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Abstract. In this paper, roles of interfacial rheology on thermocapillary migration of a planar droplet at small and large
Marangoni numbers are analyzed. Under quasi-steady-state assumption, the time-independent momentum and energy equa-
tions of thermocapillary droplet migration with boundary conditions are determined. An exact solution of the steady
thermocapillary migration of the deformed droplet at small Marangoni numbers is obtained. It is found that the deformed
droplet has an oblate shape. The deviation from the circular section depends on the Weber number and the migration speed.
The surface shear viscosity, the dilatational viscosity and the surface internal energy parameter affect the deformation of
the droplet through reducing the migration speed. The validity of the steady thermocapillary droplet migration at small
Marangoni numbers is confirmed by determining the conservative overall integral energy equations. At large Marangoni
numbers, the non-conservative overall integral energy equations imply that thermocapillary droplet migration is always an
unsteady process.
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1. Introduction

A droplet or bubble in an external fluid can move under the influence of driving forces in the gravita-
tional, electric and magnetic fields [1,2]. Even in the absence of body forces such as in the microgravity
environment, a droplet or bubble placed in a nonisothermal matrix liquid migrates as a result of surface
tension exerted on the interface. This phenomenon is termed as thermocapillary migration of the droplet
or bubble. Such nonisothermal interfacial flows are very important in both the fundamental hydrody-
namics and the chemical and biological engineering applications [3]. The pioneering study in this area
was carried out by Young et al. (YGB) [4], who gave an analytical prediction on non-deformable droplet
migration speed in the limit case of zero Reynolds(Re) and Marangoni(Ma) numbers. Then, Subrama-
nian [5] introduced a quasi-steady-state assumption and extended the YGB results to small Re and Ma
numbers. Since then, a series of results of theoretical analyses, numerical simulations and experimental
investigations for thermocapillary migration of the droplet or bubble was completed [6,7].

In general, the deformation of the moving droplet or bubble depends on many factors, such as pressure,
viscous stress, surface tension, interfacial rheology and so on. The most works omit an explicit consid-
eration of the interfacial rheology on interface boundary conditions for a small surface-to-volume ratio.
Taylor and Acrivos [8] and Brignell [9] determined the deformation of a falling droplet in an external
fluid at small Re numbers. Bratukhin [10] and Balasubramaniam and Chai [11] obtained the solution of
thermocapillary migration of a deformed droplet at small Re and Ma numbers. However, when the fluid
surface-to-volume ratio increases, the interface is regarded as being material in nature. In this case, the
interfacial rheology will affect the deformation of the droplet or bubble due to the force balance on the

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-019-1231-y&domain=pdf


    8 Page 2 of 13 Z.-B. Wu ZAMP

interface [12]. Introducing the interfacial rheology, Scriven [13] derived a general formulation of the dy-
namics of a Newtonian fluid interface of two-phase fluids. Harper et al. [14] and Kenning [15] analyzed the
effects of surface internal energy in the interfacial thermal flux balance on the motion of the droplets and
bubbles in the temperature field. Levan [16] and Torres and Herbolzheimer [17] obtained the analytical
solutions of thermocapillary migration of a deformed droplet and bubble with a Newton fluid interface at
small Re and Ma numbers, respectively. Balasubramaniam and Subramanian [18] extended the analysis
of Levan [16] for covering the inertia terms in the momentum equations and determined the deformation
of a droplet under the influence of the interfacial rheology in thermocapillary migration process. Khattari
et al. [19] extended the YGB solutions [4] to include effects of the interfacial rheology, the insoluble sur-
factant and interfacial diffusivity, and calculated the terminal migration velocity of the droplet. Manor
et al. [20] found that the surface viscosity influences the droplet migration velocity quite significantly in
the Marangoni migration of a droplet due to mass transfer at small Re and Peclet numbers.

The planar droplet/bubble as a simplified model was often used to study its dynamical behaviors
in external liquids or on solid substrates, such as the two-dimensional(2D) bubble dynamics in a bulk
liquid/a microfluid [21–24], the 2D droplet dynamics in a bulk liquid under shear stress fields [25], electric
fields [26,27] and temperature fields [28,29], thermocapillary migration of a 2D droplet on solid surfaces
[30–33] and thermocapillary interactions of two 2D droplets/bubbles in a bulk liquid [34,35]. On the one
hand, it is assumed that the droplet/bubble is sufficiently long in the spanwise direction so that the
end effects on the flow can be neglected. On the other hand, the simplified 2D droplet/bubble models
can be thought as the approximate treatments of the three-dimensional droplet/bubble experiments,
although their physical mechanisms may be the same or different. In this paper, we focus on roles of
interfacial rheology on thermocapillary migration of a planar droplet at small and large Ma numbers
in the microgravity environment. In particular, whether the interfacial rheology can change the non-
conservative integral thermal flux across the surface of the droplet for preserving the overall steady-state
energy balance in the flow domain in the steady thermocapillary migration at large Marangoni numbers
[29] will be investigated. Section 2 describes the steady momentum and energy equations with boundary
conditions under quasi-steady-state approximation. The analytical result of the steady thermocapillary
migration of a deformed droplet at small Ma numbers is determined in Sect. 3. The validities of the
steady thermocapillary droplet migration at small and large Ma numbers are analyzed in Sect. 4. Finally,
in Sect. 5, conclusions and discussions are given.

2. Formulation under quasi-steady-state approximation

Consider the thermocapillary migration of a planar droplet in a continuous phase fluid of infinite extent
under a uniform temperature gradient G. The droplet is assumed to have a slight planar deformation from
the circular section with radius R0. The temperature derivative of the interfacial tension between the
droplet and the continuous phase fluid is denoted by σT (< 0). Two-dimensional momentum and energy
equations for the continuous phase and for the fluid in the droplet in a laboratory coordinate system
(x̄, ȳ) denoted by a bar are written as follows

ρ
∂v̄
∂t

+ ρv̄ · ∇̄v̄ = −∇̄p̄ + μΔ̄v̄,

γρ
∂v̄′

∂t
+ γρv̄′∇̄v̄′ = −∇̄p̄′ + αμΔ̄v̄′,

∂T

∂t
+ v̄ · ∇̄T̄ = κΔ̄T̄ ,

∂T ′

∂t
+ v̄′ · ∇̄T̄ ′ = λκΔ̄T̄ ′,

(1)
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where v̄, p̄ and T̄ are velocity, pressure and temperature, and a prime denotes quantities inside the
droplet. ρ, μ and κ represent density, dynamic viscosity and thermal diffusivity of the continuous phase
fluid, respectively. The correspondent values of the droplet are γ, α and λ times as large as those of
the continuous phase fluid, respectively. The solutions of Eq. (1) have to satisfy boundary conditions at
infinity

v̄ → 0, p̄ → p∞, T̄ → T̄0 + Gȳ, (2)

and at the center of the droplet
p̄′ = p̄′

0 + P ′
0(t) (3)

and boundary conditions at the interface (x̄b, ȳb) of the two-phase fluids

v̄(x̄b, ȳb, t) = v̄′(x̄b, ȳb, t),

n · Π̄ · n − n · Π̄′ · n = σH + (κ̄s + μ̄s)H(∇̄s · v̄),

n · Π̄ · τ − n · Π̄′ · τ = −∇̄sσ · τ − (κ̄s + μ̄s)∇̄s(∇̄s · v̄) · τ,

T̄ (x̄b, ȳb, t) = T̄ ′(x̄b, ȳb, t),

k
∂T

∂n
− βk

∂T ′

∂n
= (ēs − σ)∇̄s · v̄,

(4)

where p∞ and T̄0 are the undisturbed pressure and temperature of the continuous phase, respectively.
P ′
0(t) is a function of time, which is in response to the dependence of the surface tension σ on time. Π̄

and Π̄′ are the stress tensors of the two-phase fluids. n and τ are the unit vectors normal and tangent to
the interface, respectively. ∇̄s(= ∇̄ − n ∂̄

∂̄n
) is the surface gradient operator. σ[= σ0 + σT (T̄ − T̄0)] and H

are the surface tension and the curvature of the interface, respectively. κ̄s and μ̄s denote the surface shear
and dilatational viscosities, respectively. k and βk are the thermal conductivity of the continuous phase
fluid and the droplet, respectively. ēs denotes the surface internal energy. It is assumed that ēs −σ(= Ēs)
is a constant over the droplet surface.

Under the quasi-steady-state approximation, the droplet migration may achieve a quasi-steady state,
i.e., migration with a constant speed V∞. By using coordinate and variable transformations from the
laboratory coordinate system to a coordinate system moving with the droplet shown schematically in
Fig. 1, the momentum and energy equations (1) are derived in the Appendix and recast in dimensionless
form in a polar coordinate system (r, θ) as

v · ∇v = −∇p +
1

Re
Δv,

γv′ · ∇v′ = −∇p′ +
α

Re
Δv′,

V∞ + v · ∇T =
1

Ma
ΔT,

V∞ + v′ · ∇T ′ =
λ

Ma
ΔT ′.

(5)

The coordinates, velocities and temperatures are non-dimensionalized by taking the radius of the droplet
R0, the velocity v0 = −σT GR0/μ and GR0 as the reference quantities. Reynolds (Re) and Marangoni
(Ma) numbers are defined as Re = ρv0R0

μ and Ma = v0R0
κ , respectively. The boundary conditions (2)(3)(4)

are rewritten in the following form of dimensionless

(vr, vθ) → (−V∞ cos θ, V∞ sin θ), p → 0, T → r cos θ (6)

at infinity and

p′ = p′
0(=

p̄′
0

ρv2
0

), (7)
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Fig. 1. A schematic diagram of thermocapillary migration of a planar droplet under the temperature gradient G in a polar
coordinate system (r, θ) moving with a droplet velocity V∞

at the center of the droplet and

vn(R, θ) = v′
n(R, θ) = 0,

vτ (R, θ) = v′
τ (R, θ),

Πnn − Π′
nn =

σ∗

We
H +

κs + μs

Re
H

∂vθ

r∂θ
|R,

Πnτ − Π′
nτ =

1
Re

∂T

r∂θ
|R − κs + μs

Re

∂

r∂θ
(
∂vθ

r∂θ
)|R,

T (R, θ) = T ′(R, θ),

∂T

∂n
(R, θ) = β

∂T ′

∂n
(R, θ) + Es

∂vθ

r∂θ
|R,

(8)

at the interface of the two-phase fluids. The interfacial rheology parameters are written in dimensionless
form κs = κ̄s/(μR0), μs = μ̄s/(μR0) and Es = −ĒsσT /(μk). The Weber and Capillary numbers are
defined as We=ReCa and Ca = v0μ

σ0
, respectively. The non-dimensional surface tension is reduced as

σ = 1 − Ca(T + V∞t) = σ∗ − CaV∞t, where t is non-dimensionalized by using the reference quantity
R0/v0. The non-dimensionalized P ′

0(t) in Eq. (3) is assigned as P ′
0(t) = p∞ − 1

ReV∞tH ≈ p∞ − 1
ReV∞t.

The time-independent momentum and energy equations (5) with boundary conditions (6)–(8) reveal the
steady thermocapillary droplet migration. Such the coordinate and variable transformations can thus
eliminate the dependence of the solutions of steady thermocapillary migration of a deformed droplet on
time [11].

3. Droplet deformation in steady thermocapillary migration at small Ma cases

The perturbated momentum and energy equations (5) of the continuous phase and the fluid in the droplet
with the boundary conditions (6)–(8) for the steady thermocapillary migration of a droplet at small Re
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and Ma numbers are truncated at the first order and rewritten in terms of the stream functions Ψ(r, θ)
and Ψ′(r, θ) as

∇4Ψ(r, θ) = 0,

∇4Ψ′(r, θ) = 0,

∇2T (r, θ) = 0,

∇2T ′(r, θ) = 0

(9)

and

(i) Ψ(r∞, θ) → −1
2
V∞r∞ sin θ,

(ii) v′(r0, θ) ∼ Ψ′(r, θ)
r

|r0 ∼ O(1),

(iii) vr(1, θ) = v′
r(1, θ) = 0,

(iv) vθ(1, θ) = v′
θ(1, θ),

(v)
∫ π

0

(Πrθ sin θ − Πrr cos θ)|1dθ = 0,

(vi) T (1, θ) = T ′(1, θ),

(vii)
∂T

∂r
(1, θ) = β

∂T ′

∂r
(1, θ) + Es

∂vθ

∂θ
(1, θ),

(10)

where r0(→ 0) is the center of the droplet, a small deformation of the interface is assumed as R =
1 + f(θ), |f | << 1. Following the methods for solving the linear models [36], both the stream functions
Ψ(r, θ) and Ψ′(r, θ) in Eq. (9) with the boundary conditions (i)–(iv) in Eq. (10) can be determined as

Ψ = −V∞(r − 1
r
) sin θ,

Ψ′ = −V∞(r3 − r) sin θ.
(11)

The streamlines are shown in Fig. 2a. Their pattern is described as the non-separated external flow
passing around the droplet and two symmetric vortices embedded in the droplet. Integrating the radial
momentum equations in Eq.(5) with the boundary conditions (6), (7), both the pressure fields p(r, θ) and
p′(r, θ) are given below

p = V 2
∞(

1
r2

− 1
2r4

) cos2 θ − V 2
∞(

1
r2

+
1

2r4
) sin2 θ,

p′ = p′
0 − 8α

Re
V∞r cos θ + γV 2

∞(r2 − 1
2
r4) cos2 θ − γV 2

∞(r2 − 3
2
r4) sin2 θ.

(12)

In this manner, both the temperature fields T (r, θ) and T ′(r, θ) in Eq. (9) with the boundary conditions
(vi), (vii) in Eq. (10) are obtained as follows:

T =
(

r +
1 − β − Ω
1 + β + Ω

1
r

)
cos θ,

T ′ =
2

1 + β + Ω
r cos θ,

(13)

where Ω = Es/(2 + 2α + κs + μs). The isotherms are shown in Fig. 2b, where the curved ones appear
outside the droplet, but the straight ones are inside the droplet. From the vertical force equilibrium
condition (v) in Eq. (10), the steady migration velocity V∞ is determined by inclusion of the shear stress
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Fig. 2. a Streamlines and b isotherms in steady thermocapillary droplet migration at small Ma numbers

balance at the interface of Eq. (8) and given below

V∞ =
1

(2 + 2α + κs + μs)(1 + β + Ω)
=

Ω
Es(1 + β + Ω)

. (14)

It is noted that the surface shear viscosity κs, the dilatational viscosity μs and the surface internal energy
parameter Es reduce the migration speed V∞. When κs, μs and Es are zero, i.e., neglecting interfacial
rheology, the migration speed returns to that given in [37]. Moreover, the normal stress balance at the
interface of Eq. (8) can be rewritten as

− p +
2

Re

∂vr

∂r
+ p′ − 2α

Re

∂v′
r

∂r
=

σ∗

We
H +

ks + μs

Re
H

∂vθ

∂θ
, (15)

where H = (R2 + 2R′2 − RR′′)/(R2 + R′2)3/2 ≈ 1 − f(θ) − f ′′(θ). By substituting the solutions in Eqs.
(11)(12), Eq. (15) is derived as

Rep′
0 − Re

2
V 2

∞(1 − γ − 4 sin2 θ) − 4V∞(1 + α) cos θ

=
[

1
Ca

− 2
1 + β + Ω

cos θ + 2(ks + μs)V∞ cos θ

]
[1 − f(θ) − f ′′(θ)]. (16)

In addition to the above shear and normal stress balances at the interface, the deformed droplet in
the steady thermocapillary migration is required to satisfy other conditions from the following facts. On
the one hand, the area of the deformed droplet remains unchanged, which demands that∫ π

0

f(θ)dθ = 0. (17)

On the other hand, the center of mass of the droplet is always fixed at the origin of coordinates, which
demands that ∫ π

0

f(θ) cos θdθ = 0. (18)
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Fig. 3. Derivation f(θ) from circular section versus θ curve for steady thermocapillary migration of a planar droplet at
small Ma numbers under α = β = κs = μs = Ω = 0.2 and We = 0.1

By integrating Eq. (16) from 0 to π, the unknown parameter p′
0 is determined as

p′
0 =

1
We

− 1
2
V 2

∞(1 + γ) −
[

1
Ca

− 2
1 + β + Ω

+ 2(κs + μs)V∞

]
f ′(π) − f ′(0)

πRe

=
1

We
− 1

2
V 2

∞(1 + γ), (19)

where f ′(π) − f ′(0) = 0 is assumed. With the parameter p′
0, Eq. (16) is rewritten as

ReV 2
∞ cos 2θ + 4V∞(1 + α) cos θ

= 2
[

1
1 + β + Ω

− (κs + μs)V∞] cos θ +
1

Ca
[f(θ) + f ′′(θ)

]
. (20)

By using the expression of V∞ in Eqs. (14), (20) can be written as

ReV 2
∞ cos 2θ =

1
Ca

[f(θ) + f ′′(θ)]. (21)

A general solution of Eq. (21) is assumed as f(θ) = A cos θ + B cos 2θ, which acquires to satisfy the
assumption f ′(π) = f ′(0). It must have the constraints of Eqs. (17) and (18), which leads to A = 0.
Then, from Eq. (21), the unknown parameter of the solution is determined as B = − 1

3WeV 2
∞. Finally,

the solution of Eq. (21) is written as

f(θ) = −1
3
WeV 2

∞ cos 2θ = − We

(2 + 2α + κs + μs)2(1 + β + Ω)2
cos 2θ. (22)

It is noted that the deformed droplet attains an oblate shape[f(0) = f(π) < 0 and f(π/2) > 0], as
shown in Fig. 3. The deformation of the droplet depends on We and V∞. The dimensionless surface
shear viscosity κs, the dilatational viscosity μs and the surface internal energy parameter Es affect the
deformation of the droplet through their influence on V∞. When κs, μs and Es are zero, the deformation
depends on the viscosity ratio α and the conductivity ratio β of two-phase fluids, but is independent of
the density ratio γ. In the case of small Ma numbers, the above assumption of the deviation |f(θ)| << 1
from the circular section is thus confirmed by the fact that We and V∞ are small.
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R r
0

Fig. 4. The whole area of steady thermocapillary droplet migration composed of the continuous phase domain (r ∈
[R, r∞], θ ∈ [0, 2π]) and the droplet region (r ∈ [0, R], θ ∈ [0, 2π])

4. Validities of steady thermocapillary droplet migration at small and large Ma cases

Figure 4 displays the whole area of the steady thermocapillary droplet migration composed of the contin-
uous phase domain (r ∈ [R, r∞], θ ∈ [0, 2π]) and the droplet region (r ∈ [0, R], θ ∈ [0, 2π]). Integrating the
energy equations in Eq.(5) in the continuous phase domain and the droplet region and then transforming
them to linear integrals on the interface and the surface at infinite by using Green’s formula, we have

V∞

(
πr2∞ − 1

2

∫ 2π

0

R2dθ

)
+

∮
(vnT )|r∞ds =

1
Ma

(∮
∂T

∂n
|r∞ds −

∮
∂T

∂n
|Rds

)
,

V∞
2

∫ 2π

0

R2dθ =
λ

Ma

∮
∂T ′

∂n
|Rds, (23)

where the normal velocity boundary condition at the interface in Eq. (8) is applied. The area of deformed
droplet always keeps its original one, which may be written as

1
2

∫ 2π

0

R2dθ = π. (24)
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Using the thermal flux boundary condition at the interface in Eq. (8), we combine Eq. (23) into the
overall integral energy equation in the whole flow domain (r ∈ [0, r∞], θ ∈ [0, 2π])

V∞π

(
r2∞ +

β

λ
− 1

)
+

∮
(vnT )|r∞ds =

1
Ma

[∮
∂T

∂n
|r∞ds − Es

∫ 2π

0

∂vθ

∂θ
|Rdθ

]
. (25)

It may be noticed that the non-separated velocity fields in the continuous phase fluid at infinite for large
Re cases can be taken as the inviscid ones passing through a circular cylinder, which may be obtained
from the lowest term of those for small Re cases in Eq.(11). We can thus assume the velocity fields

vr = −V∞

(
1 − 1

r2

)
cos θ,

vθ = V∞

(
1 +

1
r2

)
sin θ (26)

as those in the continuous phase fluid at infinite for any Re cases. Moreover, from Eq. (6), the temperature
at infinite may be written as

T = T0(r, θ) + T1(r, θ) = r cos θ + T1(r, θ), (27)

where T1 → 0 at r → ∞. In final, Eq. (25) is rewritten as

V∞π
β

λ
+

∮
(vnT1)|r∞ds =

1
Ma

[∮
∂T1

∂n
|r∞ds − Es

∫ 2π

0

∂vθ

∂θ
|Rdθ

]
. (28)

The thermal energy V∞π(r2∞−1) of the continuous phase fluid in Eq. (25) is balanced with the convection
heat transfer

∮
(vnT0)|r∞ds in terms of T0.

For small Ma cases, Eq. (28) is simplified as
∮

∂T1

∂n
|r∞ds − Es

∫ 2π

0

∂vθ

∂θ
|Rdθ = 0, (29)

where the second term arises from energy changes during the stretching and shrinkage of interfacial area
elements. The parameter Es << 1 when Re << 1 and Ma << 1 [14,17]. Since T1 → 0 at r → ∞, the
equality in Eq. (29) is confirmed, i.e., the overall integral energy equation in Eq. (25) is conservative
under the quasi-steady-state assumption. It implies that thermocapillary droplet migration at small Ma
cases can reach steady state. Moreover, the parameter Es << 1 may approach to the above assumption
of constant quantity Es over the droplet surface. For large Ma cases, Eq. (28) is approximated as

V∞π
β

λ
+

∮
(vnT1)|r∞ds +

Es

Ma

∫ 2π

0

∂vθ

∂θ
|Rdθ = 0. (30)

When the additional item of the temperature at infinite is taken as T1 = − 1
r cos θ [29], Eq. (30) can be

simplified as

π

(
β

λ
+ 1

)
+

Es

Ma

∫ 2π

0

∂(vθ/V∞)
∂θ

|Rdθ = 0. (31)

It is noticed that the first term in Eq.(31) results from contributions of the thermal energy inside the
droplet and the convection heat transfer in terms of T1. In this case, T1 has the negative sign ‘−,’ which
is changed from the positive one ‘+’ in Eq. (13) at small Ma cases for the working media in space
experiments [6,7]. Meanwhile, Es/Ma << 1 even for a finite value Es[∼ O(T |R)]. As a result, Eq. (31)
is an inequality, i.e., the overall integral energy equation in Eq. (25) is non-conservative under the quasi-
steady-state assumption. Thermocapillary droplet migration at large Ma cases cannot reach any steady
state and is thus an unsteady process.
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5. Conclusions and discussions

In this paper, an analysis on thermocapillary migration of a planar droplet at small and large Ma numbers
is performed with regard to the interfacial rheology. First, under quasi-steady-state assumption, the
time-independent momentum and energy equations of steady thermocapillary droplet migration with
boundary conditions are determined. Then, an exact solution of the steady thermocapillary migration of
the deformed droplet at small Ma numbers is obtained. It is found that the deformed droplet has an oblate
shape. The deviation from the circular section depends on the Weber number and the migration speed. The
surface shear viscosity, the dilatational viscosity and the surface internal energy parameter can reduce the
migration speed and affect the deformation of the droplet. Finally, validity of the steady thermocapillary
droplet migration at small Ma numbers is confirmed by determining the conservative overall integral
energy equations in the whole flow domain. However, at large Ma numbers, the overall integral energy
equations in the whole flow domain are non-conservative, which implies the thermocapillary droplet
migration is always an unsteady process.

For a single fluid in a flow domain, the conservative momentum and energy equations are always ex-
pressed in the integral forms, which include the momentum and energy transfer through all boundaries of
the domain. When the flow domain as a simply-connected domain is contracted in a volume, the integral
equations are valid for all choices of the volume. The differential momentum and energy equations with
boundary conditions can thus be derived from the integral equations. The solutions of discretized differen-
tial equations in the domain can satisfy the integral equations. So the differential momentum and energy
equations are equivalent to the integral ones [38]. For two-phase fluids with an impermeable interface
in a flow domain, the conservative momentum and energy equations are still expressed in the integral
forms. The flow domain as a multiply connected domain includes two subdomains for the different fluids.
The differential momentum and energy equations with boundary conditions can also be derived from
the integral equations. However, any given differential momentum and energy equations with boundary
conditions, as the steady thermocapillary droplet migration at large Ma numbers, are not necessarily
equivalent to the integral ones.
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Appendix: Steady momentum and energy equations derived from the laboratory coordinate
system

Using the coordinate and variable transformations from the laboratory coordinate system (x̄, ȳ) to a
coordinate system (x, y) moving with the droplet velocity V∞, respectively, described below

r̄ = r + V∞tj (32)

and
v̄(r̄, t) = v(r) + V∞j, p̄(r̄, t) = p(r) + p∞, T̄ (r̄, t) − T̄0 = T (r) + GV∞t,
v̄′(r̄, t) = v′(r) + V∞j, p̄′(r̄, t) = p′(r) + P ′

0(t), T̄ ′(r̄, t) − T̄0 = T ′(r) + GV∞t,
(33)
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we have

∇̄|t =
∂

∂x̄
|ti +

∂

∂ȳ
|tj =

∂

∂x
|ti +

∂

∂y
|tj = ∇|t,

Δ̄|t =
∂2

∂x̄2
|t +

∂2

∂ȳ2
|t =

∂2

∂x2
|t +

∂2

∂y2
|t = Δ|t.

(34)

For momentum equation of the continuous phase fluid in Eq. (1), we can derive its unsteady, convection
and viscous terms as follows:

∂v̄
∂t

|r̄ =
∂(v + V∞j)

∂t
|r̄ =

∂v
∂t

|r̄ =
∂v
∂x

|t ∂x

∂t
|r̄ +

∂v
∂y

|t ∂y

∂t
|r̄ +

∂v
∂t

|r ∂t

∂t
|r̄

=
∂v
∂y

|t(−V∞) +
∂v
∂t

|r = −V∞
∂v
∂y

,

v̄ · ∇̄v̄|t = (v + V∞j) · ∇̄(v + V∞j)|t = (v + V∞j) · ∇̄v|t
= v · ∇v + V∞

∂v
∂y

,

∇̄p̄|t = ∇̄(p + p∞)|t = ∇̄p|t = ∇p,

Δ̄v̄|t = Δ̄(v + V∞j)|t = Δ̄v|t = Δv,

(35)

where ∂x
∂t |r̄ = ∂x

∂t |x̄ = 0, ∂y
∂t |r̄ = ∂y

∂t |ȳ = −V∞ and ∂v
∂t |r = 0. Then, substituting Eq. (35) into the first

equation in Eq. (1), we obtain the steady momentum equation of the continuous phase fluid

ρv · ∇v = −∇p + μΔv. (36)

And for energy equation of the continuous phase fluid in Eq. (1), we can write its unsteady, convection
and conductivity terms as follows:

∂T̄

∂t
|r̄ =

∂T

∂t
|r̄ + GV∞ =

∂T

∂x
|t ∂x

∂t
|r̄ +

∂T

∂y
|t ∂y

∂t
|r̄ +

∂T

∂t
|r ∂t

∂t
|r̄ + GV∞

=
∂T

∂y
|t(−V∞) +

∂T

∂t
|r + GV∞ = −V∞

∂T

∂y
+ GV∞,

v̄ · ∇̄T̄ |t = (v + V∞j) · ∇̄(T + GV∞t)|t = (v + V∞j) · ∇̄T |t
= v · ∇T + V∞

∂T

∂y
,

Δ̄T̄ |t = Δ̄(T + GV∞t)|t = Δ̄T |t = ΔT,

(37)

where ∂T
∂t |r = 0. Then, substituting Eq. (37) into the third equation in Eq. (1), we obtain the steady

energy equation of the continuous phase fluid

GV∞ + v∇T = κΔT. (38)

Similarly, we can also transform the momentum and energy equations within the droplet as above.
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