Modeling of atomistic scale shear failure of Ag/MgO interface with misfit dislocation network

X.Q. Fu, L.H. Liang, Y.G. Wei

Abstract

Metal/ceramic interfaces have broad applications and misfit dislocation network (MDN) is a prominent feature of the equilibrium metal/ceramic interfaces. As one main failure mode, interface shear failure is strongly affected by the motion of MDN. In this work, we investigate the equilibrium interface structure and shear failure of Ag/MgO interface via atomistic simulation method. Periodically distributed in-plane strain field caused by MDN and severe strain concentration at dislocation node regions are found by strain analysis. During interface shearing, these dislocation nodes act as strong pinning points to the gliding motion of MDN, which leads to bending of dislocation lines. Besides, energy analysis shows the interface shear stress is largely dependent on the variation of misfit dislocation energy. To understand interface shear failure under more complex conditions, we study the effect of model thickness and shear direction further. Due to transformation of nodal structure, the shear strength of thick model eventually decreases by almost a quarter; shear failure along the direction of Burgers vector is found to be energetically favored, with the lowest interface shear strength. This work reveals the crucial role of MDN in interface shear process, and the theoretical understanding gives some hints to metal/ceramic interface design.

1. Introduction

Metal/ceramic interfaces have been the focus of research for more than five decades, due to their critical importance in many advanced engineering applications such as micro/nano-electronics, superconductors, protective coatings, etc. [1–6]. In general, the macro-mechanical characters of metal/ceramic composites are intimately linked with the interfacial properties at the atomic level. Due to lattice mismatch and orientation relationship between the two constituent materials, misfit dislocation network (MDN) is a prominent feature of many metal/ceramic interfaces [7,8]. As an inherent defect of the interface, MDN has significant influence on the interface microstructure, interface adhesion and interface failure mechanism.

The existence of misfit dislocations has been widely confirmed by experimental studies [3,9–11]. Early high-resolution transmission electron microscopy (HRTEM) researches showed the misfit dislocations at Ag/MgO interface formed a square network with orientations along <110> directions [9,10]. Owing to the limitation of measurement accuracy, experimental results were influenced by many factors such as temperature and metal layer thickness. Recently, with the development of spherical aberration (Cs)-correlated HRTEM, more precise microstructure information about the equilibrium metal/ceramic interfaces can be obtained [3,11]. Whereas, experimental researches mainly focus on the static characteristics such as interface structure, adhesive energy, and the distribution of interfacial stress/strain field. It is still challenging to investigate the atomic configuration of misfit dislocation network as well as its motion in interface dynamics.

Theoretical studies have been carried out almost exclusively by employing the continuum theory of dislocations, which cannot describe the structure of misfit dislocation core [12–15]. Besides, the theoretical solution will be more complicated if considering the interaction between misfit dislocations at the interface [14]. Computer simulation techniques such as molecular static/dynamics (MS/MD) simulations turn out to be good alternatives for studying interface misfit dislocations. Based on the second-nearest-neighbor modified embedded atom potential [16], the deformation mechanisms of several metal/nitride and metal/carbide nanolaminates were explored [17,18]. For the widely existing metal/oxide interfaces, a series of modified Rahman-
Stillinger-Lemberg potentials (RSL2) has been successfully applied to study the structure of misfit dislocations at several metal/MgO and metal/Al2O3 interfaces [19,20]. However, researches on the motion of MDN at these metal/oxide interfaces are still scarce.

Both experimental and theoretical researches show that the effect of MDN on interface mechanical properties is manifold, such as strain hardening [17,18,21], pinning effect of the dislocation nodes [22,23], and local strain field caused by MDN [3,23]. The stress/strain concentration regions near the interface are “dangerous” regions, since stress-induced film cracking, buckling, or void nucleation typically occur there, which may lead to interface failure. Further, atomistic simulations reported thickness-dependent misfit dislocation energy and interface structure [24]. In-situ compression testing of CuN/Cu/Si(0 0 1) micro-pillars with 45° inclined interfaces also showed the average shear stress that initiated shear failure of the interfacial regions decreased with increasing metal interlayer thickness [23,25]. Then what is the shear failure mechanism of metal/ceramic interfaces containing MDN? Is the interfacial shear behavior affected by model thickness or shear direction?

In this work, we employ the atomistic simulation method to study the interface structure and shear mechanism of semi-coherent Ag/MgO interface with MDN. First, the interatomic potentials and interface model are introduced in Section 2. Second, the equilibrium interface structure is shown in Section 3. The residual strain field around the interface is analyzed in Section 3.1 and we calculate the interface energy and work of adhesion in Section 3.2. Third, results of interface shear are shown in Section 4. To be specific, interface traction-displacement relationship and relevant energy analysis are presented in Section 4.1 and Section 4.2; the effect of model thickness and shear direction are discussed in detail in Section 4.3 and Section 4.4. Finally, Section 5 gives a conclusion of this paper.

2. Interatomic potentials and interface model

2.1. Interatomic potentials

For Ag/MgO interface system, two kinds of interatomic potentials need to be given: interface potentials ΦAg−MgO, ΦAg−O and bulk potentials ΦAg−Ag, ΦMg−Mg, ΦAg−O, ΦMg−O. In our simulations, interface potentials were fit into the modified Rahman-Stillinger-Lemberg (RSL2) form [27]:

\[
\Phi_{\text{r}} = D_s e^{-(1+\frac{R}{2\lambda})} + \frac{a_1}{1 + e^{\beta(r-R)} - 1} + \frac{a_1}{1 + e^{\gamma(r-R)^2)} + \frac{a_1}{1 + e^{\delta(r-R)^3}}
\]

(1)

For bulk potentials, ΦAg−Ag was also in RSL2 form [27]. MgO is an ionic crystal and each of its three pair potentials ΦMg−Mg, ΦMg−O and ΦO−O contains both short-range interaction part and long-range Coulomb interaction part Q\text{el}/4πε0r. For Mg-Mg and O-O interaction, the short-range parts were taken as Morse form:

\[
\Phi_{\text{r}} = D_b e^{-(1+\frac{R}{2\lambda})} - 2e^{-\frac{R}{\lambda}}
\]

(2)

For Mg-O interaction, the short-range part was taken as “Exp-Repulsive” form:

\[
\Phi_{\text{r}} = D_b e^{-(1+\frac{R}{2\lambda})}
\]

(3)

It is not uncommon to utilize pair potentials to describe the atomic interactions across the interface [7,26]. In fact, these pair potentials, which were obtained from \textit{ab initio} adhesive energies, had proven to be able to efficiently reproduce the basic elastic and energetic properties of bulk materials, as well as the adhesive energies of metal/ceramic interfaces [19,20,27]. The specific potential parameters can be referred to Ref. [28].
successively by a short distance (0.003 Å) along x direction, and the energy of the mobile atoms was minimized after every loading step. During the interface shear process, the bottom boundary atoms were fixed and the top boundary atoms were allowed to move perpendicular to the interface. In this way, the boundary effect on dislocation motion is excluded.

In the present study Virial stress [32] was used for calculation of shear stress at the atomic level [33–35]. Note that the interface stress can be calculated by different methods, such as Virial stress, interface interaction force, and derivative of the total energy, which have been proven to be identical in our previous work [27]. Interface displacement \(\delta_i \) was defined as the relative displacement between interfacial Ag ML and MgO ML along the shear direction. Shear loading will also induce small interface normal separation, thus \(\delta_i \) as the normal displacement between interfacial Ag ML and MgO ML was calculated, too. Considering the Coulomb interactions, the potential cutoff was taken to be large (20 Å in this work) to comprise all electrostatic interactions for an atom, and Standard Ewald summation [36] was used to calculate long-range Coulomb interactions.

3. Equilibrium interface structure

3.1. Residual strain distribution around the interface

Due to the formation of misfit dislocations, non-uniform strains exist in both Ag and MgO near the interface. So we first analyzed the local strain field caused by MDN. Considering that atoms move mainly in the x-y plane during the interface shear process, in-plane strain is discussed here. Taking the unrelaxed atomic structure as the reference configuration, the in-plane mean atomic strain is calculated as \(\varepsilon = 0.5\delta_{xy} \), where \(i = x, y \). Fig. 2(a) and (b) show the strain distribution in the vicinity of the interface from three-dimensional and two-dimensional perspectives, respectively.

From Fig. 2(a) one can see that Ag is compressed (negative strain) while MgO is stretched (positive strain) at node regions. In the region between nodes, Ag experiences tensile strain while MgO is subjected to compressive strain. Compared with metal, the strain in oxide is much smaller. Besides, the obvious in-plane tensile and compressive deformation is distributed in a small region near the interface – up to the fifth atomic layer. Experimental researches on the geometrical misfit dislocation of Cu/MgO interface have shown similar strain fields around the dislocation cores [3]. Beyond the range of five atomic layers, much smaller local strain is induced periodically in bulk Ag and MgO – mainly in the elastically softer Ag – by the interfacial MDN. In fact, this reflects the transformation of in-plane tensile zone and compressive zone.

For a more detailed observation of the strain distribution parallel to the interface, contour plot of \(\varepsilon \) in the first Ag ML adjacent to Ag/MgO interface is drawn in Fig. 2(b). It shows that the strain distributes periodically on the interface, depending on the location of dislocation network. Large compressive strain concentration occurs at dislocation nodes, and atoms there are in high-energy, unstable states. Small tensile strain exists in the coherent regions that occupy most of the interface area. To characterize the degree of strain inhomogeneity near the interface, we define a strain inhomogeneity factor \(K \), which is the absolute value of the ratio of the in-plane atomic strain \(\varepsilon \) to the average strain in the whole metal slab \(\varepsilon_{\text{ave}} \) (\(K = \frac{|\varepsilon|}{\varepsilon_{\text{ave}}} \)). Based on the above analysis, \(K \) takes the maximum value at the node regions (\(K_{\text{max}} = 1163.0 \)). When system energy increases under external loadings, atoms there have the greatest possibility to transform to a more stable atomic structure.

It is worth noting that the amplitude of strain fluctuation within one atomic monolayer decreases rapidly with increasing distance away from the interface, and the maximum strain fluctuation is in the first Ag ML. Similarly, elasticity theory estimated the induced strain field at interface varies as \(h^{-3} \) for \(h \ll \lambda \) and as \(\text{hexp}(-h) \) for \(h > \lambda \) (\(h \) is the film thickness, \(\lambda \) is the period of interfacial dislocation network) in the vicinity of the dislocation core [37,38]. Although the residual strain is only distributed within a few nanometers of the interface, the complex atomic structure in this region, as well as the induced strain inhomogeneity, greatly influences the adhesion, mechanical strength and fracture behavior of metal/ceramic interfaces.

3.2. Interface energy and work of adhesion

Interface energy depends on both interface chemical components and atomic structure [39], and it reflects the stability of the interface. From the above relaxed interface structure, the equilibrium interface distance (\(d_{\text{int}} \)) and interface energy (\(\gamma_{\text{int}} \)) can be obtained. \(d_{\text{int}} \) is the average distance between interfacial Ag ML and MgO ML. \(\gamma_{\text{int}} \) is calculated as the superabundance energy relative to the bulk materials due to the existence of interface [40]:

\[
\gamma_{\text{int}} = \frac{1}{S} \left[\sum_{i=1}^{n_{\text{int}}} (E_{\text{Ag}}^i - E_{\text{Ag}}^0) + \sum_{i=1}^{n_{\text{int}}} (E_{\text{MgO}}^i - E_{\text{MgO}}^0) \right]
\]

(4)

where \(E_{\text{Ag}}^i \) and \(E_{\text{MgO}}^i \) are the energies of the \(i^{th} \) layer in the silver and magnesium slabs, \(E_{\text{Ag}}^0 \) and \(E_{\text{MgO}}^0 \) are the bulk energies of silver and magnesium, and \(n_{\text{int}} \) and \(n_{\text{b}} \) are the numbers of silver and magnesium monolayers in the interfacial region. Table 1 lists the calculated results. For comparison, the results of ideal Ag/MgO interface are also listed. It shows that the equilibrium interface distance of coherent interface is

![Fig. 2. (a) In-plane strain field near the Ag/MgO interface. For clarity, only 7 unit lattices in the Ag slab are shown and the dashed blue circles mark the dislocation nodes and the dashed lines mark the location of MDN at the interface. (b) The distribution of atomic strain in the first Ag ML adjacent to the Ag/MgO interface. At dislocation nodes, the strain inhomogeneity (K) is the maximum.](image)
2.38 Å, which is consistent with ab initio calculation results [41,42]. Due to the existence of MDN, d_{int} of semi-coherent interface is slightly larger (2.44 Å), which is within the range of experimental results at room temperature [10]. Besides, interface energy of semi-coherent interface is higher than that of coherent interface, implying more unstable interface and easier interface separation. The existence of misfit dislocations causes lattice distortion in the interfacial region, correspondingly, the atomic energies in this region increase. Based on the difference in γ_{int} between coherent and semi-coherent interfaces, the misfit dislocation energy is estimated to be 0.44 J/m2, a little higher than the dislocation energy of Ag/MgO interface without dislocation nodes (=0.32 J/m2) [24].

Work of adhesion (W_{ad}) is a measure of interface bond strength. As the reversible work needed to separate an interface into two free surfaces, W_{ad} can be obtained by subtraction of total energies at equilibrium from slab energies at large interface separation [46]:

$$W_{ad} = \frac{E_{slab}^{isol} + E_{MgO}^{isol} - E_{int}}{S} \tag{5}$$

where E_{slab}^{isol} and E_{MgO}^{isol} are the energies of isolated Ag slab and MgO slab, E_{int} is the total energy of the equilibrium Ag/MgO interface system, and S is the interface area. The existence of misfit dislocations reduces the number of Ag-O bond that contributes to interface adhesion. Consequently, W_{ad} of semi-coherent interface is nearly 40% lower than that of coherent interface, as shown in Table 1. Actually, an alternative expression of Eq. (5) is:

$$W_{ad} = \gamma_{surf}^{Ag} + \gamma_{surf}^{MgO} - \gamma_{int} \tag{6}$$

where γ_{surf}^{Ag} and γ_{surf}^{MgO} are the surface energies of Ag and MgO. Theoretically, the sum of W_{ad} and γ_{int} is a constant ($\gamma_{surf}^{Ag} + \gamma_{surf}^{MgO}$), which depends on the constituent materials of the interface system and the crystal orientation [47]. Note that in the equilibrium coherent and semi-coherent interface structures, the residual strains on Ag are not identical, which will result in small variation in γ_{surf}^{Ag}. Thus, the sums of W_{ad} and γ_{int} show minor differences.

4. Results of interface shear

4.1. Interface constitutive relationship

To explore the interface shear constitutive relationship, shear loading is applied along the direction of Burgers' vector ([1 1 0] crystal orientation), and the changes of interface traction T_i are recorded. The thickness of metal slab (L_x^{Ag}) and ceramic slab (L_x^{MgO}) are both 10 unit lattices, denoted by 10a-10u.

Fig. 3(a) shows the periodic variation of interface traction T_i during interface shear process and Fig. 3(b) shows the corresponding interface atomic configurations. In the first period (point A to point B), T_i increases linearly with the increase of δ_i until the interface strength (0.40 GPA). Then with the jump of Ag slab, T_i decreases by 0.15 GPA and the second loading period begins. At point B, Ag slab slips by approximately 0.2 Å relative to the MgO slab, and part of the elastic strain energy is released with recovery of bending dislocations.

Table 1

<table>
<thead>
<tr>
<th>d_{int} (Å)</th>
<th>γ_{int} (J/m2)</th>
<th>W_{ad} (J/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Ab initio</td>
<td>Experiment</td>
</tr>
<tr>
<td>Coherent interface</td>
<td>2.38</td>
<td>2.34 [41]</td>
</tr>
<tr>
<td>Semi-coherent interface</td>
<td>2.44</td>
<td>3.94</td>
</tr>
</tbody>
</table>

4.2. Energy analysis

The energy criterion for interface fracture has always been the subject of interface research [4,41,48]. To understand the role of misfit dislocation in interface shear process further, related energy variations are analyzed.

For semi-coherent Ag/MgO interface with MDN, the total energy (E_{tot}) can be regarded as the summation of several energy terms, namely the bulk energy, surface energy (γ_{surf}^{Ag}, γ_{surf}^{MgO}) and interface energy (γ_{int}). The γ_{int} of semi-coherent interface can be further viewed as the sum of coherent interface energy γ_{int}^{coh} and misfit dislocation energy γ_{int}^{dis}. In the shear process the change of total energy is mainly reflected by the change of elastic strain energy stored in bulk materials and the change of interface energy, which is closely associated with the motion of MDN. By subtracting the above energy contributions from the total energy of semi-coherent Ag/MgO interface system, the misfit dislocation energy E_{dis} in the shear process can be expressed as:

$$E_{dis} = E_{int} - n_{Ag}a_{Ag} - n_{MgO}a_{MgO} - (\gamma_{surf}^{Ag} + \gamma_{surf}^{MgO} + \gamma_{int}^{coh}) \tag{7}$$

where E_{int} denotes the total energy of the interface system, n_{Ag} and n_{MgO} are the numbers of atoms in Ag slab and MgO slab, and S is the interface area. a_{Ag} and a_{MgO} denote the lattice energy. Unlike conventional lattice energy as a material parameter, a_{Ag} and a_{MgO} here vary with the elastic deformation of the bulk materials. Therefore, a_{Ag} and a_{MgO} represent the variation of elastic strain energy. AE_{int} and AE_{dis} represent the variations of total energy and dislocation energy, respectively. γ_{surf}^{Ag} and γ_{surf}^{MgO} represent the surface energy of Ag and MgO, respectively. γ_{int}^{coh} and γ_{int}^{dis} represent the surface energy of Ag and MgO, respectively. γ_{int}^{coh} and γ_{int}^{dis} represent the surface energy of Ag and MgO, respectively.
\[\int \tau d\delta = \Delta E_{\text{dis}} \] (8)

where \(\tau \) is the shear stress. Comparing with Fig. 3(a), the energy barriers \(\Delta E_{\text{dis}} \) are roughly consistent with the cohesive work \(W_{\text{coh}} \) (\(W_{\text{coh1}} = 0.0046 \text{ J/m}^2 \), \(W_{\text{coh2}} = 0.0032 \text{ J/m}^2 \)). This indicates that the shear strength of Ag/MgO interface is largely dependent on the variation of misfit dislocation energy.

4.3. Effect of model thickness

In order to explore the effect of model thickness, the lattice numbers of Ag and MgO along the thickness direction remain the same (\(L_z = L_{\text{SRO}} \)) and \(L_x \), varies from 10u to 20u.

Fig. 5(a) shows the traction – displacement relationship during the shear process. For thin model (10u–10u), interface traction \(T_i \) changes periodically and the interface shear strength is 0.4 GP, which is close to the interface shear strength of other metal/ceramic interfaces, such as the MD simulation result of Ti/TiN interface (0.38 GP) [23] and experimental result of Al-MgAl\(_2\)O\(_4\) interface at ambient temperature (0.82 ± 0.18 GP) [48]. As the model thickness increases (15u–15u, 20u–20u), more elastic strain energy is stored in the interface system, and it shows that the shear traction is unstable, which eventually decreases to \(\approx 0.3 \) GP. In-situ compression testing of CrN/Cu/Si(1 0 0) micro-pillars also reported the shear strength decreases as the Cu interlayer thickness increases [23,25]. Dislocation theory has been successfully used to explain the thickness effect of some metal/metal multilayers containing plastic deformation [50]. Our simulation results also suggest that the transformation of dislocation structure (Fig. 5(b)) contributes to the decrease in shear strength.

Fig. 5(b) shows the interface atomic configurations corresponding to the marked points B’–E’ in Fig. 5(a) (20u–20u model). In the first period, the motion characteristics of MDN are almost the same for different thickness models, and hence the shear strengths at point B’ are identical. After the first jump of dislocation nodes (point C’), the atomic structure of one node (marked by the circle) transforms to a more energetically favoured configuration. The dislocation line around this “special” node splits. During the second period of loading, the split dislocation lines bend in a much smaller degree (point D’), which suggests that the pinning effect of this node is weakened. After the second jump of dislocation nodes (point E’), more nodes undergo structural transformation, which ultimately leads to decrease in \(T_i \) (Fig. 5(a)) and increase in \(\delta_i \) as shown in Fig. 6. Similar change in the node structure under mechanical shear has been reported in molecular...
static/dynamics simulations of semi-coherent Cu(111)/Ni(111) interface [51].

As mentioned in Section 4.2, the shear strength of Ag/MgO interface mainly depends on the variation of dislocation energy ΔE_{dis}. After the node structure changes in the second period, ΔE_{dis} of the 20u-20u interface model (0.0030 J/m2) decreases obviously compared with that of the first period (0.0055 J/m2, see Fig. S1 in Supplementary Materials), while ΔE_{dis} of 10u-10u and 15u-15u interface models have nearly no change, so the interface shear strength of 20u-20u model decreases based on Eq. (8). As more nodes transform to the energetically favored structure, interface shear strength converges to nearly 0.3 GPa. What’s more, theoretical research based on the interface thermodynamics also showed that interface energy and dislocation energy increased with increasing model thickness, and when the model thickness was larger than 12 nm this size effect was not significant [39]. In initial equilibrium interface models, the dislocation energy E_{dis} of 15u–15u and 20u–20u interface models are 0.454 J/m2 and 0.455 J/m2, respectively, while E_{dis} of the 10u-10u interface model is 0.442 J/m2 (Fig. S1). Higher E_{dis} indicates more unstable misfit dislocation structure. Therefore, thick model (20u–20u) is more prone to change node structure.

Fig. 6 shows the variation of interface distance, i.e., interface normal displacement δ_n. Equilibrium interface distance is taken as the reference. In general, dislocation motion in the shear direction is coupled with tiny changes in interface distance in the normal direction. For thin model (10u–10u), δ_n increases slightly before dislocation nodes jump to the next stable positions. After the movement of dislocation nodes, interface distance returns to its equilibrium value. For thick models (15u–15u, 20u–20u), one can see obvious increase in δ_n after several periods, which also implies that thick model is easier to lose stability. Although the change in interface distance is rather small (less than 0.01 Å), the corresponding traction drop is large (≈ 0.1 GPa).

Similar to the energy analysis in Section 4.2, Table 2 lists the energy barriers in the first two periods for Ag/MgO interface systems with different thicknesses. The maximum strain inhomogeneity factor K_{max} at the critical point B’ are also listed and the corresponding distributions of $\varepsilon/\varepsilon_{\text{coh}}$ are shown in Fig. 7.

In the first period, the interface cohesive work W_{coh} is almost the same for different models, while the energy barrier ΔE_{coh} increases proportionally with the increase of model thickness, which indicates more elastic strain energy is stored in thick models. Correspondingly, the ratio of W_{coh} to ΔE_{coh} decreases with increasing thickness. In the second period, both W_{coh} and ΔE_{coh} are smaller than the values in the first period, and different models show different energy variations.

For thin models (10u–10u, 15u–15u), the energy barriers of interface shear are ≈ 0.01 J/m2 and the ratios $W_{\text{coh}}/\Delta E_{\text{coh}}$ are ≈ 0.35, which is bigger than the values in the first period. These results suggest that in

<table>
<thead>
<tr>
<th>$L_z^B - L_z^{Mgo}$</th>
<th>W_{coh} (J/m2)</th>
<th>ΔE_{coh} (J/m2)</th>
<th>$W_{\text{coh}}/\Delta E_{\text{coh}}$</th>
<th>K_{max} (point B’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10u–10u</td>
<td>0.00437</td>
<td>0.0138</td>
<td>0.00316</td>
<td>0.0908</td>
</tr>
<tr>
<td>15u–15u</td>
<td>0.00406</td>
<td>0.0170</td>
<td>0.00371</td>
<td>0.0102</td>
</tr>
<tr>
<td>20u–20u</td>
<td>0.00419</td>
<td>0.0209</td>
<td>0.00998</td>
<td>0.00466</td>
</tr>
</tbody>
</table>
the second period of shear loading, a greater proportion of the total energy is consumed in interface slipping and the elastic deformation of the bulk materials is reduced. For thick model (20u–20u), due to the transformation of nodal structure, both \(W_{\text{coh2}} \) and \(\Delta E_{\text{dis2}} \) are about an order of magnitude smaller than the values of the other two models. Besides, the ratio \(W_{\text{coh2}}/\Delta E_{\text{dis2}} \) also goes down. It is evident that, to some extent, the thicker the interface model, the worse the interface adhesive property during interface slip.

It is clearly demonstrated in Fig. 7 that for interface models with different thicknesses, the strain inhomogeneity at the dislocation region increases significantly. In this region, the in-plane strain \(\varepsilon \) near the dislocation line is larger and it reaches the maximum at the node regions. With the increase of model thickness, the strain concentration at the node regions becomes more severe (1317.5 → 2549.0), which explains, from a different perspective, why the dislocation structure of thick model is more prone to transform. Note that the value of \(K \) at the fourth node \((K_4 \text{ in Fig. 7(c)}) \) is the largest, correspondingly, this node is the first to undergo structural transformation. In fact, Fig. 7 shows the overall effect of in-plane strain which is the superposition of internal strain caused by MDN and strain caused by externally applied shear loading. In interface dynamics, the strain/stress concentration regions are “dangerous” regions.

Note that the thickness ratio between metal and ceramic also influences the mechanical response of metal/ceramic multilayers [18,21]. Next, we investigate the thickness ratio effect by varying the thickness of Ag layer and MgO layer while keeping the total thickness of the interface structure a constant.

Fig. 8(a) shows the interface shear constitutive relationships of Ag/MgO interfaces with different thickness ratios. For the interface model with thicker Ag layer (18u–12u), interface shear strength decreases after the first period due to the transformation of dislocation structure, and \(\Delta E_{\text{dis}} \) in the second period is smaller compared with \(\Delta E_{\text{dis}} \) of the other two models (Fig. 8(b)). On one hand, more elastic strain energy is stored in the thicker metal layer at the critical point (the first peak stress \(T_1 \)), and the change of dislocation structure can release some elastic strain energy. On the other hand, the lattice distortion caused by MDN is mainly distributed in the softer metal side, so the misfit dislocation energy \(E_{\text{dis}} \) increases with the increase of metal layer thickness within the thickness range here (Fig. 8(b)) and the corresponding interface structure is more unstable, especially in the high energy dislocation node regions where strain concentration occurs. In interface dynamic shearing process, the combined effect of elastic strain energy and dislocation energy results in the structural transformation of some dislocation nodes, which affects the interface mechanical properties significantly [51].

In short, the simulation results of Ag/MgO interface models with different thicknesses and different thickness ratios all show that the interfacial shear strength decreases with increasing model thickness, especially metal layer thickness.

4.4. Effect of shear direction

In practical applications, shear loadings may be applied in any direction, thus interface shear along different directions are investigated. First, let’s deduce the relationship between shear stress and shear direction. Assume the angle between the shear direction and the dislocation line is \(\alpha \) degrees. Considering the symmetry of MDN, \(\alpha \) is in the range of 0° to 90°. For the gliding motion of MDN, if the critical force required to surmount the energy barrier along the direction of Burgers vector is \(F_1 \), then according to the parallelogram rule, the critical force \(F \) along any direction should be:

\[
F = F_1 \times (\sin \alpha + \cos \alpha) = \sqrt{2} F_1 \times \sin(\alpha + 45°)
\]

or

\[
F/F_1 = \sqrt{2} \times \sin(\alpha + 45°), \quad (0° \leq \alpha < 90°)
\]

Fig. 7. The strain inhomogeneity in the interfacial Ag ML for Ag/MgO interface systems with different thicknesses (at the critical point B’ in Fig. 5(a)). The values of strain inhomogeneity factor \(K \) at dislocation nodes are marked. (a) 10u–10u model. (b) 15u–15u model. (c) 20u–20u model.

Fig. 8. (a) The shear traction-displacement relationships of Ag/MgO interface systems with different thickness ratios. (b) The variations of dislocation energies \(E_{\text{dis}} \) during shearing of Ag/MgO interface systems with different thickness ratios.
The interface shear traction – displacement relationships along two typical shear directions (Shear I and Shear II) are shown in Fig. 9(b). Compared with Shear I, in Shear II both the shear strength and the change of T_i over one period are larger. Moreover, shear strength fluctuates in accordance with the gliding motion of MDN along the [0 1 0] direction. The averaged shear strength in Shear II is 0.56 GPa, and the shear strength in Shear I is 0.40 GPa, which is consistent with the prediction of Eq. (10) ($0.56 \text{ GPa}/0.40 \text{ GPa} \approx \sqrt{2}$). In summary, the property of interface shear along different directions depends largely on the geometry of MDN, and the shear strength along the direction of Burgers vector is the lowest. In fact, this conclusion is common for other interfaces with MDN [52,53].

Next, we focus on the gliding motion of MDN along the above two typical directions. The in-plane atomic displacements corresponding to the key points B(B″) and C(C″) in Fig. 9(b) are shown in Fig. 10.

The motion of MDN along [1 1 0] and [0 1 0] directions show similar characteristics: the atomic displacements are spatially non-uniform during interface shear process, which can be divided into two stages. In the first stage, all atoms in the first Ag ML move slightly and atoms between nodes have longer slip distance, with slip directions deviating from the applied shear direction (Fig. 10(a) and (c)). In the second stage, atoms in the node regions exhibit the longest slip distance (Fig. 10(b) and (d)). Besides, MDN glides by the length of Burgers vector (Δu) along the applied shear direction in Shear I, and in Shear II MDN glides by a relatively longer distance Δu. In fact, interface displacements along different directions also turn out to obey a similar rule as Eq. (10).

To be brief, nodes have strong pinning effects to the gliding motion of MDN. In dislocation line regions the shear resistance is relatively low, while in dislocation node regions the shear resistance is high, reflected by the small atomic displacements at point B(B″). In addition, along the direction of Burgers vector MDN glides by the shortest distance in one period, which explains the periodic interface displacement in Shear II is larger than that in Shear I, as shown in Fig. 9(b).

5. Conclusions

In this work, atomistic simulations have been performed to explore the static and dynamic characteristics of Ag/MgO interface with MDN.

Firstly, in-plane strain analysis demonstrates that the local strain induced by MDN varies in a periodic pattern, with significant strain concentration at the node regions. At several atomic layers away from the interface the strain field is reversed, implying complex strain distribution within the small interfacial region. This weakens the interface adhesion, which is also verified by the reduced work of adhesion and increased interface energy compared with ideal interface.

The gliding motion of MDN is found to be dominant in the shear process of semi-coherent Ag/MgO interface. With the motion of MDN, interface shear traction changes periodically and the shear stress is determined mainly by the variation of misfit dislocation energy. Nodes serve as strong pinning points to the motion of MDN, and noticeable bending of dislocation lines occurs before nodes jump to the next stable positions. After the jump of nodes, MDN slips by the length of Burgers vector along the shear direction.

When model thickness or thickness ratio between Ag layer and MgO layer increases, both interface shear strength and dislocation energy barriers decrease. This is because more elastic strain energy is stored in bulk materials, the strain inhomogeneity near the interface is more significant as well, so the interface structure is unstable during the shear process – nodes transform to a more energetically preferred structure. This suggests that the thicker the model thickness, the more pronounced the “weak link” characteristic of the interface.

For interface shear along different directions, the geometrical feature of MDN largely determines the interface shear characteristics, and both the shear strength and gliding distance of MDN turn out to obey the same relationship. Besides, Ag/MgO interface has the greatest possibility to undergo shear failure along the direction of Burgers vector.

The results in this paper provide some insight into understanding the crucial role of MDN in interface shear process, and the conclusions can be extended to other similar metal/ceramic interfaces. Temperature and strain rate are also of much concern in metal/ceramic interface research, and further work about their influences will be carried out.

CRediT authorship contribution statement

X.Q. Fu: Data curation, Software, Investigation, Writing - original draft. L.H. Liang: Conceptualization, Methodology, Formal analysis, Funding acquisition, Writing - review & editing. Y.G. Wei: Conceptualization, Methodology, Funding acquisition.
Fig. 10. The distribution of in-plane atomic displacements in the interfacial Ag ML corresponding to the key points B(B″) and C(C″) in Fig. 9(b). Δ_1 and Δ_2: the gliding distance of MDN in one period. (a) and (b): along the [1 1 0] direction (Shear I). (c) and (d): along the [0 1 0] direction (Shear II). The equilibrium interface structure is taken as the reference.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 11672296, 91860102, 11432014, 11672301, 11890681) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB22040501).

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.commatsci.2019.109151.

