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A B S T R A C T

The oxide/oxide ceramic matrix composite exhibits superior mechanical properties in high temperature en-
vironment. However, complex nonlinear behavior is not clarified for high performance applications. The present
work developed an elastoplastic constitutive model considering variations of hardening behavior over the stress
states by introducing a novel loading function. The model can account for heterogeneous initial yield and
complex hardening behavior accurately and was verified from experiments under tension and compression
conditions with various off-axis angles. The computational results agree with stress-strain responses containing
softening up to failure under arbitrary in-plane loading conditions.

1. Introduction

On account of the superior performance of high temperature sta-
bility, high specific strength and stiffness, the ceramic material is able
to be used under extreme environmental conditions, but limited by its
brittleness [1–4]. The ceramic matrix composites (CMC) improve the
mechanical property by overcoming the inherent brittleness and found
applications in important hot structures, such as wing leading edges of
re-entry vehicles, nose caps etc. [5–7]. CMC will find increasing ap-
plications in aerospace propulsion components owing to the increasing
need for lightweight structures. With further increasing operation
temperature, the composite becomes more important for new genera-
tion of aero engines and is perhaps the sole material candidate for
service temperature higher than 1200 °C [8]. Oxide/oxide ceramic
matrix composites exhibit lower maximum application temperature
than SiC/SiC composites, but are much easier for fabrication, less ex-
pensive and can additionally provide high resistance against oxidation
and corrosion than other non-oxide ceramic matrix composites [9–11].
Considering the wide application prospects of the oxide/oxide ceramic
matrix composite, it is imperative to study mechanical characterization
of CMC.

Heterogeneity and quasi-brittleness are characteristic features of
oxide/oxide CMC [12]. The material exhibits linear mechanical re-
sponse when loading in the fiber directions, however inelastic de-
formations occur at a much lower loading level under off-axis tension or
compression conditions [13,14]. The material behavior is extremely

sensitive to the loading direction. Thermo-mechanical loads lead CMC
to very different failure mechanisms and need detailed understanding
of the mechanical behavior as well as damage evolution [15,16]. Great
attentions have been paid to the complex nonlinear phenomena of
CMC. The microstructure, such as fiber reinforcement, induces het-
erogeneous inelastic behavior, distinct deformations and failure me-
chanisms [17,18]. Additionally the material reveals significantly dif-
ferent compressive yield behavior from the tension state [14,19,20].
The complex material property makes conventional plasticity in-
efficient even inapplicable in analysis of the composite structures.

In the past decades, different constitutive models for CMC were
proposed including micro/meso-scale models and macro-scale models.
In the micro/meso-scale models, the properties for each composite
component as well as interactions are considered, elastic properties
[21], stress-strain response [22–24], damage process and failure me-
chanism [25–27] could be simulated based on these models. However it
is difficult to determine the parameters in these models and to establish
relationships between the macroscopic and microscopic mechanical
behavior which limits the applications of micro/meso-scale models.
Thus, the composites are considered to be homogeneous and the in-
ternal mechanisms of the nonlinear behaviors are out of consideration,
macro-scale linear elastic models are still widely used to predict the
mechanical response in general loading conditions due to the simplicity
and usability.

As one of phenomenological constitutive models, anisotropic plas-
ticity was widely used to describe the nonlinear behavior of composites
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[28,29] for monotonic loading conditions. The yield surface is essential
to establish a plasticity constitutive model. The Hill-type yield criterion
was adopted in these models. a one-parameter yield function was de-
veloped for unidirectional composite by Sun and Chen [28] which was
valid for describing the nonlinear behaviors of unidirectional compo-
site. This concept was extended to study woven composites in three-
dimensional conditions [29]. The nonlinear behaviors under tension
conditions can be predicted accurately based on these models. How-
ever, fiber reinforced composites exhibit heterogeneous orientation-
dependent mechanical responses, including the initial yield behavior
under tension and compression loading [18], the tension and com-
pression asymmetry, which cannot be considered in these models ac-
curately by the yield function in the quadratic form of the stress com-
ponent.

In order to describe the asymmetric plastic behavior in tension and
compression stress state, the hydrostatic pressure is introduced into the
yield function [30,31]. Vyas et al. [32] proposed a three-dimensional
plasticity-based constitutive model for unidirectional plies. The yield
criterion is hydrostatically sensitive and can predict the mechanical
behaviors in the fiber direction accurately. However it should be noted
that the normal stress along fiber directions influences the shape of the
yield surface in multi-axial loading conditions, which was neglected in
Vyas’ model. In plastic deformation of composites including the oxide/
oxide CMC, the strain softening occurs [33,34]. During the gradually
softening process of the composite, the anisotropy of the material be-
come more significant. The softening behaviors are rarely discussed in
the composite mechanics community.

In conventional plasticity for metals, the plastic strain hardening is
considered to be unique which indicates that the hardening rule of the
material is independent of the loading configuration [35–37]. This as-
sumption is trivial for homogeneous metals, but not accurate for com-
posites. Introducing a suitable mapping function for the hardening rule
under arbitrary loading conditions becomes the major research task in
the composite plasticity. Ogi [38] found that the ratio of plastic strains
in different material directions varies during the loading process and
proposed a plastic model to explain the phenomenon. However the
isotropic hardening hypothesis was still adopted in the Ogi’s model
[38,39]. In the Vyas’ model [32], a kinematic hardening law was
adopted in place of the isotropic hardening law by introducing the
backstress into the yield function, nevertheless it is difficult to de-
termine the evolution of the backstress for the oxide/oxide CMC from
common uniaxial tests because of the brittleness of the material in the
fiber direction. The kinematic hardening law can additionally not de-
scribe changes of the yield surface for various loading paths. Thus, a
further study of the anisotropic hardening modeling of the oxide/oxide
CMC is necessary to relate the heterogeneous material behavior to
different loads.

In the present work, an elastoplastic constitutive model is in-
troduced to consider unilateral effects and anisotropic hardening be-
haviors in a 2D woven oxide/oxide ceramic matrix composite. The yield

surface is assumed to be independent of loading configuration and a
loading-angel-dependent hardening rule is adopted to describe the or-
ientation-dependent inelastic behavior of the CMC material. The new
anisotropic plastic constitutive model can describe the overall stress-
strain response, including hardening and softening depending on
loading angles. Different off-axis tension/compression tests as well as
by a center-holed tensile panel confirm reasonable accuracy of the
model.

2. Materials and experiments

2.1. Specimens

In the present work a 2D woven oxide/oxide ceramic matrix com-
posite plate is investigated. The plate consists of 20 sheets of Nextel™
610 fiber fabrics, formed by the matrix of Al2O3-SiO2-ZrO2 [9]. The
textile sheets are interlaced by two sets of the fiber ply at right angle,
the longitudinal fiber ply (the warp) and the lateral fiber ply (the weft).
A fabric sheet is usually woven on a loom, a device that holds the warp
fiber plies in place while weft pies are woven through them. The mi-
crostructure of the material can be learnt from the water jet cutting
surface in Fig. 1. The specimen surface after water-jet cutting has little
visible damage, as shown in the figure. The surface reveals clear frac-
ture ends of the fibers as well as the matrix particles, since the material
was broken by an extremely high force. The material with a raw density
of 2.9 g/cm3 contains a total porosity of 25 vol% to 35 vol%. The fiber
volume content of the composite is 35 vol% to 45 vol%. That means, the
matrix is porous with more than 50% pores.

The maximum application temperature of the oxide/oxide ceramic
matrix composite is about 1200 °C, a higher temperature can cause
obvious mechanical performance degradations, as studied in [9]. Due to
the strong bending deformations in weaving, the warp is generally more
damaged than the weft. The macroscopic behavior of a sheet is ortho-
gonal with a higher stiffness in the weft direction. The ceramic matrix
composite plate is plied up by 20 sheets which are rotated 90° each
other, so that the plate possesses the similar stiffness in both 0° and 90°
direction. In the present work, the longitudinal and lateral directions
are defined as x axis and y axis, respectively. 0° specimens are on the x
axis and 90° specimens are on the y axis.

The initial material plate is 2.8 mm thick. The dog-bone-shaped
specimen was designed for tension tests and the square specimen was
used in compression tests, as shown in Fig. 2. The compressive test was
performed with help of a frock clamp to prevent buckling. Both uniaxial
on-axis (0°, 90°) and off-axis (30°, 45°, 60°) specimens were fabricated
and tested under monotonic tension and compression loadings to study
the in-plane mechanical behavior.

Tension and compression specimens with off-axis angles 0°, 30°, 45°,
60° were tested under monotonic loading conditions, with at least two
specimens for each loading condition, as shown in Fig. 3. As oxide/
oxide ceramic matrix composites are weak matrix composites because

Fig. 1. Microstructure of the ceramic matrix composite. (a) The water jet cutting surface. Micro-voids are from manufacturing. (b) The ceramic fibers on the cutting
surface. (c) The porous matrix consists of ceramic particles of 50 nm. The matrix porosity reaches ca. 50 vol%.
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of the high porosity in the matrix, the tensile strength of the material is
mainly dominated by fibers [24]. As fibers are laying along particular
directions (0° and 90°), the loading direction has great influences on the
mechanical properties of the material.

Two strain gages were implemented to measure the strains along x
axis and y axis, all the experiments are conducted on an MTS servo-
hydraulic test machine under displacement control at room tempera-
ture. The loading speed of 0.001mm/s ensures a quasi-static loading
process.

In the present work the shear modulus of the material was evaluated
from a 45° off-axis tensile test, in accordance with the ASTM standard D
3518 [40]. The axial strain εx and the transverse strain εy were mea-
sured by a strain gage rosette. According to [40], the shear modulus G12
can be obtained from

=
−

G σ
ε ε2( )

,x

x y
12

(1)

where σx notes the tensile stress, and =σx
F
A , where A is the cross-sec-

tional area in tensile direction of the specimen.

2.2. Experimental results

Based on the experimental tests, macroscopic mechanical behaviors
of the woven ceramic matrix composite were studied under in-plane on-
axis and off-axis tensile loading conditions. The stress-strain curves of
monotonic tension for different off-axis angle specimens and the pri-
mary mechanical properties of the woven oxide/oxide ceramic matrix
composite in uniaxial loadings were shown in Fig. 4 for both tension
and compression. The characteristic values from the tests are,

furthermore, summarized in Table 1, depending on the loading angle θ.
Obviously, the values varying with loading angle are not characteristic
for the material and have to be correlated with a material representa-
tion.

In the figure the material does not show inelastic behavior in the on-
axis direction 0° and is essentially linearly elastic under both tension
and compression till failure. The stress-strain relationship becomes se-
vere elastic-plastic as soon as the loading is off-axis and the material
behaves typical plastic hardening under tension. Before failure the
material displays significant softening.

From the stress-strain response of different off-axis angle specimens
shown in Fig. 4, it can be observed that the stress-strain curves for the
off-axis specimens can be divided into three regimes before failure oc-
curs: (1) The loading state is within the elastic region, that is, the stress-
strain response of the material is nearly linear and the irreversible de-
formation is zero. (2) The stress state reaches the yield stress of the
materials in this loading direction, that is, the stress-strain response
comes into the second stage. In this stage, as the material is a weak
matrix composite, micro cracks initiate and propagate in the matrix.
Irreversible deformations begin to accumulate. The material demon-
strates significant plastic deformations, depending on the loading di-
rection. (3) In the third regime, the material is damaged by cracking in
the matrix and delamination between the matrix and the fibre. The
mechanical behavior shows softening and the stress decreases with
increasing strain [13].

From the figure the mechanical behavior depends on the loading
angle substantially. Whereas the fibre directions are elastic till fracture,
the curve of 60° shows large plastic deformations with very low yield
stress. The material stiffness from tension tests varies with the loading
angle and implies significant difference in elastic modulus of different
directions. The different elastic moduli in 0° and 90° directions mean
asymmetric micro-structures in the longitudinal and lateral plies. As the
fibre plies in the 90° direction are much more inflected than the fibers
in 0° direction because of the weaving technique, which leads to re-
duction of the effective fibre volume fraction in 90° direction, the
elastic moduli in the 90° direction is small than that in the 0° direction.
The material becomes weaker in the off-axis direction and becomes
typically elastic–plastic since the weak matrix takes part in resistance
against applied loads.

Elastic modulus under compression is slightly smaller than that
under tension which is related to the complex microstructure [13] and
the material comes into yield at a higher stress level under compression.
In Table 1, experimental results are summarized for different loading
angles θ under both tension and compression.

3. Constitutive model

3.1. Plasticity framework

In this section, an elastoplastic constitutive model is proposed to
describe the macroscopic nonlinear behavior of the woven oxide/oxide
ceramic matrix composite, including asymmetric tension and com-
pression behavior under multi-axial loading conditions. In the frame-
work of elastic–plastic mechanics, the total strain increment can be
decomposed into two parts, as

= +ε ε εd d d .e p (2)

Above the plastic part dεp is discussed within the framework of plasti-
city. The elastic strain dεe is calculated based on elasticity theory of
composites, as

=ε σCd : d ,e (3)

where σ represents Cauchy stress tensor and C stands for the com-
pliance matrix of the composite. For the orthotropic in-plane material,
the equation can be written as

Fig. 2. Geometry of the uniaxial tension and compression specimens.

Fig. 3. The stress states of on-axis and off-axis specimens (a) on-axis monotonic
tensile specimens (b) off-axis monotonic tensile specimens.
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Above E11 and E22 represent elastic modulus in the principal directions,
i.e. the longitudinal x and the lateral y-direction, respectively. G12 re-
presents the in-plane shear modulus, ν21 represents Poisson’s ratio
measured during the tension experiment in x direction. Because of the
asymmetry in the tension and compression material behavior, elastic
modulus can be expressed as

= ⎧
⎨⎩

>
⩽

E
E σ
E σ

0,
0.11

11
t

11

11
c

11 (5)

The elastic modulus in Direction 2 E22 can be defined in the same way.
Poisson ratio ν21 seems sensitive to the stress state. The material con-
traction under tension is significantly larger than that under compres-
sion, as shown in Table 2. It can be expressed as a function of the mean
stress, as

= ⎧
⎨⎩

>
⩽

ν
ν σ
ν σ

0,
0,

m

m
21

21
t

21
c

(6)

where =σ σ /3m ii . The stiffness matrix of the material is defined through
S= C−1. The values in Table 2 are representative for the material’s
elastic property in the principal directions and can be considered as the
material constants for the orthogonal composite.

As the oxide/oxide matrix material is considered to be orthotropic,
the orthotropic moduli of the material can be obtained from the linear
segment of on-axis (0/90°) and off-axis (30/45/60°) tension curves. E11
for tension and compression conditions is equal to the slope of the
linear segment for the 0° tension and compression tests listed in Table 1
and the poisson ratio is calculated from the longitudinal strain and
transverse strain measured in the 0° tests. The shear modulus G12 is
calculated from Eq. (1) according to the longitudinal strain and trans-
verse strain measured in the 45° tests. Furthermore, based on the
elasticity theory, the relationship between the elastic modulus Eθ in the
θ direction and the orthotropic moduli can be expressed as

⎜ ⎟= + − ⎛
⎝

− ⎞
⎠E E

θ
E

θ
G

ν
E

θ θ1 1 cos 1 sin 1 2 sin cos ,
θ 11

4

22

4

12

21

11

2 2

(7)

where θ means the off-axis angle. Should the off-axis modulus be
measured, the orthotropic moduli can be calculated by solving the
equation set.

The elastic stress-strain relationship is defined in the principal ma-
terial coordinate system. A coordinate transformation matrix is defined
to obtain the elastic stiffness matrix in the off-axis direction, which is
defined as

=
⎡

⎣
⎢
⎢

−
− −

⎤

⎦
⎥
⎥

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ
T

cos sin 2sin cos
sin cos 2sin cos

sin cos sin cos cos sin
,

2 2

2 2

2 2 (8)

where θ denotes the off-axis angle. The stiffness matrix under uniaxial
loading conditions can be calculated from Sθ=T−1S(T−1)T.

Sun and Chen [28] proposed a plastic potential function for uni-
directional fiber reinforced composites, which is widely used in
studying plastic behavior of composites, as

= +f σ a σ1
2

,22
2

66 12
2

(9)

where the reinforced fibers are in the 1-coordinate. The yield function
supposes there are no plastic strains in the fiber directions of composite,
so that only one normal stress component affects yield behavior, which
cannot describe the biaxial tension tests results of woven composites, as
shown in Fig. 4.

In the present work the potential function in Eq. (9) is generalized to
the woven composite with the warp and the weft principal directions,
as

Fig. 4. Stress-strain curves depending on the off-axis loading angle. (a) Tension tests. (b) Compression tests.

Table 1
Mechanical properties of the oxide/oxide ceramic matrix composite in different
directions.

θ Elastic
modulus σθ
(GPa)

Yield
stress
σyθ

(MPa)

Fracture
stress σfθ

(MPa)

Failure
strain εfθ

(%)

Ultimate
stress σuθ
(MPa)

0°-tension 120.43 – 254.26 0.21 254.26
30°-tension 89.30 56.72 111.58 0.32 118.80
45°-tension 75.41 48.67 103.43 0.44 110.54
60°-tension 69.01 42.43 84.12 0.71 99.82
90°-tension 72.35 – 220.51 0.31 220.51
0°-compression 112.91 – 86.62 0.094 86.62
30°-compression 89.01 79.47 95.82 0.25 100.61
45°-compression 57.34 62.39 92.24 0.45 97.54

Table 2
Orthotropic moduli of the CMC.

E11 (GPa) E22 (MPa) ν21 G12 (MPa)

Tension 120.04 67.16 0.05 32.59
Compression 112.79 56.72 0.02 32.87
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= + + + +f F σ μσ σ k σ σ3[ ( ) 2 ] ( )11 22
2

12
2

11 22 (10)

with three model parameters, F, μ and k, related to the anisotropy of the
composite and should be determined from experimental data. The stress
components above are defined in the material principal coordinate
system. The effective stress and the yield surface can be defined as

=f σ ,y (11)

where yield stress σy characterizes material resistance against plastic
deformation and the hardening law to describe the evolution of sub-
sequent yield stress.

For the associated plasticity the effective stress is assumed to satisfy
=σ f¯ . The plastic strain can be obtained from

=
∂
∂

ε λ
f
σ

d d ,ij
ij

p

(12)

in which dλ is a scalar proportionality coefficient which determines the
increment of the plastic flow.

3.2. Plastic hardening

According to the plasticity theory, the increment of the plastic work
density is expressed as

= =W σ ε σ εd ¯ d¯ d .ij ijp p
p

(13)

Above σ̄ is the effective stress calculated by the yield function, εd¯p is the
increment of the equivalent plastic strain, σij is the component of the
stress tensor and d εij

p is the increment of the plastic strain tensor. The
Einstein’s summation convention is used in the present work.

Substituting the flow rule, Eq. (12), into Eq. (13) follows

=ε λd¯ d .p (14)

The equivalent plastic strain increment is equal to the proportionality
factor in the flow rule. To establish the constitutive description of the
composite, the stress-strain relation has to be correlated with tension
and compression tests, which define relation between the effective
stress and equivalent plastic strain,

=σ κ ε(¯ )y
p (15)

with ε̄p as the equivalent plastic strain, which is a material state variable
and records the loading history. The correlation between the plastic
strain and yield depends on loading direction. The power law is widely
used to describe the hardening behavior of the composite materials and
cannot not describe the softening. Hence the hardening function can be
re-written as

= − 〈 − 〉 +κ ε A ε m ε ε σ(¯ ) (¯ ) exp( ¯ )n t
p p p p

0 0 (16)

where 〈 〉· denotes the MacAuley brackets defined as 〈 〉 = +x x x( | |)/2.
Above σ0 describes initial yield stress of the material and is assumed to
be independent of the loading configuration. The orientation-depen-
dence of the initial yielding is expressed in the potential function, Eq.
(10). εP

0 characterizes softening in the stress-strain relationship. A and m
stand for effects of loading orientation in plastic strain hardening. n and
t are constants to be determined from experimental data.

In most published constitutive models the relationship between the
effective stress and equivalent plastic strain is assumed to be in-
dependent of the loading configuration, that is, the hardening function
is a function of equivalent plastic strain only [28,30,31]. Effects of the
off-axis loads are considered in the definition of the effective stress, Eq.
(10). It results in the experimental curves cannot directly be related in
the computational model. In the present work, the off-axis experimental
stress-strain curves are separated into initial yielding and plastic strain
hardening. The initial yield stress variation is considered in the effective
stress, whereas the plastic hardening is directly coupled with experi-
mental stress-strain curves to obtained more realistic approaches. That
is, the plastic hardening depends on both loading configuration and

plastic strain, which can be characterized by a dimensionless variable,

=ω σ
σ

| |
¯

.12
(17)

In the formulation the plastic hardening effects are expressed explicitly
in Eq. (16). Influences of the off-axis loads have to be integrated into
other parameters in Eq. (16) as functions of ω.

3.3. Representation of the off-axis loads

The experimental data of the off-axis tension and compression tests
are used to establish the representation of the off-axis behavior of the
material. According to the stress transformation, the stresses in the
principal material direction in uniaxial tension can be written as

=σ σ θcos ,θ11
2 (18)

=σ σ θsin ,θ22
2 (19)

= −σ σ θ θcos sin ,θ12 (20)

where σθ denotes the off-axis tensile stress. Substituting the stress
transformation into the effective stress σ̄ , follows

=σ σ h θ¯ ( ),θ (21)

where h θ( ) describes effects of the off-axis uniaxial tension, as

=

+ + +

h θ

σ F θ μ θ θ θ k

( )

sign( ) 3 (cos sin ) 6sin cos .θ
2 2 2 2 2 (22)

The equation above establishes relation between the effective stress and
the tensile stress in an off-axis tension test. In analogy to the derivation
of the stress representations, the strain transformation can be written as

= + −ε ε θ ε θ ε θ θd d cos d sin d cos sin .θ
p

11
p 2

22
p 2

12
p (23)

Substituting Eq. (21) into the equivalence of the plastic work, Eq. (13),
the equivalent plastic strain increment can be expressed as

=ε ε h θd¯ d / ( ).θp
p (24)

Under the proportional loading condition, the expression of the
equivalent plastic strain can further be written as

=ε ε h θ¯ / ( ).θ
p (25)

From an off-axis tensile test the stress measured, σθ, is expressed as a
function of the off-axis strain εθ

p, as

=σ κ ε( ),θ θ θ
p (26)

where κθ is the hardening function for the present off-axis angle.
Combining the results with Eq. (26) follows

=
=

σ κ ε h θ
κ ε h θ h θ

¯ ( ) ( )
(¯ ( )) ( ).

θ θ

θ

p

p (27)

Equation above denotes the formal stress-strain relationship, depending
on the off-axis angle. Due to the heterogeneity of the material behavior,
the effective stress is not uniquely determined by the equivalent plastic
strain alone, but the explicit dependence on the off-axis loading angle
cannot directly be derived.

In the present work, different tension tests with the off-axis angle θ
equal to 0°, 45°, 60° and 90° as well as compression tests with the off-
axis angle θ equal to 0°, 30°, 45° were performed to determine the
plastic hardening function κθ, depending on the off-axis angle θ.
Furthermore, the hardening function κ(ε̄p) can be identified. In analogy
to κ(ε̄p), the off-axis stress-strain curves can be approximated by the
expression as

= − 〈 − 〉 +σ A ε m ε ε σ( ) exp( ) ,θ θ θ
n

θ θ θ
t

θ
p p 0 0θ θ (28)

where A n t ε m, , , ,θ θ θ θ θ
0 and σθ

0 are the fitting parameters related to the
off-axis angle and can be determined from experimental data. The index
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θ represents the dependence on the off-axis angle. Comparing with Eq.
(16), the model parameters of the expression κ ε(¯ )p can be related to
fitting parameters, as

=
=
=
=

+A θ A θ h θ
m θ m θ h θ

ε ε θ h θ
σ σ θ h θ

( ) ( )[ ( )] ,
( ) ( ) ( ),

( )/ ( ),
( ) ( ).

θ
n

θ

θ

θ

1

0 0

0 0

The expressions above suggest that nθ and tθ are independent of θ. Fig. 5
shows σθ-εθ

p curves together with the fitting results of Eq. (28) for dif-
ferent off-axis loads. The identified fitting parameters are summarized
in Table 3, in which nθ=0.62 and =t 0.95θ . The initial yield stress σθ

0

depends on the loading angle and has to meet the constant yield stress
=σ 74.770 MPa.
Variations of the initial yield stress σθ

0 are shown in Fig. 6 in a polar
coordinate system. From the figure the yield stress reaches its maximum
in ca. 40°. The symmetry of the yield surface about 90° is reasonable for
the orthotropic composite. The asymmetric tension-compression ex-
plains the difference in material deformations, which is induced by the
sign function in Eq. (22).

The initial yield surface in Eq. (10) is similar to the 3D Drucker-
Prager model, the hydrostatic pressure influences on the yield behavior
of the ceramic matrix composite. The asymmetry of the yield surface
means that σ11 and σ22 have different influences on the material plastic
behavior. The yield surface also indicates that the shear stress σ12 may
possess great influences on plastic deformation of the material. The
parameters F, μ and k in the yield function can be determined, which
are independent of θ, as = = −F μ0.6144, 1.88172 and =k 0.18562.
Based on formulations above the orientation dependence of the stress-
strain tension can be considered accurately, as shown in Fig. 5. How-
ever, in the constitutive model effects of the off-axis angle in the −σ εθ θ

curves must be expressed by a loading state variable, such as ω.
According to Fig. 6, the initial yield stresses at 0° and 90° is not

infinite, that is, the material can come into plastic at 0° and 90°, but
with so strong hardening, that the whole stress-strain curve remains

linear. Such behavior is modeled in the constitutive model by
=ω σ σ| |/ ¯12 . For both on-axis loads =ω 0, A and m in the hardening law

go to infinity, which means that a tiny plastic strain increment causes
dramatic stress increments. Such postulate makes computations stable
and needs further experimental verifications.

Based numerical experiments, a quadratic function of ω1/ is in-
troduced to describe m and a linear function of ω1/ is used for A, as

= + = ⎛
⎝

+ ⎞
⎠

+A A
ω

A m m
ω

m m, .1
0

1
2

2

0 (29)

The interpolations are plotted in Fig. 7, together with the experimental
data.

The constitutive model has been implemented into the commercial
finite element code ABAQUS via the user defined material interface
UMAT. The present constitutive model based on the modified potential
function, Eq. (10), and the off-axis dependence is expressed in the
hardening rule, so that the radial return mapping algorithm can be
applied to finish the stress integration using the backward Euler
method. The correction of the off-axis angle is performed after in-
tegrating the increment step by updating ω.

4. Computational verifications

The constitutive model developed in the previous section is im-
plemented into the commercial finite element code ABAQUS and used
to compute the stress-strain curves of different off-axis specimens. Fig. 8
summarizes results of uniaxial tension and compression tests with
various off-axis angles 0°/15°/30°/60°/75°/90°. Both axial strain εx and
transverse strain εy are plotted in the figure. Symbols represent the test
data and curves are finite element computations. Additional computa-
tional results with 15° and 75° are provided although there are no
corresponding experiments available. The development of the stress-
strain curves seems to be reasonable.

The figures show that the nonlinearity of stress-strain decreases
with loading direction approaches fibre directions and the softening in
the stress-strain curve appears earlier, as demonstrated in the curves of

Fig. 5. The axial stress-plastic strain curves under different off-axis angles.

Table 3
Fitting parameters for different off-axis loads.

Aθ mθ εθ
0 σθ

0

30°-Tension 5876.51 306.70 0.00023 56.72
45°-Tension 3104.33 209.25 0.0005 48.67
60°-Tension 7946.78 414.64 0.00015 42.43
30°-Compression 2323.17 473.59 0.00025 79.47
45°-Compression 3712.11 355.23 0.00045 62.39

Fig. 6. The initial yield stress σθ
0 as a function the off-axis angles.

Fig. 7. The parameters A and m as functions of the off-axis variable ω.
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15° and 75°. The stress drops rapidly when the tensile/compression
strength is reached. It implies the brittle behavior of the material in the
fiber direction. The shear stress induces plastic deformations and re-
duces loading capacity into the material. The difference between 0° and
90° is related to difference of the warp from the lateral fiber woven
microstructure in the material. All experiments agree with computa-
tions reasonably. Computations give a reasonable prediction of the
heterogeneous mechanical behavior of the material.

To further verify the accuracy of the proposed constitutive model, a
holed specimen was tested under tensile loading to validate the pro-
posed model. The experiment was conducted under displacement con-
trol with a velocity of 0.001mm/s. Strains near the hole were measured
by a strain rosette, as shown in Fig. 9.

The tensile test was simulated by using the constitutive model de-
veloped in the previous section. The load vs. displacement curve in
Fig. 10 confirms agreement between the constitutive model prediction
and test results for the whole loading process. The softening load is
caught accurately which was predicted from the uniaxial tension.
Computation reveals that the maximum stress and strain around the
hole appear in the direction between 30° and 45°.

More computational results are plotted in Fig. 10, in which the
development of the strains in a critical position of the specimen are
illustrated. The strains grow with applied tensile displacement linearly
at beginning, since the material behaves elastically. As soon as the
material starts to be plastified, the shear strain increases more rapidly
than the normal strain, which implies that the material’s plastification
is driven by the shear stress. As the applied load approaches the max-
imum load, the material of the critical place begins to softening induced
by microstructural damage. In this stage, the strains increase over-
proportionally.

5. Conclusions

The oxide/oxide ceramic matrix composite possesses a novel high
temperature property. From experiments the material displayed

significant inelastic behavior related to plastic deformations as well as
material degradation. Under monotonic loading conditions, however,
the inelastic material property can be described by the plasticity uni-
formly, without introducing the damage as additional variables. In the
present work an anisotropic elastic–plastic constitutive model is de-
veloped and verified based on extensive on-axis and off-axis experi-
mental results for a woven ceramic matrix composite. The following
conclusions can be drawn:

• The constitutive equation developed in the present work decom-
poses the off-axis effects into initial yield and plastic hardening.
Whereas the angle dependence of the initial yield condition is
considered in the effective stress, the plastic hardening is directly
taken into account in formulation of the hardening rule. The latter is
related to the off-axis tensile test, which provides the possibility to
compare the hardening equation with experimental records directly.

• Effects of the off-axis loads are represented by the normalized shear
stress, as in the σ̄ - εd¯p diagram. In the present two-dimensional cases,
such formulation provides a simple correlation between the off-axis
load and the material’s principal direction. The model generates
accurate results.

• The flexible formulation of the hardening rule allows to consider
strain softening as well as other more complex mechanical behavior
during plastic loading. The experimental verification confirms effi-
cient convergence and high accuracy in computations.

• Introduction of the orientation-dependent hardening rule into the
constitutive model provides a direct strategy to construct aniso-
tropic plasticity for composites. However, this strategy is perhaps

Fig. 8. Predictions of the uniaxial tension and compression behavior of the CMC material.

Fig. 9. Schematic of open-hole specimen.

Fig. 10. Comparison of FEM calculation and experimental results.
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only efficient for 2D materials or thin plates and needs further
verifications based on more extensive experimental and computa-
tional investigations.
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