 

, B 

2 = 

[
b 2 1 , b 

2 
2 , . . . , b 

2 
n O 

]
, 

(19) 

here w 

2 
i j ( i = 1 , 2 , . . . , n O ; j = 1 , 2 , . . . , n H ) denotes the weight co- 

fficient connecting the i th neuron in the output layer and the j th

euron in the hidden layer, b 2 
i 

denotes the bias coefficient for the

 th neuron in the output layer and n O is the number of neurons in

he output layer. 

The output of the ANN is calculated by 

 

* = W 

2 H 

T + B 

2 = 

[
y ∗1 , y 

∗
2 , . . . , y 

∗
n O 

]
, y ∗i = 

n H ∑ 

j=1 

w 

2 
i j h j + b 2 i . (20)

Fig. 2 shows a schematic diagram of the single-hidden-layer

eedforward ANN. 

In this paper, the nine components of the velocity gradient ten-

or and the filter width are used as input features ( n I = 10 ) in the

NN, 

 = 

[
�

∂ u i 

∂ x j 
, �

]T 

( i, j = 1 , 2 , 3 ) . (21) 
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Table 7 

The training data for the ANN model. 

Re λ k c / k max � N x × N y × N z Time step 

128.78 0.125 0.2945 

64 × 64 × 64 t 1 

0.25 0.1473 

0.5 0.0736 

302.04 0.125 0.0736 

0.25 0.0368 

0.5 0.0184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Variation in the normalized error with the training step; the number of neu- 

rons in the hidden layer is n H = 300 . 

Table 8 

Three comparative cases with different n H for the ANN model. 

Re λ k c / k max Time step N x × N y × N z n H 

Case 1 128.78 0.125 t 3 
64 × 64 × 64 

50/100/ 

200/300/ 

400/500, etc. 

Case 2 205.51 0.0625 t 1 
Case 3 302.04 0.5 t 5 
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The output labels of the ANN are the six components of the SGS

stress tensor ( n O = 6 ), 

Y = [ τxx , τxy , τxz , τyy , τyz , τzz ] . (22)

The activation function used in this paper is the rectified linear

unit (ReLU) [55] , 

f ( x ) = 

{
0 , i f x < 0 , 

x, i f x ≥ 0 . 
(23)

The loss function can be expressed as 

E SGS = 

1 

N s 

N s ∑ 

i =1 

∣∣Y i − Y i 
* 
∣∣2 + 

λ0 

2 N s 
‖ 

w ‖ 

2 
2 , (24)

where N s is the number of sample points, w is the weight coeffi-

cient, and λ0 is the regularization rate, which is set to 0.0 0 01. The

first term in Eq. (24) is the mean square error between the ANN

output Y 

∗ and the labeled output Y calculated from DNS data. The

second term is an L2 regularization term that is included to avoid

overfitting. 

We use the error backpropagation (BP) scheme [56] imple-

mented with TensorFlow [57] to train the ANN by optimizing the

weight and bias coefficients to minimize the loss function E SGS . The

BP scheme is an iterative method. The main procedures of BP-ANN

training are as follows: 

(1) Training data is provided to the input layer, the data signal

is propagated forward layer by layer, and the result in the

output layer can be computed according to Eqs. (16)–(20) . 

(2) Compute the mean square error between the ANN output

and the labeled output. Then, the loss function in the output

layer is determined according to Eq. (24) . 

(3) Propagate the loss function backward from the output layer

to the hidden layer and input layer. Adjust the weight and

bias coefficients using the gradient descent algorithm, 

v = v + �v , �v = −η′ ∂ E SGS 

∂v 
, (25)

where v denotes one of the weight and bias coefficients in

the ANN and η′ ∈ (0, 1) denotes the learning rate, which is

set to 0.2 initially and decays exponentially with the training

step. 

(4) Repeat the above procedures as the loop iteration until the

stop condition is met. 

3.2. ANN training 

For training the ANN model, we select the FDNS data at two

Reynolds numbers, Re λ = 128.78 and 302.04. Three different fil-

ter widths are used for each Reynolds number. The details of the

dataset are listed in Table 7 . The total number of sample points

in the dataset is 64 × 64 × 64 × 6, which is then divided randomly

into two parts. Three-quarters of the sample points are used as the

training dataset to adjust the weight and bias coefficients to mini-

mize the loss function, while the remaining quarter of the sample

points are used as the validation dataset. In the training, we use
he mini-batch gradient descent (MBGD) algorithm and set batch

ize to 1024, which means 1024 sample points are randomly cho-

en to adjust the weight and bias coefficients. At every training

tep, the instantaneously adjusted ANN model based on the train-

ng dataset is applied to the validation dataset, and the error be-

ween the SGS stress from the ANN and DNS data is calculated to

valuate the generalization of the ANN model. 

Fig. 3 shows the variations in the normalized errors E SGS / E OUT in

he training dataset and validation dataset with the training step.

 OUT denotes the mean square of the labeled output Y over the

hole domain, 

 OUT = 

1 

N s 

N s ∑ 

n =1 

Y 

2 . (26)

Initially, the weight coefficients are randomly set, and the bias

oefficients are set to zero; therefore, the normalized errors are

arge. With increasing training step, the errors decrease as the

eight and bias coefficients are adjusted according to the gradi-

nt descent algorithm and then tend to approach steady values

fter the rapid decrease. The errors in the training and valida-

ion datasets exhibit similar variations, which shows that the ANN

odel has been successfully trained. 

. Results and discussion 

After training the ANN model, we input the new flow data at

ifferent Reynolds numbers, time steps and filter widths into the

rained model. The SGS stress tensor predicted by the ANN model

nd that from DNS data are compared to evaluate the prediction

ccuracy and generalization of the ANN model. 

.1. Effects of the number of neurons in the hidden layer 

We obtain distinct ANN models with different numbers of neu-

ons, n H , in the hidden layer. Then, we apply all the ANN models

o the same data and compare the correlation coefficients and the

elative errors of the energy transfer rate predicted by various ANN

odels as comparative cases. The detailed information for three

ases is listed in Table 8 . In Cases 1 and 3, we choose data at dif-

erent time steps from those of the training data. In Case 2, we
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Fig. 4. Variations in the correlation coefficients and the relative error of the energy transfer rate with the number of neurons in the hidden layer in Case 1. 

Fig. 5. Variations in the correlation coefficients and the relative error of the energy transfer rate with the number of neurons in the hidden layer in Case 2. 
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hoose data at a different Reynolds number from that of the train-

ng data. According to the comparative cases, we can determine a

roper number of neurons in the hidden layer for the ANN model.

Figs. 4–6 show the variations in the correlation coefficients and

he relative errors of the energy transfer rate computed by the

NN model and the gradient model with the number of neu-

ons. For the above three cases, the correlation coefficients increase

onotonously with the number of neurons for all six components

f the SGS stress tensor and reach stable values after n H ≥ 300

 Figs. 4 (a)–6 (a)]. Meanwhile, the relative errors computed by the

NN model significantly change with the number of neurons in

he hidden layer. When k c / k max is small, i.e., the filter width is

arge, the relative error of the energy transfer rate computed by

he gradient model is quite large, while the ANN model can reduce

he relative errors of the energy transfer rate at different Reynolds

umbers and filter widths. As shown in Figs. 4 (b)–6 (b), the rela-

ive errors of the energy transfer rate computed by the ANN model

re large when n H = 50 . Then, these errors gradually decrease and

pproach zero with increasing n H . When n H ≥ 300, the relative er-

ors approach steady values. In Case 1, the relative error reduces to

ero after n H ≥ 300. In Case 2, although the relative error remains

t approximately −20% , this error has been significantly reduced

d  
ompared with that of the gradient model. The latter has a rela-

ive error as large as −40% . In Case 3, the filter width is very small,

o the relative error of the gradient model is very small. The rela-

ive error of the ANN model is comparable to that of the gradient

odel when n H = 200 . 

Taking the above three cases into account, we select n H = 300

n this paper to obtain an ANN model for subsequent prediction of

he SGS stress tensor. 

.2. A priori test of the ANN model 

After selecting n H = 300 , we applied the trained ANN model to

redict the SGS stress tensor at different Reynolds numbers, filter

idths and time steps. The parameters of FDNS data used for a

riori test of the ANN model are listed in Table 9 . 

Fig. 7 shows the correlation coefficients and the relative error

f the energy transfer rate at five time steps when Re λ = 128 . 78

nd k c / k max = 0 . 125 . For the isotropic turbulent flow fields at dif-

erent time steps, steady values are maintained for the correlation

oefficients and relative error of the energy transfer rate between

he SGS stress tensor predicted by the ANN and that from DNS

ata. This finding demonstrates that the trained ANN model accu-



8 Z. Zhou, G. He and S. Wang et al. / Computers and Fluids 195 (2019) 104319 

Fig. 6. Variations in the correlation coefficients and the relative error of the energy transfer rate with the number of neurons in the hidden layer in Case 3. 

Fig. 7. The correlation coefficients and relative error of the energy transfer rate predicted by the ANN model at five time steps when Re λ = 128 . 78 and k c / k max = 0 . 125 . 

Table 9 

The parameters of FDNS data used for a priori test of the ANN model. 

Re λ � N x × N y × N z Remarks 

128.78 0.2945, 0.1473, 0.0736 

64 × 64 × 64 
Average over 5 

time steps 
205.51 0.2945, 0.1473, 0.0736, 0.0368 

302.04 0.2945, 0.1473, 0.0736, 0.0368, 

0.0184 
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rately describes the relation between the velocity gradient tensor

and SGS stress tensor at different time steps. Therefore, we can ob-

tain the statistical results of ANN model by averaging the results at

different time steps, shown as Table 10 . 

Figs. 8–10 show the variations in the correlation coefficients

and the relative errors of the energy transfer rate with the fil-

ter width computed by the ANN model, the gradient model and

the Smagorinsky model. Most of the correlation coefficients deter-

mined by the ANN model are larger than 0.9 and close to those

by the gradient model, which both are obviously better than the

Smagorinsky model [ Figs. 8 (a)–10 (a)]. These high correlation coef-

ficients indicate that the ANN model accurately predicts the spa-

tial patterns of the SGS stress tensor at different Reynolds numbers

and filter widths. In Figs. 8 (b)–10 (b), the gradient model underesti-
ates the energy transfer rate with increasing filter width and the

magorinsky model significantly overestimates the energy transfer

ate. When the filter width is large, the ANN model partially re-

uces the relative error of the energy transfer rate compared to

he gradient model (the maximum absolute value decreases from

47.69% to −33.28% at Re λ = 302 . 04 , from −37.92% to −21.14% at

e λ = 205 . 51 , from −20.66% to −0.33% at Re λ = 128 . 78 , shown as

ables 6 and 10 ). When the filter width is small, the relative errors

omputed by the ANN model are sometimes a little larger than

ero, but still close to the gridient model. In all, the ANN model

ignificantly improves the prediction of the energy transfer rate at

ifferent Reynolds numbers and filter widths. 

In order to assess the importance of filter width in the in-

ut features, two different ANNs are trained to compare with the

resent ANN model. First, we choose [ 
∂ u i 
∂ x j 

] as input features and

 τ ij ] as output labels. The dataset is the same as the present ANN

odel, listed in Table 7 . The normalized errors in the training

nd validation datasets can hardly be reduced with the increasing

raining step, demonstrating the failure of this training. Actually,

his failure is easy to understand that we attempt to train an ANN

odel similar to the gradient model using FDNS data with differ-

nt filter widths, but not taking the filter width into consideration.
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Fig. 8. Variations in the correlation coefficients and relative errors of the energy transfer rate with filter width computed by the ANN model, the gradient model and the 

Smagorinsky model at Re λ = 128 . 78 , where the filter width � = π/ k c . 

Fig. 9. Variations in the correlation coefficients and relative errors of the energy transfer rate with filter width computed by the ANN model, the gradient model and the 

Smagorinsky model at Re λ = 205 . 51 . The line legend in (a) is the same as that in Fig. 8 (a). 

Fig. 10. Variations in the correlation coefficients and relative errors of the energy transfer rate with filter width computed by the ANN model, the gradient model and the 

Smagorinsky model at Re λ = 302 . 04 . The line legend in (a) is the same as that in Fig. 8 (a). 
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Table 10 

The correlation coefficients and relative errors of the energy transfer rate between the SGS stress tensors obtained from the 

ANN model and the DNS data. 

Re λ � τ xx τ xy τ xz τ yy τ yz τ zz E D 

128.78 0.2945 0.94117 0.94533 0.94617 0.93642 0.94547 0.93877 −0.33% 

0.1473 0.97667 0.97596 0.97623 0.97562 0.97586 0.97580 5.15% 

0.0736 0.98844 0.99108 0.99104 0.98892 0.99077 0.98873 7.96% 

205.51 0.2945 0.90722 0.91935 0.91720 0.90147 0.91710 0.90744 −21.14% 

0.1473 0.94687 0.94804 0.94844 0.94530 0.94673 0.94713 −8.98% 

0.0736 0.97716 0.97587 0.97618 0.97743 0.97506 0.97757 2.63% 

0.0368 0.98640 0.98927 0.98905 0.98737 0.98868 0.98731 6.19% 

302.04 0.2945 0.91157 0.92197 0.91390 0.88895 0.90304 0.87811 −33.28% 

0.1473 0.92450 0.92968 0.92764 0.91871 0.92367 0.91692 −24.42% 

0.0736 0.95914 0.95451 0.95433 0.95520 0.95233 0.95522 −8.23% 

0.0368 0.97856 0.97678 0.97739 0.98002 0.97749 0.98012 2.39% 

0.0184 0.98418 0.98729 0.98705 0.98467 0.98619 0.98572 4.47% 

Table 11 

The training data with a fixed filter width �0 = 0 . 1473 . 

Re λ N x × N y × N z Time step 

128.78 

64 × 64 × 64 t 1 and t 5 205.51 

302.04 
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Second, we still choose [ 
∂ u i 
∂ x j 

] as input features and [ τ ij ] as out-

put labels. But the dataset is selected from the FDNS data with

a fixed filter width �0 = 0 . 1473 at different Reynolds numbers,

listed in Table 11 . This ANN is successfully trained, named as “ANN

( �0 )”. Then we perform the a priori test using the ANN ( �0 )

model. 

Fig. 11 shows the comparison of the a priori results by the

present ANN model and the ANN ( �0 ) model. The correlation co-

efficients determined by the ANN ( �0 ) model are mostly larger

than 0.9, close to the present ANN model. Only when �< �0 ,

the ANN ( �0 ) model slightly underestimates the correlation coef-

ficient. As for the energy transfer rate, the ANN ( �0 ) model accu-

rately predicts the values only if � = �0 . If �< �0 , the ANN ( �0 )

model significantly overestimates the relative error; if �>�0 , the

ANN ( �0 ) model significantly underestimates the relative error.

The main reason is that the coefficient of SGS model related to

filter width ( ∝ �2 ) is not used as an input feature, but included

in the trained ANN ( �0 ) model. So the predicted SGS stress could

be proportional to the real SGS stress, and the ratio approximates

�2 
0 
/ �2 , shown in Fig. 11 (b), (d) and (f). 

If we select the FDNS data with another fixed filter width �′ 
0 

as the training dataset, the ANN model can be successfully trained.

It can also be expected that this ANN model cannot accurately pre-

dicts the SGS stress tensor with � � = �′ 
0 . Thus, it is significant to

include the filter width as input feature in the training of ANN

model. 

4.3. Spatial structures of the SGS stress tensor 

To intuitively compare the SGS stress tensors obtained from the

ANN model and DNS data, we plot the contours of the components

of the SGS stress tensor. Fig. 12 shows the three-dimensional con-

tours of a diagonal component τ xx and an off-diagonal component

τ xy computed respectively from the DNS data, the ANN model, the

gradient model and the Smagorinsky model at Re λ = 205 . 51 and

k c / k max = 0 . 125 . It is obvious that the ANN model and the gradi-

ent model accurately reconstructs the spatial structures of the SGS

stress tensor, the Smagorinsky model has little correlation with the

real SGS stress from the DNS data [6,46] . Besides, the ANN model

is more accurate than the gradient model. The latter underesti-
ates the magnitude of the stress tensor, leading to a lower trans-

er rate of turbulent kinetic energy. 

Fig. 13 shows the joint probability density functions (PDFs) of

wo components τ xx and τ xy of the SGS stress tensor from the ANN

odel and the real SGS stress tensor from the DNS data. The root

ean square of the components of the SGS stress tensor computed

y the DNS data is used to normalize the components, 

i j, DNS = 

√ 

1 

N g 

N g ∑ 

n =1 

τ 2 
i j, DNS ( i, j = 1 , 2 , 3 ) . (27)

For isotropic turbulent flow, the joint PDFs of the three diag-

nal components are almost identical. Additionally, the joint PDFs

f the three off-diagonal components are very similar. If the cor-

elation coefficients between the SGS stress tensor from the ANN

odel and that from the DNS data approach 1.0, the main axis of

he isovalue lines of the joint PDFs is a line with unit slope, as

hown by the dash-dotted line in Fig. 13 . 

The correlation coefficients of the six components are larger

han 0.9. The isovalues of the joint PDFs are located near the line

ith unit slope, indicating that the ANN model accurately predicts

he spatial structures of the SGS stress tensor. 

.4. A posteriori validation of the ANN model 

In this subsection, we couple the proposed ANN model with

 real LES by introducing the SGS stress tensor predicted by the

NN into the filtered Navier-Stokes equation shown in Eq. (5) .

e compute and compare the Eulerian energy spectra and La-

rangian statistics of fluid particle pairs from LES with the ANN

odel and LES with the conventional spectral eddy viscosity model

refer to our previous work [4 8,4 9] ), the Smagorinsky model, the

ynamic Smagorinsky model and the FDNS. As proposed by Ger-

ano et al. [9] and Lilly [58] , the dynamic Smagorinsky model

efines two filters: a grid filter with a width of � and a test fil-

er with a width of ˜ � (here we use ˜ � = 2�). The modeled SGS

tress is given by τi j = −2 C D �
2 
∣∣S ∣∣S i j , where the Smagorinsky co-

fficient C D = 

1 
2 (L i j M i j /M 

2 
i j 
) is determined dynamically using the

east squares approach, L i j = 

˜ u i u j −˜ u i ̃
 u j , M i j = 

˜ �2 

∣∣∣̃  

S 

∣∣∣̃  

S i j − �2 ˜ 

∣∣S ∣∣S i j . 

We define the mean value and standard deviation of the energy

ransfer rate as 

DNS = 

1 

N g 

N g ∑ 

n =1 

D τ, DNS , (28)

D = 

√ 

1 

N g 

N g ∑ 

n =1 

( D τ, DNS − μDNS ) 
2 
. (29)
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Fig. 11. Comparison of the a priori results by the present ANN model and the ANN ( �0 ) model at Re λ = 128 . 78 [(a), (b)], 205.51 [(c), (d)] and 302.04 [(e), (f)]. 
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Fig. 14 shows the PDFs of the energy transfer rate obtained

rom the FDNS and the ANN model. There is a negative rate of

nergy transfer in the left part of the figure for both the FDNS

ata and the ANN model. Since we define a turbulent energy trans-
m

er rate from the resolved scales to the subgrid scales as positive,

 negative energy transfer rate indicates energy backward scatter

rom the subgrid scales to the resolved scales. It is well known

hat this backward scatter of energy is a physical property, but it

ay lead to numerical instability of the SGS models. 
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Fig. 12. Three-dimensional contours of the SGS stress components τ xx and τ xy obtained from the DNS data [(a), (b)], the ANN model [(c), (d)], the gradient model [(e), (f)] 

and the Smagorinsky model [(g), (h)] at Re λ = 205 . 51 and k c / k max = 0 . 125 . 
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Fig. 13. The joint PDFs of the SGS stress components τ xx and τ xy obtained from the ANN model and the DNS data at Re λ = 205 . 51 and k c / k max = 0 . 125 . The slope of the 

dash-dotted line is 1. 

Fig. 14. The PDFs of the local energy transfer rate determined by the ANN model 

and the FDNS at different cutoff wavenumbers at Re λ = 302 . 04 . 
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Fig. 15. Energy spectra of the isotropic turbulent flow fields obtained from LES cou- 

pled with the improved ANN model, spectral eddy viscosity model, Smagorinsky 

model and dynamic Smagorinsky model. 
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To ensure numerical stability, we use a clipping procedure to fix

ll backward scatter energy as zero [59] . The ANN model is simply

mproved with 

i j, ANN = 

{
τi j, ANN , i f D τ, ANN ≥ 0 , 

0 , i f D τ, ANN < 0 , 
(30) 

here D τ ,ANN is the local energy transfer rate at a grid point in

he physical flow domain. Thus, the backward scatter of energy to

he resolved scales is eliminated and the improved ANN model can

nly dissipate energy toward the subgrid scales. 

The energy spectrum of the Fourier mode is defined as 

 ( k , t ) = 

1 

2 

〈 ̂  u 

∗( k , t ) ·̂ u ( k , t ) 〉 , (31) 

here ̂  u 

∗( −k , t ) = ̂

 u ( k , t ) denotes the conjugate symmetry of com-

lex vector. 

Fig. 15 compares the energy spectra obtained from LES coupled

ith different SGS models and DNS. The Smagorinsky model pre-

icts excessive dissipation, and the resulting energy spectrum is

ower than those obtained from the spectral eddy viscosity model,

he dynamic Smagorinsky model and DNS, especially near the cut-

ff wavenumber. Thanks to the fitting of C to Kolmogorov con-
S 
tant, the deviation of energy spectrum between the Smagorinsky

odel and DNS is small. The energy spectrum obtained from the

mproved ANN model exhibits slight underprediction in the inertial

ubrange. 

To further evaluate the performance of the ANN model, we

alculate the Lagrangian statistics of fluid particle pairs from LES

ith the improved ANN model and compare the results with those

rom the FDNS and LES with the spectral eddy viscosity model,

magorinsky model and the dynamic Smagorinsky model. For a

article pair, the separation distance and its variance are defined

s 

 ( r , t 0 | τ ) = 

√ 

R ( r , t 0 | τ ) · R ( r , t 0 | τ ) , (32) 

 ( r , t 0 | τ ) = X ( x 0 , t 0 | t 0 + τ ) − X ( x 0 + r , t 0 | t 0 + τ ) , (33)

2 
2 ( r, τ ) = 

〈
[ R ( r , t 0 | τ ) − 〈 R ( r , t 0 | τ ) 〉 ] 2 〉

= 〈 R ( r , t 0 | τ ) · R ( r , t 0 | τ ) 〉 − 〈 R ( r , t 0 | τ ) 〉 2 . (34) 

here R ( r , t 0 | τ .) denotes the separation vector of the particle pair,

 is the initial separation vector, r = | r | is the initially prescribed
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Fig. 16. Lagrangian statistics of fluid particle pairs in LES coupled with the improved ANN model, Smagorinsky model, dynamic Smagorinsky model and FDNS: (a) Mean of 

the separation distance; (b) Variance of the separation distance; (c) Relative dispersion; (d) One-time two-point Lagrangian velocity correlation function. 
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separation distance, τ is the time lag, and 〈 〉 denotes the average

condition of the particle pairs. The relative dispersion is defined as

〈 δR ( r, τ ) · δR ( r, τ ) 〉 , where δR ( r, τ ) = R ( r , t 0 | τ ) − r is the separa-

tion vector increment. The one-time two-point Lagrangian velocity

correlation function is defined as 

ρr ( r, τ ) = 

〈 V ( x 0 , t 0 | t 0 + τ ) · V ( x 0 + r , t 0 | t 0 + τ ) 〉 
〈 V ( x 0 , t 0 ) · V ( x 0 , t 0 ) 〉 , (35)

where V ( x 0 , t 0 ) denotes the Lagrangian velocity of the fluid particle

located at x 0 at the initial time t 0 and V ( x 0 , t 0 | t 0 + τ ) denotes the

Lagrangian velocity of that fluid particle at time t 0 + τ . 

Fig. 16 shows the mean and variance of the separation distance,

the relative dispersion and the one-time two-point Lagrangian ve-

locity correlation function of fluid particle pairs when r = 1 / 4 η and

8 η; the results from FDNS are obtained by using a sharp spectral

filter, and the cutoff wavenumber is k c / k max = 0 . 25 . The FDNS can

be regarded as an ideal LES with a grid resolution of 128 3 . Due to

the SGS model error, it is difficult for the LES to accurately predict

the Lagrangian statistics of fluid particle pairs. For the Smagorin-

sky model, the excessive dissipation reduces the velocity fluctua-

tions at the resolved scales, causing the slower separation of fluid

particle pairs and more correlated flow fields than FDNS. The dy-

namic Smagorinsky model determines the model coefficient dy-

namically, which reduces the excessive dissipation and gets bet-

ter results. The results by the spectral eddy viscosity model coin-

cide with the dynamic Smagorinsky model, which are not shown

in the figure (see Ref. [48] ). The Lagrangian statistics obtained from

the improved ANN model almost approach those from FDNS, bet-

ter than the results from the Smagorinsky model and dynamic

Smagorinsky model. These observations imply that the improved

ANN model can be used to predict the Lagrangian statistics. 
. Conclusion 

We established the relation between the resolved-scale veloc-

ty gradient tensor and the SGS stress tensor in forcing isotropic

urbulent flows in the framework of an ANN. The prediction ac-

uracy and generalization of the trained ANN model were investi-

ated by comparing the predicted SGS stress tensor with the DNS

ata, the gradient model and the Smagorinsky model. A posteriori

alidation was carried out by applying the ANN model to a real

ES of isotropic turbulent flows. 

We first obtained the resolved-scale flow field and SGS stress

ensor from DNS data by performing filtering operations. A Gaus-

ian filter with different filter widths was used in the FDNS. The

ine components of the velocity gradient tensor together with the

lter width were used as the input features and the six compo-

ents of the SGS stress tensor were used as the output labels. Us-

ng the DNS data with each three filter widths at Re λ = 128 . 78

nd 302.04, a single-hidden-layer feedforward ANN was applied to

rain the new SGS model for LES of isotropic turbulent flows. 

After training the ANN model, the velocity gradient tensors and

lter widths at different Reynolds numbers, filter widths and time

teps in Table 3 were used as new inputs, and the predicted SGS

tress tensors were used for the a priori test of the ANN model.

he correlation coefficient and the relative error of the energy

ransfer rate between the SGS stress tensors from the ANN model

nd DNS data were used as two metrics for evaluating the per-

ormance of ANN model. The correlation coefficients determined

y the ANN model were mostly larger than 0.9, much better than

he Smagorinsky model. The relative errors of the energy transfer

ate predicted by the ANN model exhibited significant improve-

ent over those computed by the gradient model. Subsequently,
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wo more ANN models were trained to compare with the present

NN model, demonstrating the importance of filter width in the

nput features. In addition, we plotted the three-dimensional con-

ours and joint PDFs of the SGS stress components, and these plots

ntuitively demonstrate that the ANN model accurately predicts the

patial structures of the SGS stress tensor. 

We then performed a posteriori validation by coupling the im-

roved ANN model with an LES of isotropic turbulent flows. The

nergy spectrum is computed by the improved ANN model and

hen compared with several SGS models. The Lagrangian statis-

ics of fluid particle pairs, such as the mean and variance of

he separation distance, relative dispersion and Lagrangian velocity

orrelations, obtained from the improved ANN model nearly ap-

roached the results from the FDNS and better than those from

he Smagorinsky model and dynamic Smagorinsky model. We will

tudy this ANN model in turbulent flows in more complex geome-

ries in future work. 
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