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Abstract
In the present paper, the spatio-temporal evolution of vorticity in the first wake instability, i.e., (pure) modeA, is investigated in
order to understand thewake vortex dynamics and sign relationships among vorticity components. Direct numerical simulation
(DNS) for the flow past a circular cylinder is performed, typically at a Reynolds number of 200, in the three-dimensional
(3-D) wake transition. According to characteristics of time histories of fluid forces, three different stages are identified as the
computational transition, the initial stage and fully developed wake. In the second initial stage, the original two-dimensional
spanwise vortices become obviously three-dimensional associated with the streamwise or vertical vorticity intensified up to
about 0.1. As a matter of fact, these additional vorticities, caused by the intrinsic 3-D instability, are already generated firstly
on cylinder surfaces early in the computational transition, indicating that the three-dimensionality appeared early near the
cylinder. The evolution of additional components of vorticity with features the same as mode A shows that (pure) mode A
can be already formed in the late computational transition. Through careful analysis of the vorticity field on the front surface,
in the shear layers and near wake at typical times, two sign laws are obtained. They illustrate intrinsic relationships among
three vorticity components, irrelevant to the wavelength or Fourier mode and Reynolds number in (pure) mode A. Most
importantly, the origin of streamwise vortices is found and explained by a new physical mechanism based on the theory of
vortex-induced vortex. As a result, the whole process of formation and shedding vortices with these vorticities is firstly and
completely illustrated. Other characteristics are presented in detail.
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1 Introduction

Bluff bodies are widely used in many engineering applica-
tions, such as suspension bridges, high architecture, flexible
risers and pipelines in offshore oil platforms, and heat
exchangers. Flow past a bluff body is a classical and basic
subject in fluidmechanics.Onemain reason is the appearance
of unsteady wake associated with vortices alternately shed
behind a body. As a result, the generated large unsteady fluid
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forces acted on a body have the potential to lead to fatigue
damage and even violently destroy the structural integrity
of a body. With the aim of understanding and controlling the
wake vortex dynamics, a large number of studies [1–15] have
been published in recent decades by applyingmanymethods,
including physicalmodel testing, direct numerical simulation
(DNS), and linear or non-linear stability analysis. Compre-
hensive reviews on such subjects can be found in previous
references [4,11].

Based on these investigations for flowpast a circular cylin-
der [4], four laminar stages for different flow structures in
the wake mainly appear in a wake transition sequence. In
the laminar steady regime at a Reynolds number Re below
around 49, where Re is defined based on the approaching
flow velocity U∞, the cylinder diameter D and the kine-
matic viscosity ν of the fluid, the wake comprises a steady
recirculation region of two symmetrically placed vortices
on each side of the wake. After the primary wake insta-
bility emerges at Re > 49 due to a Hopf bifurcation, the
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two-dimensional (2-D) spanwise vortices (with spanwise
vorticity ωz) are alternately shed from the body, known as
Kármán vortex streets, in the laminar vortex shedding regime
at Re <140–194. Until the Reynolds number reaches about
260, two discontinuous changes, mainly associated with two
wake instabilities, i.e., modes A and B, in the wake formation
appear in the three-dimensional (3-D) laminar wake transi-
tion regime. Beyond a Reynolds number of 260 in the last
stage, a particularly ordered 3-D streamwise vortex structure
(with streamwise vorticity ωx ) in the near wake, the fine-
scale three-dimensionality, becomes increasingly disordered,
while the primary wake instability behaves remarkably like
the laminar shedding mode.

Particularly, in the 3-Dwake-transition regime, two differ-
entwake instabilities, typicallymanifested by the variation of
Strouhal number St (non-dimensional vortex-shedding fre-
quency) as Re is increased, appear successively with their
specific mechanisms and features [4,7,8,10,14]. At the first
discontinuity, which is hysteretic near Re =180–194, the
first wake instability, i.e., (pure) mode A, occurs with the
inception of vortex loops due to the spanwise wavy deforma-
tion of primary vortices as they are shed. Such deformation
is caused by an elliptic instability of the primary vortex
cores and the formation of streamwise vortex pairs at a span-
wise wavelength of around 3−4 diameters are resulted from
Biot−Savart induction. At the second discontinuous change
in the St–Re relation over a range of Re from 230 to 250,
the second wake instability, i.e., (pure) mode B, gradually
appears due to a gradual transfer of energy from mode A
shedding.ModeB comprises finer-scale streamwise vortices,
with a spanwise length scale of around one diameter. It is
mainly due to a hyperbolic instability of the braid shear layer
region.

Except above two pure modes, there is a large intermittent
low-frequency wake velocity fluctuation due to the pres-
ence of large-scale spot-like vortex dislocations in the wake
transition with mode A, i.e., mode A∗ (mode A + vortex dis-
locations) [4]. The critical Reynolds number Recr at which
modeA∗ wake instability emerges is identified at 194 through
careful experiments, in which the end effects are eliminated
by using non-mechanical end conditions [5]. This value is
very close to those of 188.5±1.0, 190±0.02 and 190.5 pre-
dicted through linear stability analysis [3,11,12]. In addition,
the effect of mode A∗ instability would destabilize mode B
in the nonlinear interaction between the two modes [6]. This
leads to the first emergence of mode B instability at Re about
230 in experiments [5] much lower than the critical Re of
259 and 261±0.2 predicted through linear stability analysis
[3,11], but in good agreementwith predicted Re = 230 based
on nonlinear stability analysis [9,13]. Moreover, the experi-
mental study has revealed that the wake transition frommode
A∗ to mode B is a gradual process with intermittent swap-
ping between the two modes [5]. Therefore, the appearance

of mode A∗ or vortex dislocations will seriously interfere
both pure modes A and B in the 3-D wake transition of a
circular cylinder.

As for (pure) modes A and B, there are two distinct fea-
tures for spatial distributions of streamwise vortices and
primary Kármán vortices. For mode A, most of the stream-
wise vorticity comes from vorticity initially pulled out of the
primary vortex core into the vortex braid region during shed-
ding. The stretching thereafter occurs in a manner similar to
the strong straining near the braid saddle point in the mix-
ing layer [16], as the basic streamwise interaction between
streamwise and spanwise vortices. Therefore, the strain-rate
field leads to the spanwise vortex becoming highly deformed
across the span. However, the instability of mode B does
not appear to be related to a waviness of the primary vor-
tex as in mode A, because these vortices deform much more
uniformly along their length. Furthermore, these two modes
havedistinct symmetries.ModeAcomprises streamwise vor-
tices of one sign that are in a staggered arrangement from
one braid region to the next, whereas mode B has an in-line
arrangement of streamwise vortices of the same sign. These
patterns are intimately linked to the fact that streamwise vor-
tices formed in a previous half-cycle are in the vicinity of
newly forming streamwise vortices [4].

A central question pertains to the effect of vertical vor-
tices (with vertical vorticity ωy) on (pure) modes A and
B, even vortex dislocation, in the 3-D wake transition of
a bluff body, which is seldom investigated in previous lit-
erature. Typically, as reported in a previous work [17], the
strong vertical vorticity in the near wake, associated with
the weak streamwise vorticity, plays a key role in the com-
plete suppression ofKármán vortices by introducing a certain
conic disturbance on the circular cylinder at Re = 100. This
indicates another basic interaction, referred to as the vertical
interaction between vertical and spanwise vortices [18]. In
most cases, these two types of basic interactions (streamwise
and vertical interactions) all lead to the original spanwise
vortices wavily varied across the span, and consequently dif-
ferent vortex-shedding patterns appearing in the near wake
of the cylinder with geometrical disturbances. Interestingly,
it has been shown that two sign laws of vorticity, as an intrin-
sic relationship of vorticity between two basic interactions,
appear in the spatial evolution of vorticity in the near wake
of such bluff body [18] and theoretically confirmed by the
theory of vortex-induced vortex (VIVor) in a recent study
[19]. Therefore, it is still not totally understood for the role
of the vertical vorticity or vortex in the vorticity evolution in
the near wake of a circular cylinder without any geometric
disturbance, even the origin of streamwise or vertical vor-
ticity in the 3-D wake-transition process, from the point of
investigating vorticity sign.

In light of these earlier works, there are two primary aims
in present study, as the first part. One is to investigate the
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spatial-temporal evolution of vorticity, particularly includ-
ing the vertical vorticity, and sign relationship in the first
natural wake instability mode, i.e., pure mode A, for a flow
past a circular cylinder by means of DNS. Another is to find
the physical origin of streamwise vorticity in the shear lay-
ers in mode A. Mode B and large-scale vortex dislocation
will be reported in the future. To avoid the contamination of
large-scale vortex dislocations, pure mode A is investigated,
typically at Re = 200. Only one spanwise wavelength of
four diameters is taken into account, near the most unstable
wavelength [4,6]. The rest of this paper is organized in the
following manner. The governing equations coupled bound-
ary conditions and numerical methods are firstly presented.
Then, based on time histories of fluid forces, different fea-
tures in the spatio-temporal evolution of vorticity in different
stages, including the appearance of ωx and ωy , the intrin-
sic sign relationship of vorticity and the key effect of ωy

on the origin of streamwise and vertical vortices are mainly
investigated and discussed in detail. Finally, conclusions are
obtained.

2 Physical model

2.1 Governing equations

As shown in Fig. 1a, the fluid flow past a still circular-
section cylinder with diameter D is studied. The flow is
incompressible with a constant density ρ and kinematic
viscosity ν of the fluid. The inertial Cartesian coordinate
system is established as shown in Fig. 1a, where the x axis
(streamwise direction) is aligned to the incoming free stream
with uniform velocity U∞, the z axis (spanwise direction)
is parallel to the cylinder span, and the y axis (vertical
direction) is normal to the free stream and the cylinder
axis.

The incompressible continuity and Navier−Stokes equa-
tions without any conservative body forces in dimensionless
form are written by

∇ · u = 0, (1)
∂u
∂t

+ (u · ∇) u = −∇ p + 1

Re
∇2u, (2)

where∇ is the gradient operator, u is the velocity vector with
three components (u, v, w) along their own coordinates, t is
the time scaled by D/U∞, p is the static pressure scaled by
ρU 2∞, Re is defined as U∞D/ν. The velocities are scaled
by the free-steam velocity U∞ and lengths by the cylinder
diameter D. Thus, all variables used in the following context
are scaled by ρ,U∞ and D. In the spatial-temporal evolution
of vorticity and vortex dynamics in the bluff body wake, the
main control parameter is the Reynolds number. The vortic-
ity ω is defined as the curl of velocity u, i.e., ω = ∇ × u,
with three components (ωx , ωy, ωz) along their own coordi-
nates,which are governed by the following vorticity transport
equation,

∂ω

∂t
+ (u · ∇) ω = (ω · ∇) u + 1

Re
∇2ω. (3)

As an important indicator in the present flow dynamics,
variations of drag and lift forces, FD and FL, acting on the
body are taken account of and normalized as the drag and lift
coefficients, CD and CL, respectively, defined by

CD = FD
1
2ρU

2∞S
, CL = FL

1
2ρU

2∞S
, (4)

where S is the projected area of cylinder along the free stream
direction. Then the mean drag coefficient, CD, and the root-
mean-square (RMS) lift coefficient, C ′

L, are defined by

CD = 1

N

N∑

i=1

CDi , C ′
L =

√√√√ 1

N

N∑

i=1

(
CLi − CL

)2
, (5)

where N is the number of values in the time history of CD

or CL, and CL is the time-averaged lift coefficient with defi-
nition similar to CD. When spanwise vortices are alternately
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Fig. 1 a Schematics of flow past a straight cylinder with the circular cross-section, and computational domain in the (x, y) plane and mesh
distributions b in the whole flow region and c near the cylinder with a closer view
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shed in the near wake, the frequency of such vortex shedding,
f , is obtained through the Fourier analysis of the time history
of CL, and scaled as the Strouhal number St = f D/U∞.

2.2 Initial and boundary conditions

As for initial conditions, the flow is assumed to be still with
u = 0 and p = 0 at t = 0, except at the inlet.

As for boundary conditions, the 3-D flow is assumed to
be spatially periodic across the span. At the inlet, a uniform
free stream is prescribed as u = U∞ and v = w = 0. At
the outlet, the simple outflow with ∂u/∂x = 0 is applied.
At both lateral boundaries in the vertical direction, the sym-
metry boundary condition, i.e., free slip with velocity ∂u

∂ y =
v = ∂w

∂ y = 0, is adopted. On cylinder surfaces, the non-
slip boundary condition with u = 0 is used. The reference
pressure, p∞ = 0, is specified at center of inlet.

2.3 Computational domain andmesh

The whole computational domain for present wake flow is
shown in Fig. 1a. Along with the x axis, the inlet length,
L I, defined as the distance between the cylinder center and
inlet boundary, is 20, and the outlet length, LO, defined as
the distance from the cylinder center to the outlet boundary,
is 30, while the vertical height, LH, defined as the distance
between the lateral boundary and the cylinder center along
the y axis, is 20. The blockage ratio, defined by 1/(2LH), is,
therefore, 2.5%. Along the z axis, the computational span-
wise length or the cylinder span, LZ, defined as the distance
between two spanwise periodic boundaries across the span,
is 4 for Re = 200, the same as one instability wavelength for
mode A. Correspondingly, the whole computational domain
in dimensionless form is (20 + 30) × (20 + 20) × 4 or
50 × 40 × 4 in cubic space of x × y × z.

The mesh distribution in the whole 2-D computational
domain is presented in Fig. 1b, as the standard mesh applied
for the present computations. As for the mesh resolution, the
smallest grid size of 0.001 is the normal distance of the first
layer of mesh next to the cylinder surface. A local mesh is
mainly refined in the big circular regionwith a radial diameter
of about 4.24, as shown in Fig. 1c. A coarse mesh is mainly
distributed far away from the cylinder. The cell expansion
ratio at thewake center plane y = 0 is 1.11 near the incoming
flow, 1.06 around the cylinder and 1.05 near the far wake.
Therefore, the total number of present 2-D standard mesh
(SM) is 20,100.

Under the present circumstances with the periodical flow
across the span, the uniform spanwise grid size, �z, is
closely related to not only the computational resolution,
but also the flow dynamics. To better understand it, let us
transform the problem of determining �z in physical space

into that of solving the n-th wavenumber βn = 2πn/LZ

in spectral space. In Eq. (2), the spanwise viscous item,
1
Re

∂2u
∂z2

, can be expressed by a sum of Fourier modes,
1
Re

∑
β2
n ûne

iβn z , where ûn(t, x, y) is the n-th spanwise
Fourier mode of u(t, x, y, z) and n � 0. Therefore, viscous
dissipation becomes important at wavenumbers βD ∼ Re

1
2 .

At wavenumbers βn > βD the momentum equations are
dominated by viscous forces [6]. These high-wavenumber
modes contribute little to the dynamics of the flow at large
scales because their energy is rapidly dissipated by viscos-
ity. For an adequate description of the dynamics in a system
with a given spanwise dimension LZ we only need a finite
set of N Fourier modes to cover the range of scales from

β0 = 0 (the mean flow) to βD = 2πN/LZ ∼ Re
1
2 ,

or N ∼ LZRe
1
2 /(2π). Corresponding to physical space,

the computational spanwise size �z is just equivalent to
LZ/(2N ) due to symmetries, associatedwith the spectral res-
olution at the smallest dissipation wavelength λD = LZ/N .
In present computational spanwise domain, we have N ≈ 9
and �z ≈ 0.22 (λD ≈ 0.44) for LZ = 4 at Re = 200.
Therefore, we just investigate the 3-D flow dynamics with
spanwise periodicity at the smallest periodic resolution of
�z = 0.1 in present paper.

2.4 Numerical methods

Numerical calculations are carried out by awidely used com-
mercial software FLUENT V6.3.26 with the finite-volume
method (FVM). Adopting the FVM coupled with spanwise
periodic boundary conditions is physically attributed to the
non-periodic vortex structure possibly disappearing near the
mid-span [14] if the spanwise spectral method is applied,
or only symmetrical wake flow with the symmetry boundary
condition ofNeumann type across the span [20], respectively.
The pressure-implicit with splitting of operators (PISO) as
the pressure−velocity coupling scheme is applied. The pres-
sure equation is solved by the second-order discretization
scheme. The momentum equation adopts the second-order
upwind scheme. Particularly, the Green−Gauss node-based
method is applied for the gradient computation.

All unsteady formulations are solved by using the second-
order implicit scheme. The dimensionless time step �t is
0.01. In the present computations at Re = 200, the maxi-
mum of cell Courant number, Co = �t |u|/�l, is less than
approximately 0.8, where �l is the cell size in the direction
of the local velocity u through a cell.

Error ofmass conservative equation, Eq. (1), reachesmag-
nitude on the order of as lowasO(10−5), while errors of three
components of momentum equations, Eq. (2), are lower at
around an order of O(10−7) in all computations.
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Table 1 Comparisons of hydrodynamic parameters, CD, C ′
L and St ,

among different computational domains (SM, LSM and SSM), mesh
resolutions (SM, MS and MW) and the smallest grid sizes (SM, SMG2
and SMG5) in the present 2-D numerical simulations at Re = 250

Cases CD C ′
L St

SM 1.3486 0.5586 0.2029

LSM 1.3402 0.5541 0.2023

SSM 1.3826 0.5752 0.2065

MS 1.3451 0.5551 0.2021

MW 1.3572 0.5560 0.2046

SMG2 1.3500 0.5687 0.2023

SMG5 1.3520 0.5720 0.2015

2.5 Model verifications

The present numerical model is firstly validatedwith the sim-
ulation results of 2-Dwake flowwith SM at Re from 46 to 49
with an interval of 1. The unsteadiness of 2-D flow appears
at Re = 47, but vanishes at Re = 46, determined by the
lift force gradually amplified or not, which is consistent with
numerical results [6,11] and close to Re = 49 in experiment
[4].

The independence study of 2-D computational domain in
(x, y) plane is carried out at Re = 250 with almost same
mesh resolution, as shown in Table 1. Among them, the
computational domain in the 2-D SM is (20 + 30) × (20 +
20) = 50 × 40. While the large standard mesh (LSM) is
(30 + 40) × (30 + 30) = 70 × 60, and the small standard
mesh (SSM) is (10+20)×(10+10) = 30×20. The relative
error of hydrodynamic parameters between SM and LSM is
less than 1%, while that for SM and SSM is about 2%–4%.
This demonstrates that the present computational domain,
SM, is suitable for DNS.

Then, the mesh dependence is also studied at Re = 250
with different 2-D mesh resolutions, as shown in Table 1.
Among them, the cell number around the cylinder surface is
doubled as 260, and the total number of grids in suchmodified
mesh on surface (MS) is 35,400. Moreover, the grid number
in the wake, x ∈ (2.12, 30], is also doubled as 100 with
the cell expansion ratio reduced to 1.015. Consequently, the
total number of cells in this refined mesh in the wake (MW)
is 25,600. It is found out that the relative error is less than
1% among three different meshes.

Moreover, the independence of the smallest grid size on
the cylinder surface is investigated at Re = 250, as shown
in Table 1 for SM, SMG2 and SMG5. Among them, the
smallest grid size is 0.002 in the mesh SMG2 and increased
up to 0.005 in the mesh SMG5 without change of total grid
numbers. As the smallest grid size increases, the fluid forces
are gradually increased, while the vortex-shedding frequency
is reduced. Except that the mean drag force and St , only the

Table 2 Hydrodynamic parameters, CD, C ′
L and St , in the present 2-D

numerical simulations at Re = 200, 250 and 300, where Num1 and
Num2 are numerical results of Refs. [11] and [14], respectively

Re Cases CD C ′
L St

200 SM 1.3329 0.4695 0.1946

Num1 1.3283 0.4756 0.1949

Num2 1.3427 0.4724 0.1966

250 SM 1.3486 0.5586 0.2029

Num1 1.3459 – 0.2028

Num2 1.361 0.5658 0.2047

300 SM 1.3651 0.6297 0.2091

Num2 1.3768 0.6407 0.2107

lift force is varied greatly and the relative error exceeds 1%.
Therefore, the smallest grid size is very important in present
DNS, especially in capturingmain characteristics of vorticity
and its sign evolved near the cylinder surface.

Finally, the verifications based on the 2-D standard mesh
are also carried out at Re = 200, 250 and 300, respectively,
and compared with previous numerical results, as presented
in Table 2. The relative errors are less than 2%. In these
2-D calculations, the frequency resolution δ f is 8.3× 10−4,
associated with the computational time period of about 1200
after spanwise vortices are alternately shed steadily with the
almost constant peak-amplitude of lift coefficient.

The following analysis is mainly performed at Re = 200.
However, as a part of the independence study, the effect of
Reynolds number, i.e., Re = 190, 195 and 210, on relation-
ship of vorticity sign, and the effect of spanwise grid size,
�z = 0.05, on the 3-D vortex evolution at Re = 200 are
also investigated and presented at last.

3 Results and discussion

3.1 Time histories of fluid forces and frequency
analysis

Above all, let us present the characteristics of time histories
of the drag and lift coefficients, as shown in Fig. 2. Before the
3-Dwakeflowwith (pure)modeAat Re = 200 is fully devel-
oped with peak-amplitudes of drag and lift coefficients little
wavily varied at t > 380 in Fig. 2b, two different stages are
identified. The first is a computational transition at t < 70,
as shown in Fig. 2a. The second is an initial stage of 3-D
wake flow over the range of time, 70 < t < 380, as shown
in Fig. 2b.

In the computational transition (CT), t < 70, there are four
stages with obviously different characteristics of drag and lift
coefficients in Fig. 2a. The first stage (CT-1) at t < 0.6 is
just corresponding to the non-physical oscillations of fluid
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Fig. 2 Time histories of the drag and lift coefficients, CD and CL, for (pure) mode A at Re = 200, typically a the computational transition,
t ∈ (0, 70), with a small window at t < 0.8, b the initial stage, t ∈ (70, 380), and the fully developed stage, t > 380. In b, the horizontal dashed
lines denote the peak-to-peak amplitudes of CD and CL at the first initial stage with almost 2-D spanwise vortices

forces. They are caused by the inconsistent initial conditions
between the still flow in an interior flow region and the free
stream flow at inlet for t = 0, and rapidly reduced as time
proceeds. Then in the second stage (CT-2) for 0.6 < t < 1.7,
the drag coefficient increases up to the local maximum, but
the lift coefficient is always zero. When the time increases
from1.7 up to 28 in the third stage (CT-3), the drag coefficient
is gradually reduced down to the local minimum, while the
oscillating amplitude of lift coefficient is slowly increased
when t > 10. Subsequently, in the last stage (CT-4) at 28 <

t < 70, CD is also gradually increased and oscillated at
t > 40, associatedwith the continual increasingof oscillating
amplitudes of CL.

During the initial stage (IS), 70 < t < 380, two phases,
quasi-periodic 2-D flow and initially developed 3-D flow, are
clearly demonstrated by temporal variations of fluid forces in
Fig. 2b. As for quasi-periodic 2-D flow stage (IS-1) in a range
of time, t ∈ (70, 140–180), the oscillated amplitudes of drag
and lift coefficients are almost invariantwith the time.Andwe
have CD = 1.3288, C ′

L = 0.4629 and St = 0.1923 (δ f =
9.2 × 10−3), a little less than those in 2-D computations in
Table 2. However, for gradually developed 3-D flow stage
(IS-2) at 140–180 < t < 380, the peak-to-peak amplitudes
of fluid forces are quickly reduced, almost linearly for CL or
nonlinearly for CD, respectively.

For the fully developed wake (FDW) with (pure) mode
A at t ∈ (380, 1000), as shown in Fig. 2b, two phases
successively appear. The first (FDW-1) is the wavy vari-
ation of peak-to-peak amplitudes of fluid forces in a time
range between 380 and 600. The second (FDW-2) is almost
constant of such amplitudes when t > 600. Particularly
in FDW-2, there are CD = 1.2545, C ′

L = 0.3569, and
St = 0.1802 with δ f = 2.8 × 10−3, in a good agreement
with CD = 1.2412, C ′

L = 0.3556, and St = 0.1815 in a
previous work [11]. On the other hand, St in present mode A
is really less than that in 2-D calculations in Table 2, which
fits very well with dependency study of Strouhal number on
the periodicity length [11].

Through the Morlet wavelet analysis for CL(t), different
temporal features of the vortex-shedding frequencies could
be obtained. As shown in Fig. 3 with a time range from 20 to

Fig. 3 Frequency spectra of CL through the Morlet wavelet analysis at
Re = 200 with two basic frequencies, f0 = 0.192 and f1 = 0.1809,
and a mixed frequency, f2 = 0.1854, at the frequency resolution of
δ f = 1.1 × 10−3 from 20 to 1000. PSD means power spectra density

1000, there are two basic frequencies identified, f0 = 0.192
and f1 = 0.1809, associated with (almost) 2-D flow in the
first initial stage (IS-1) and the fully developed 3-D wake
flow, respectively. Between them, i.e., IS-2, there is a mixed
frequency, f2 = 0.1854, based on f0 and f1, because of
f2 ≈ 1

2 ( f0 + f1) within the frequency resolution of δ f =
1.1 × 10−3.

3.2 Evolution of vorticity and its sign relationship

In the present contexts, spatial distributions of vorticity field
at different typical times are analyzed. Three sub-regions
are mainly concerned: the boundary layer on and near the
front surface (R-I), the separated shear layers beside the body
(R-II) and the near wake behind the body (R-III), similar to
those in previous work [19]. Local regions on the rear sur-
face and in the recirculation near wake center plane (WCP)
will be investigated in the future. In iso-surfaces and con-
tours of vorticity, in order to avoid a possible contamination
or interference caused by computational errors, additional
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TE
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T1 T3

Fig. 4 Typical points in a whole period or cycle of oscillated lift coeffi-
cient,where T0 (or T4) and T2 denote the positive andnegative extremum
values of lift force, respectively, and both T1 and T3 are associated with
CL = 0, TS and TE are related to the formation of streamwise and
vertical components of vorticity in the shear layers in (pure) mode A

vorticities, ωx and ωy , are only presented with magnitudes
at least 0.001, i.e., |ω| � 0.001.

From the point of illuminating specific signs of dominant
additional vorticities with non-zero value, ω, it is frequently
used by a sign function, sgn(ω), defined by

sgn(ω) =
{
1, if ω > 0,
−1, if ω < 0.

(6)

As for spacial position, the streamwise position on and
near the front surface is denoted by x < 0, while that on
and near the rear surface, in the shear layers and near wake
is denoted by x > 0. The vertical positions on the upside
and downside of cylinder surfaces are denoted by y > 0 and
y < 0, respectively. y > 0 and y < 0 can also be used
to denote the upper and lower shear layers and upper and
lower sides of WCP, where shedding spanwise vortices with
negative and positive signs are correspondingly dominant,
respectively.

In addition, it should be stated here that special moments
are selected at a time interval of 0.5, equal to that of saved
data, because of the limited disk space. Typically, T0 (or T4)
and T2, as shown in Fig. 4, aremainly selected to illustrate the
vorticity field, associated with a certain variation of lift force.
For example, the presented time t , associated to a certain lift
coefficient at Ti (i =0−4), indicates that t is approximately
equal to Ti within the half time interval of 0.25, i.e., |t−Ti| <

0.25.

3.2.1 In the computational transition

There is a paucity literature about the spatio-temporal evo-
lution of vorticity reported in such computational transition.
To illustrate two sign laws [19] irrelevant to the time, we
select some typical moments to show vorticity evolution, as
well as in the initial stage and fully developed wake. The first
stage (CT-1) is not presented due to its non-physical reason
mentioned before. For other three stages, typically as shown
in Fig. 5 at t = 1 and Fig. 6 at t = 1.5 in the second stage

(CT-2), Fig. 7 at t = 10 and Fig. 8 at t = 27.5 in the third
stage (CT-3), and Fig. 9 at t = 49 in the last transitional
stage (CT-4), spacial distributions of (dominant) ωx and ωy ,
as well as ωz , are analyzed.

In general, the vortex structure in present wake flow is
firstly described by a pair of spanwise vortices symmet-
rically attached on rear surface at t = 1 (Fig. 5c), and
gradually elongated downstream till t = 10 (Fig. 7c). Such
attached spanwise vortex pair and elongated both upper and
lower shear layers become asymmetrically oscillated a little
at t = 27.5 (Fig. 8c). Finally in CT-4, these attached span-
wise vortices are alternately shed from the upper and lower
shear layers, i.e., the formation of Kármán vortex streets, e.g.
at t = 49 (Fig. 9c). At least, they always seem to be two-
dimensional without any obviously wavy disturbance across
the span.

The main feature is the appearance of additional com-
ponents of vorticity, ωx and ωy . As for the most important
information provided in the present stage, additional vortic-
ities with very small magnitudes are firstly generated on the
cylinder surface early in CT-2, then convected downstream
into the shear layers due to the nonlinear convection, and
finally dissipate owing to the viscous forces during CT-2
and CT-3, or alternately shed in CT-4. Moreover, these
additional vorticities on the surface and in the shear layers
gradually increase as time progresses inCT-3 andCT-4. They
are associatedwith the spanwise flow (w 	= 0) first appearing
and then increasing near cylinder walls due to the intrin-
sic 3-D instability, similar to experimental results [21,22].
This clearly indicates that the flow is actually already three-
dimensional early in stageofCT-2. In addition, themagnitude
of ωx and ωy increased up to about 0.02 still has no effect on
2-D spanwise vortices.

Evolution of Fourier mode is presented by counting the
number of vorticity with one pair of positive and negative
signs along the spanwise direction. In the computational
transition, it seems that in CT-2, the mode of n = 1 (the
wavelength λ about 4) mainly appears on and near the front
surface, while the mode of n ≈ 4 (λ ≈ 1) dominantly exists
on and behind the rear surface, according to the spatial distri-
bution of ωx or ωy , typically, as shown in Fig. 5a, b. In CT-3
and CT-4, the Fourier mode of n = 4 totally disappears,
while the mode of n = 1 quickly grows and dominates. The
latter with λ = 4, exactly equal to the wavelength of (pure)
mode A λA = 4, indicates that the instability of mode A
could initially occur on and near cylinder walls earlier.

Whatever the Fourier mode is, special distributions of vor-
ticity sign is obtained. Firstly, in sub-region R-I, whenever
in CT-2, CT-3 and CT-4, the sign of ωx on the upper and
front surface, denoted by (x < 0, y > 0), is always the
same as the sign of ωy . While in sub-regions R-II and R-III
(x > 0), the sign of ωx is still dominantly the same as the
sign of ωy in the upper shear layer (y > 0), but opposite in
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a b c d e f

Fig. 5 At t = 1 (CT-2), iso-surfaces of a ωx = ±0.001, bωy = ±0.001 and c ωz = ±0.1, and contours of d ωx , e ωy and f ωz on cylinder surfaces
at Re = 200, where red and blue colors denote positive and negative values, respectively, and green denotes values almost zero (|ω| < 0.001).
Note that the cylinder is denoted by the grey translucent surface in iso-surfaces

a b c d e f

Fig. 6 At t = 1.5 (CT-2), iso-surfaces of a ωx = ±0.001, b ωy = ±0.001 and c ωz = ±0.1, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions of Fig. 5)

a b c d e f

Fig. 7 At t = 10 (CT-3), iso-surfaces of a ωx = ±0.002, b ωy = ±0.002 and c ωz = ±0.6, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions of Fig. 5)

a b c d e f

Fig. 8 At t = 27.5 (CT-3), iso-surfaces of a ωx = ±0.02, b ωy = ±0.02 and c ωz = ±1.0, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions of Fig. 5)

a b c d e f

Fig. 9 At t = 49 (CT-4, T2), iso-surfaces of a ωx = ±0.02, b ωy = ±0.02 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions of Fig. 5)
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a b c

Fig. 10 Colorful contours of a ωx and b ωy at z = 0.27, t = 49 (CT-4, T2) and Re = 200, where red and blue (also shown in c color legend just
for a reference), as well as solid and dashed contours of ωz = ±0.1 and ±0.5, denote positive and negative values, respectively. Note that the arrow
with a hollow head in b denotes ωy in the upper shear layer actually originated from that on the lower and rear surface

a b c d e f

Fig. 11 At t = 173 (IS-1, T2), iso-surfaces of a ωx = ±0.1, b ωy = ±0.1 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions as Fig. 5)

the lower shear layer (y < 0). As a result, it can be reduced
to sgn(ωx ·ωy) = 1 in R-I (x < 0, y > 0) and R-II and R-III
(x > 0, y > 0), and similarly sgn(ωx · ωy) = −1 in R-I
(x < 0, y < 0) and R-II and R-III (x > 0, y < 0), referred
to as the first sign law. Moreover, the sign of spanwise vor-
ticity on front surface, shear layers and near wake is taken
into account, i.e., sgn(ωz) = −1 at y > 0 and sgn(ωz) = 1
at y < 0. Then we have an interesting vorticity relationship:
sgn(ωx · ωy · ωz) = −1, whatever for x < 0 or x > 0 and
y > 0 or y < 0, referred to as the second sign law.

On the other hand, every component of vorticity itself has
different spacial distributions. For example, in sub-region
R-I, especially in CT-3, sgn(ωx ) at y > 0 is just opposite to
that at y < 0, while sgn(ωy) at x < 0 is opposite to that at
x > 0, typically, as shown in Fig. 8d, e, respectively. But at
T2 in CT-4 (Fig. 9), the sign of ωx is always the same regard-
less of whether it is on the upper or lower surface and front
or rear surface (except the near wake center), but sgn(ωy)

is almost symmetric about the cylinder center. Meanwhile,
in sub-regions of R-II and R-III, e.g. in CT-4, as shown in
Fig. 10a, the sign of dominant streamwise vorticity is varied
from the upper shear layer to the lower shear layer, and then
in both vortex braid regions due to the stretching effect of pri-
mary vortex core with an opposite sign, exactly similar to the
symmetry of mode A, i.e., a staggered arrangement from one
braid region to the next [4]. However, in the same regions,
as shown in Fig. 10b, the sign of dominant vertical vorticity
is totally the same in both the upper and lower shear layers,
similar to that appearing in mode A of a square cylinder [23].

3.2.2 In the initial stage

As for the initial stage, the vorticity field in Fig. 11 (t = 173)
in IS-1 and Fig. 12 (t = 375) in IS-2 is analyzed.

In the first stage (IS-1), the shedding spanwise vortices
are still almost two-dimensional with a little waviness across
the span, although ωx and ωy are continually increased up to
about 0.1 as time goes on, as shown in Fig. 11c. These addi-
tional vorticities also result in the drag and lift coefficients a
little less than those in the 2-D wake flow, as well as a little
decrease of vortex-shedding frequency, as mentioned before.

However, in the second initial stage (IS-2), thewakeflow is
obviously described by the wavy spanwise vorticities. There-
fore, it is certainly three-dimensional, even for both the upper
and lower shear layers a little wavy along the z axis. Mean-
while, associated ωx and ωy are increased up to at least 0.2,
which leads to remarkable reduction of the peak-to-peak
amplitudes of fluid forces over time. Specific distributions
of vorticity in the near wake indicate that the (pure) mode A
is initially formed in present sub-stage of IS-2, by comparing
with those in the subsequent stage, the fully developed wake.

The dominant Fourier mode is relatively complex in dif-
ferent regions. For example, whenever in IS-1 or IS-2, spatial
distributions of ωx and ωy with specific signs at the Fourier
mode of n = 1 (λ = λA = 4) still dominate in the shear
layers and near wake, very similar to those in CT-4, while on
the front surface, the Fourier mode of n = 1 is still domi-
nant in IS-1. But in IS-2, only on and near cylinder surfaces
and just behind the rear surface, e.g. as shown in Fig. 12b, e,
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a b c d e f

Fig. 12 At t = 375 (IS-2, T2), iso-surfaces of a ωx = ±0.3, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces at
Re = 200 (same descriptions as Fig. 5). In b, the arrow with a hollow head denotes that the vertical vorticity in the upper shear layer originates
from that on the rear surface near z = 0

Table 3 Summary of Fourier mode, n = 2, appearing on the upper
(+y) or lower (−y) surface and the front (−x) or rear (+x) surface in
sub-regions IS-2 and FDW at Re = 200

t (−x,+y) (+x,+y) (−x,−y) (+x,−y)

307.5 (T2) n = 2 n = 2 n = 1 n = 2

375 (T2) n = 2 n = 2 n = 1 n = 1

472 (T0) n = 1 n = 2 n = 2 n = 2

560.5 (T0) n = 1 n = 2 n = 1 n = 2

T0 or T4 n = 1 n = 1 n = 1 n = 2

the Fourier mode of n = 2 with λ ≈ 2 appears. As for only
cylinder surfaces, as summarized in Table 3 based on Fig. 13,
two groups with different Fourier modes (t = 307.5, 375)
are identified in the present stage. According to the spacial
range of vorticity, at t = T2, the mode of n = 2 on the upper
surface is obviously stronger than that on the lower surface.
This shows multiple Fourier modes coexisting in the natu-
ral instability, particularly appearing on and near cylinder
surfaces.

Even so, we can still obtain two sign laws in the present
initial stage. For example, in sub-region R-I, whenever the
Fourier mode of n = 2 is weak or strong, sgn(ωx ) is always
the same as sgn(ωy) at y > 0 but opposite at y < 0, e.g.
in Figs. 12 and 13. This is exactly consistent with that pre-
sented in the computational transition. Distributions of ωx

and ωy with specific signs are almost synchronously varied
with time. Even in sub-regionsR-II andR-IIIwith the Fourier
mode of n = 1, such as Figs. 11 and 12, the first sign law still
prevails, irrelevant to the shedding spanwise vortices. Mean-

while, for dominant ωx and ωy accompanied with special
ωz , the second sign law for three components of vorticity
also exists, i.e., sgn(ωx · ωy · ωz) = −1, in sub-regions
R-I and R-II. However in R-III, this relationship seems to
be invalid. It is mainly attributed to the stretching effect of
the upstream spanwise vortex with an opposite sign on the
downstream rib-like vortex tubes with ωx and ωy . Particu-
larly, these streamwise vortices are often convected into the
upstream spanwise vortex core. For example, +|ωx |, origi-
nally shed with +|ωz | in the lower shear layer, is moved into
the core of −|ωz | at x = 6 in Fig. 14a.

As for the spacial distributions of additional vorticities on
cylinder surfaces, it can be seen that the symmetrical feature
in CT-4 is also exited in present IS-1, but totally disappear
in IS-2 because of the strong disturbance of Fourier mode of
n = 2.

3.2.3 In the fully developed wake

Different typicalmoments are chosen to show spacial charac-
teristics of the vorticity field when t > 380. For example, the
first stage (FDW-1) is typically shown in Fig. 15 (t = 560.5)
at which the peak amplitude of lift coefficient is locally min-
imal. Because cases at times of T0 and T2 are not strictly in
a whole period in previous analysis for the sake of simplic-
ity, in the second stage (FDW-2), the flow is analyzed in two
different half-periods, such as (T0, T1, T2) or (T2, T3, T4),
typically as shown in Fig. 16 at t = 872 (T1) and Fig. 17 at
t = 873.5 (T2), or Fig. 18 at t = 980 (T3) and Fig. 19 at
t = 981.5 (T4), respectively. Notice that the view in the sec-
ond half-period is from the bottom to the top of cylinder with

a b c d e f

Fig. 13 At Re = 200, contours of ωx and ωy at a t = 307.5 (T2) and b 472 (T0) on upper surfaces and c t = 307.5 (T2), d 375 (T2), e 472 (T0)
and f 560.5 (T0) on lower surfaces viewed from the −|y| axis (same descriptions as Fig. 5). The flow is from left to right

123



DNS in evolution of vorticity and sign relationship in wake transition of a circular cylinder: (pure) mode A 1141

Fig. 14 Colorful contours of a ωx and b ωy at z = 0.8, t = 375 (IS-2, T2) and Re = 200 (same descriptions as Fig. 10). In b, the arrow with a
hollow head denotes ωy in the upper shear layer actually originated from that on the lower and rear surface

a b c d e f

Fig. 15 At t = 560.5 (FDW-1, T0), iso-surfaces of a ωx = ±0.3, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces
at Re = 200 (same descriptions as Fig. 5). In b, the arrow with a hollow head denotes that the vertical vorticity in the lower shear layer originates
from that on the upper and rear surface near z = 0

a b c d e f

Fig. 16 At t = 872 (FDW-2, T1), iso-surfaces of a ωx = ±0.4, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces
at Re = 200 (same descriptions as Fig. 5). In a and b, the arrows near z = 0 denote the increased streamwise vorticity and the vertical vorticity
near the upper and rear surface, respectively

a b c d e f

Fig. 17 At t = 873.5 (FDW-2, T2), iso-surfaces of a ωx = ±0.4, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces
at Re = 200 (same descriptions as Fig. 5). In a and b, the arrows near z = 0 denote the initially generated streamwise vorticity and the vertical
vorticity on the lower and rear surface stretched into upside, respectively

the aim of clearly showing streamwise and vertical vorticity
in the lower shear layer.

This clearly shows that the 3-D wake flow is fully devel-
opedwith the appearance of (pure) modeA. The (pure) mode
A is mainly described by alternately shedding spanwise vor-

tices accompanied by a pair of rib-like vortex tubes with
streamwise and vertical vorticities at specific signs. In the
vortex structure of mode A, the sign of dominant streamwise
voriticity in the upper and lower shear layers at the same
spanwise position is opposite, indicating streamwise vortices
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a b c d e f

Fig. 18 At t = 980 (FDW-2, T3), iso-surfaces of a ωx = ±0.4, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces
at Re = 200 (same descriptions as Fig. 5). In a and b, the arrows near z = 0 denote the increased streamwise vorticity and the vertical vorticity
near the lower and rear surface, respectively

a b c d e f

Fig. 19 At t = 981.5 (FDW-2, T4), iso-surfaces of a ωx = ±0.4, b ωy = ±0.2 and c ωz = ±0.8, and contours of d ωx , e ωy and f ωz on surfaces
at Re = 200 (same descriptions of Fig. 5). In a and b, the arrows near z = 0 denote the originally generated streamwise vorticity and the vertical
vorticity on the upper and rear surface stretched into downside, respectively

of one sign shed in a staggered arrangement. It is consis-
tent with the physical description in previous works [4,5].
However, the sign of primary vertical vorticity is always the
same in both the upper and lower shear layers at the same
spanwise position, showing vertical vortices of one sign shed
in a parallel arrangement. Such feature about specific signs
of ωx and ωy in (pure) mode A already appears earlier at
t = 49 and is always dominant in the shear layers and
near wake as time passes. Meanwhile, in a whole shedding
cycle, the streamwise and vertical components of vorticity
are also varied periodically on cylinder surfaces, as shown in
Figs. 16–19.

The evolution of Fourier mode in the present stage is also
obtained. TheFouriermodeofn = 1 is still dominant, associ-
atedwith thewavelengthλA.On the cylinder surfaces, at least
one group with a mode of n = 2 is identified at t = 560.5,
as shown in Figs. 13f and 15 and summarized in Table 3.
The distribution of Fourier mode at t = 472 in Fig. 13b, e is
anti-symmetric to that at t = 307.5 in Fig. 13a, c. Moreover,
through careful comparisons between vorticity regimes for
n = 1 and n = 2 on cylinder surfaces, the Fourier mode
of n = 2 is weaker in FDW, e.g. at t = 560.5, than that in
IS-2, e.g. at t = 375. Furthermore, in FDW-2, the Fourier
mode of n = 2 only appears on the rear surface and in cer-
tain times, typically near t = T0 (or T4) and T2, as shown
in Figs. 17e and 19e, but disappeared at t = T1 and T3, as
shown in Figs. 16e and 18e. In summary, the subordinate
Fourier mode of n = 2 initially appears in IS-2 on and near
the cylinder surfaces, obviously weakened on the front sur-

face inFDW,ormainly existing on the rear surface in a certain
time of FDW stage.

However, the symmetry of surface vorticities (ωx and ωy)
could be clarified if the Fourier mode of n = 2 was ignored.
Such symmetry is exactly the same as that appearing in
CT-4 and IS-1, particularly on the rear surface, i.e., ωx with
a single sign, but sgn(ωy) symmetrical about the pipe center
at the same spanwise position. It can help us to find out the
physical origin of streamwise and vertical vorticities in the
shear layers.

In the present stage, considering previous conclusions
before FDW, we can draw a conclusion that the first sign
law in R-I is valid throughout the whole evolution of vortic-
ity, i.e., sgn(ωx · ωy) = 1 on the upper side (y > 0) and -1
on the lower side (y < 0). It is theoretically verified based
on the VIVor theory for the flow past a bluff body under
the geometric disturbance [19]. It should be pointed out that
the effect of upstream geometric disturbance is persistent and
strong enough to undergo the downstream convection of iner-
tial forces, while the natural 3-D perturbation in the flow past
the straight cylinder is random, unstable and unsustainable
to be convected upstream and finally only convected down-
stream under same effect of inertial forces. As a result, only
the first sign law downstream in the previous work [19] is
valid here.

Furthermore, in R-II and R-III, it is also found that the
first sign law obtained above is still effective. This not only
agrees well with previous conclusions before FDW, but is
also consistent with the theoretical result for downstream
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regions [19]. This also indicates that the first sign law in R-II
and R-III is irrelevant to time progression.

Based on the above analysis, we are certain that the second
sign law, i.e., sgn(ωx ·ωy ·ωz) = −1, prevails very precisely
in R-I and R-II for dominant vorticity. Although there is a
problem with the convective and stretching effects of inertial
forces onωx andωy as stated in previous analysis in IS-2, the
sign relationship among them is also theoretically valid for
the shedding mode A, just because it stems from the shear
layers.

3.3 Physical origin ofωx andωy in the shear layers

3.3.1 In the computational transition

The physical origin of ωx and ωy in the shear layers at the
same spanwise position in the computational transition is
analyzed. In the upper shear layer in CT-2, the sign of ωx is
the same as that on the rear surface, e.g. in Fig. 5a, d, which
indicates thatωx could originate from that on the rear surface,
similar to previous results [21,22]. However, as shown in
Fig. 5b, e, the different signs of ωy on the rear surface and in
the upper shear layer show that ωy does not originate from
that on the rear surface. These phenomena are also valid in
CT-3. But it is not always the same in CT-4. For example,
at t = 49, −|ωx | in the upper shear layer could originate
from that on the upper surface due to the same sign of ωx ,
but +|ωx | initially appearing and accumulating in the lower
shear layer certainly does not originate from that on the lower
surface because of an opposite sign, as shown in Figs. 9a, d
and 10a. It is referred to as the paradox of origin of ωx in
the (pure) mode A. As for the origin of ωy in the upper shear
layer, as shown in Figs. 9b, e and 10b, it is found that ωy

actually originates from that on the lower and rear surface,
as indicated by the arrow with a hollow head in Fig. 10b,
stretched by spanwise vortex in the upper shear layer.

3.3.2 In the initial stage and the first stage of FDW

The origin of ωx in the shear layers is firstly analyzed. As an
example, the spanwise position near z = 0 is discussed as
follows. At t = 375, the above paradox of the origin of ωx

in CT still exists, as shown in Figs. 12a, d and 13d, similar to
that at t = 49 or 173 (T2). Interestingly, it is also confirmed
that a similar situation appears at t = 560.5 (T0), as shown
in Fig. 15 or 20a. Consequently, it could be inferred that only
−|ωx | in the upper shear layer stems from that on the upper
and rear surface, associated with the formation of negative
spanwise vortex, for T2 and similarly for T0. This mechanism
iswell consistentwithYokoi andKamemoto’sworks [21,22].
However, it is invalid in Fig. 14a indicated by the arrow,
denoted as the streamwise vorticity in the lower shear layer
“VorX0_D”, for T2 or in an inverse case of Fig. 20a indicated

by the arrow, denoted as the streamwise vorticity in the upper
shear layer “VorX0_U”, for T0.

Therefore, the formation and shedding process of stream-
wise vorticity in the shear layers can be analyzed according
to Figs. 14a and 20a. At T0, the streamwise vorticity
“VorX0_U” is firstly generated in the upper shear layer.
Then when the time proceeds to T2, “VorX0_U” is accumu-
lated into “VorX1_U” in the upper shear layer. Meanwhile,
“VorX0_D” is generated in the lower shear layer. At last for
T0, “VorX1_U” in the upper shear layer is about to be shed
associated with the new “VorX0_U” initially generated adja-
cent to the body. At the meantime, the enhanced “VorX0_D”
becomes “VorX1_D” in the lower shear layer. Based on anal-
ysis of such process, theremust be a newphysicalmechanism
responsible for the initially generated streamwise vorticity
close to the body, such as “VorX0_U” or “VorX0_D”, rather
than the previous mechanism only stemmed from the rear
surface.

The origin of ωy in the shear layers is simply analyzed.
At t = 375, −|ωy | in the upper shear layer dominantly orig-
inates from that generated on the lower and rear surface,
as shown in Fig. 12b, stretched by −|ωz |, similar to that
appeared in Fig. 10b at t = 49. Considering Fig. 11b, this
mechanism is valid at T2. Meanwhile, at T0, a similar mech-
anism, −|ωy | in the lower shear layer originating from that
on the upper and rear surface prevails, as shown in Fig. 15b
indicated by the arrow with a hollow head near z = 0, or as
shown in Fig. 20b. Resultantly, it can be drawn a conclusion
that the vertical vorticity in the upper or lower shear layer
actually originates from that on the rear and lower or upper
surface, respectively.

3.3.3 In the second stage of FDW

In the second stage of FDW, by presenting a whole cycle of
(pure) mode A, the analysis of the origin of ωx in the shear
layers is then performed as follows, considering special sym-
metry of surface vorticity mentioned above. As stated in the
above analysis, the problem of origin of ωx always exists in
the shedding mode A. As shown in Figs. 21a or 22a, it is
theoretically confirmed based on the VIVor theory and the
first sign law [19] that +|ωx | in “VorX0_D” or −|ωx | in
“VorX0_U” is actually induced by −|ωy | on the lower or
upper and rear surface, respectively, as shown in Figs. 21b
or 22b. Interestingly, this new mechanism, referred as to
the vortex-induced vortex mechanism, is very similar to that
observed inmodeA of a square cylinder [23]. It is also exam-
ined that “VorX0_D” initially appears at an earlier time TS
(as shown in Fig. 4) between T0 and T1, while “VorX0_U” at
TE ∈ (T2, T3), e.g. 871 < TS < 871.5 here. Consequently,
the following formation process of +|ωx | in the lower shear
layer near z = 0 is obtained:
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Fig. 20 Colorful contours of a ωx and b ωy at z = 0.5, t = 560.5 (FDW-1, T0) and Re = 200 (same descriptions as Fig. 10). In b, the arrow with
a hollow head denotes ωy in the lower shear layer actually originated from that on the upper and rear surface

Fig. 21 Colorful contours of a ωx and b ωy at z = 0.6, t = 872 (FDW-2, T1) and Re = 200 (same descriptions as Fig. 10)

Fig. 22 Colorful contours of a ωx and b ωy at z = 0.6, t = 980 (FDW-2, T3) and Re = 200 (same descriptions as Fig. 10)

1. +|ωx | of “VorX0_D” is firstly induced by −|ωy | on the
lower and rear surface at t = TS.

2. Then “VorX0_D” is increased when time proceeds in a
half-period (TS, TE), as shown in Figs. 14a or 17a and
21a.

3. At t = TE, “VorX0_D” grows into “VorX1_D”, as shown
in Figs. 19a and 22a or Fig. 20a.

4. “VorX1_D” thus starts to gain the streamwise vorticity
not only induced by −|ωy | stretched from that on the
upper and rear surface, but also generated on the lower
and rear surface, as shown in Fig. 22a and b, in a subse-
quent half period (TE, TS).

5. Finally at t = TS, “VorX1_D” is totally shed with the
shedding spanwise vortex, and a new “VorX0_D” in the

lower shear layer is induced by the vortex-induced vortex
mechanism.

Correspondingly, the formation process of−|ωx | in the upper
shear layer is just opposite to that of +|ωx | above, i.e.,
“VorX0_U” induced in (TE, TS) and “VorX1_U” grown in
(TS, TE). Therefore, such process clearly illustrates that the
origin of streamwise vortices is firstly as a result of vortex-
induced vortex mechanism, and then the coupled mechanism
with the vorticity generated on the cylinder surface [21,22].
By the way, such vortex-induction mechanism can also
explain the generation of vertical vorticity in the upper shear
layer in Figs. 5b or 6b, i.e., ±|ωy | induced by ±|ωx | origi-
nating from those on the upper and rear surface, respectively.
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Table 4 Summary of formation and shedding process of streamwise
and vertical vorticities in the upper (y > 0) and lower (y < 0) shear
layers in a whole cycle of (pure) mode A, associated with alternately
shedding spanwise vortices with vorticity ±|ωz |, at Re = 200

Time

TS TS → T1 → T2 → TE

y > 0 VorX0_U �→ VorX1_U VorX1_U(In)

VorY0_U(Ap) VorY0_U(In)

−|ωz |(In) −|ωz |(In)
y < 0 VorX0_D(Ap), VorX1_D(Sh) VorX0_D(In), VorX1_D(Sh)

VorY0_D �→ VorY1_D VorY1_D(Sh)

+|ωz |(Sh) +|ωz |(Sh)
Time

TE TE → T3 → T4 → TS

y > 0 VorX0_U(Ap), VorX1_U(Sh) VorX0_U(In), VorX1_U(Sh)

VorY0_U �→ VorY1_U VorY1_U(Sh)

−|ωz |(Sh) −|ωz |(Sh)
y < 0 VorX0_D �→ VorX1_D VorX1_D(In)

VorY0_D(Ap) VorY0_D(In)

+|ωz |(In) +|ωz |(In)
“Ap”, “In” and “Sh” in brackets denote the vorticity initially appearing,
increasing and shed, respectively, and symbol �→ indicates the trans-
formed or evolved process

This mechanism is obviously different from previous mech-
anisms occurring in the shear layers and near wake, e.g. the
deformation of primary vortices due to an elliptic instability
of the shedding primary vortex cores and coupled effect of
Biot–Savart induction [2,4,5,14,24,25], the model of vortex
tongues in the vortex sheet [26], and an axial stretching of the
upstream perturbed vorticity, existing on the braids, due to
the strain field created by the spanwise vortices which evolve
under a shear instability of the wake [27].

The origin of ωy in the shear layers is also presented in
brief. Further verified by the arrow for vertical vorticity in the
upper shear layer “VorY0_U” in Fig. 21b as the origin of ωy

in the upper shear layer, i.e., “VorY1_U”, is only stretched
from that generated on the lower and rear surface during
a half-cycle (TS, TE). Similarly for vertical vorticity in the
lower shear layer “VorY0_D”, the origin of “VorY1_D” is
generated on the upper and rear surface in another half-cycle
(TE, TS) in Fig. 22b. This is exactly the same as that men-
tioned above.

3.4 Puremode A: redescription, formation and
whole shedding process

From the point of vorticity with specific sign, the (pure)
mode A can be redescribed. In the near wake, typically,
as shown in Fig. 17, according to the vortex structure of
mode A and the second sign law described above in the near

wake, we can define the 
− vortex with three components
and specific signs, (+|ωx |,+|ωy |,−|ωz |) at z = 1

4λ and
(−|ωx |,−|ωy |,−|ωz |) at z = 3

4λ, shed from the upper shear
layer and the 
+ vortex, (−|ωx |,+|ωy |,+|ωz |) at z = 1

4λ

and (+|ωx |,−|ωy |,+|ωz |) at z = 3
4λ, shed from the lower

shear layer, respectively, where λ is the spanwise wavelength
of 
-type vortex. As for the 
-type vortex itself, also iden-
tified and appeared in the mode A of a square cylinder [23],
the head line, —, denotes the spanwise vortex alternately
shed from the upper or lower shear layer, while two legs, | |,
denote the rib-like vortex tubes, associated with streamwise
and vertical vortex pairs with opposite signs. These tubes
are also alternately shed with the spanwise vortex and thus
stretched or elongated into the upstream vortex braid region
by the upstream spanwise vortex of opposite sign. Conse-
quently, the (pure) mode A can be redescribed by the 
−
and 
+ vortices alternately shed in phase across the span
when λ = λA, well consistent with that in a previous work
[28].

On the basis of the above analysis, especially the origin
of ωx and ωy in the shear layers, the formation and shedding
process of (pure) mode A in a whole cycle can be briefly
described in Table 4. This clearly demonstrates that ωx and
ωy on the same side of the shear layer initially appear out of
phase, but are shed in-phase along the time. The formation
process, before shedding, of streamwise vorticity of one sign
experiences a whole cycle, while the formation or shedding
process of vertical vorticity of one sign just lasts a half-period.

3.5 Effect of Reynolds number on sign relationships
at Re =190, 195 and 210

The effect of Reynolds number on vorticity sign relationships
is briefly presented here. Typically, as shown in Figs. 23 and
24 at Re = 190, Figs. 25 and 26 at Re = 195 andFigs. 27 and
28 at Re = 210, spacial distributions of three components of
dominant vorticity with specific signs are qualitatively con-
sistent with those at Re = 200. It is confirmed that two sign
laws are valid mainly on the front surface, in the shear layers,
and theoretically in the near wake. Moreover, the physical
mechanism of generation of ωx and ωy in the shear layers
is also well explained by the above vortex-induced vortex
mechanism at Re = 200. Therefore, as for (pure) mode A,
two sign laws and physical origin of ωx and ωy , as well as
the whole formation-shedding process, are irrelevant to the
Reynolds number.

3.6 Effect of spanwise grid size,1z = 0.05, on
vortex evolution

In present context, the effect of spanwise grid size, �z =
0.05, at Re = 200 on the evolution of vortex and its sign is
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a b c d e f

Fig. 23 At Re = 190 and t = 973 (T2), iso-surfaces of a ωx = ±0.02, b ωy = ±0.02 and c ωz = ±0.5, and contours of d ωx , e ωy and f ωz on
surfaces (same descriptions as Fig. 5)

Fig. 24 Colorful contours of a ωx and b ωy at z = 0.8, t = 973 (T2) and Re = 190 (same descriptions of Fig. 10)

a b c d e f

Fig. 25 At Re = 195 and t = 919 (T2), iso-surfaces of a ωx = ±0.3, b ωy = ±0.2 and c ωz = ±0.6, and contours of d ωx , e ωy and f ωz on
surfaces (same descriptions as Fig. 5)

Fig. 26 Colorful contours of a ωx at z = 0.6 and b ωy at z = 1.2, at t = 973 (T2) and Re = 195 (same descriptions as Fig. 10)

a b c d e f

Fig. 27 At Re = 210 and t = 1415 (T2), iso-surfaces of a ωx = ±0.3, b ωy = ±0.2 and c ωz = ±0.6, and contours of d ωx , e ωy and f ωz on
surfaces (same descriptions as Fig. 5)
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Fig. 28 Colorful contours of a ωx at z = 0.8 and b ωy at z = 1.2, at t = 1415 (T2) and Re = 210 (same descriptions as Fig. 10)
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Fig. 29 When �z = 0.05, time histories of CD and CL for (pure) mode A at Re = 200, typically a the computational transition, t ∈ (0, 60), with
a small window at t < 0.8, b the initial stage, t ∈ (60, 230), and the fully developed wake, t > 230

a b c d e f

Fig. 30 When �z = 0.05, at Re = 200 and t = 918 (T2), iso-surfaces of a ωx = ±0.3, b ωy = ±0.2 and c ωz = ±0.6, and contours of d ωx ,
e ωy and f ωz on surfaces (same descriptions as Fig. 5)

Fig. 31 When �z = 0.05, colorful contours of a ωx and b ωy at z = 0.8, t = 918 (T2) and Re = 200 (same descriptions as Fig. 10)

also obtained. As shown in Fig. 29, it is shown that the time
histories of fluid forces are qualitatively consistent with those
when �z = 0.1. The main difference is the time and period
of every stage quantitatively. For example, the whole com-
putational transition ends at t = 60, while the period of IS-1
from 60 to 65 is greatly reduced, almost a whole shedding
period. In FDW-2 when t > 400, we have CD = 1.2552,
C ′
L = 0.3569, and St = 0.1804 with δ f = 1.7× 10−3, well

consistent with those when�z = 0.1. However, typically, as
shown in Fig. 30 at t = 918 (T2), sign relationships still agree
well with those at�z = 0.1, as well as the physical origin of
ωx andωy as shown in Fig. 31. Consequently, this means that
the smaller spanwise grid size has also no qualitative effect
on the evolution of vorticity and its sign, particularly for the
physical origin of ωx and ωy in the shear layers.

123



1148 L.M. Lin, Z.R. Tan

4 Conclusions

The first three-dimensional wake instability, i.e., (pure)mode
A, without the interference of large-scale vortex dislocation,
are investigated.Direct numerical simulation for theflowpast
a circular cylinder is performed at a typical Reynolds number
of 200 with the spanwise length equal to the most unstable
instability wavelength λA ≈ 4. The whole spatio-temporal
evolution of vorticity is firstly presented in detail. Three
objects are mainly concerned, i.e., the appearance of addi-
tional components of vorticity, the sign relationships among
three vorticity components and the key effect of vertical vor-
ticity on the origin of streamwise and vertical vortices.

Through the analysis of time histories of drag and lift coef-
ficients, different flow stages with distinguishing features
of fluid forces are identified, mainly including the compu-
tational transition, the initial stage and the fully developed
wake. Particularly, in the computational transition, the wake
flow is mainly evolved from the initial still flow into 2-D
spanwise vortices alternately shed.As for the initial stage, the
three-dimensionality in the shedding spanwise vortices with
additional components of vorticity appears and is gradually
intensified, associated with the basic characteristics of mode
A appearing in the fully developed wake. The power spectra
analysis of lift coefficient by the Morlet wavelet also con-
firms the above process with the vortex-shedding frequency
varied from the basic frequency f0 in the 2-D wake flow to
the frequency f1 in the fully developed wake.

Generally, (pure) mode A with specific vorticity and its
sign distributed in the near wake are successfully obtained in
present computations. From the point of the specific signs of
vorticity, modeA can be described by the streamwise vortici-
ties with opposite signs in the staggered arrangement and the
vertical vortices with the same sign parallel to each other
along the streamwise direction between two neighboring
vortex braids associated with alternately shedding spanwise
vortices with opposite signs. From the point of evolution of
Fouriermode, the Fouriermode ofn = 1withwavelengths of
modeA is dominant in thewhole flow regime after the second
stage of computational transition. Particularly, other Fourier
modes appear, such as n = 4 only appearing in the sec-
ond stage of computational transition, and sometimes n = 2
mainly existing on cylinder surfaces from the second initial
stage.

The spatio-temporal evolution of vorticity in mode A
shows that additional vorticities appear almost throughout
thewhole computational time. In general along the time, they
firstly appear much earlier than those in the initial stage and
are gradually enhanced into a certain level in the fully devel-
opedwake. In spacial distribution, these additional vorticities
initially appear on cylinder surfaces due to the intrinsic 3-D
instability, which confirms that three-dimensionality of the
present flow firstly occurs near solid walls, instead of the

shear layers or near wake. However, as illustrated by iso-
surfaces of spanwise vorticity, these additional vorticities
with magnitudes less than about 0.1 are too weak to dis-
turb almost 2-D wake at early stage. Once they are increased
up to about 0.1–0.2, obviously wavy undulation along the
spanwise direction in the shedding spanwise vortices and the
shear layers is observed.

Two types of symmetry of surface vorticity (except the
near wake center y = 0) at same spanwise position are dis-
covered in different stages. The first symmetry appeared in
the third sub-stage of computational transition shows signs
ofωx on the upper and lower surfaces are opposite, as well as
signs of ωy on the front and rear surfaces. The second sym-
metry existing mainly in the fully developed wake indicates
that ωx has a single sign, but the sign of ωy is symmetrical
about the pipe center, when only the main Fourier mode of
n = 1 is considered.

Based on careful comparisons among signs of three com-
ponents of vorticity distributed in three sub-regions, i.e., the
front surface of cylinder R-I, the shear layers R-II and near
wake R-III at different times, two sign laws are summarized
in present (pure)modeA for the flowpast the straight circular
cylinder. The first sign law shows the intrinsic relationship
between ωx and ωy , precisely in region R-I and dominantly
in regions R-II and R-III, written as

sgn(ωx · ωy) =
{−1, if y < 0,
1, if y > 0.

(7)

The second sign law indicates the sign relationship between
additional vorticities and spanwise vorticity, also exactly in
R-I, dominantly in R-II and theoretically in R-III, written as

sgn(ωx · ωy · ωz) = −1. (8)

These two sign laws are irrelevant to Fourier mode or span-
wise wavelength of instability and flow stages, even in the
computational transition or the initial stage. Furthermore,
they are also theoretically verified by the theory of vortex-
induced vortex for the flow past a bluff body under the
geometric disturbance, particularly adopting results in the
downstream region [19]. In addition, based on the second
sign law above, (pure) mode A can be described by the 
−
and 
+ vortices with specific combinations of three compo-
nents of vorticity alternately shed in phase across the span
when λ = λA.

Furthermore, the effect of vertical vorticity in the present
wake flow plays a key role. It is almost ignored and less
reported in previous literature. The most important effect
reveals the physical mechanism responsible for the origin
of streamwise vortices in mode A. In the first half-period,
the streamwise vorticity on one side of the shear layer is
initially induced by the vertical vorticity on the same side and
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rear surface through the vortex-induced vortex mechanism.
Then in the second half-period, the coupled mechanism with
the vorticity generated on solid walls is activated during the
intensification of streamwise vorticity until the streamwise
vortex is formed and shedwith the shedding spanwise vortex.
Meanwhile, the vertical vorticity in the upper or lower shear
layer is always originated from that on the lower or upper
and rear surface, respectively. Therefore, during the whole
shedding cycle, the streamwise and vertical components of
vorticity on the same side of shear layer initially appear out
of phase but shed in phase along the time, as a new inherent
feature found out in (pure) mode A.

Additionally, at different Reynolds numbers in the (pure)
mode A, such as Re = 190, 195 and 210, the above sign laws
and physical origin of streamwise and vertical vorticities still
prevail. It is also confirmed that the effect of smaller grid
size (�z = 0.05) has no effect on these physical features
qualitatively.

In the future, as subsequent parts of study, the spatio-
temporal evolutions of vorticity in (pure) mode B and large-
scale vortexdislocationwill be investigated, alsomainly from
present three aspects. Moreover, the effect of different span-
wise wavelength of (pure) mode A on present relationships
of vorticity sign could also be studied through present DNS.
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