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ABSTRACT 
Catenary is increasingly used as mooring-line and riser 

system as the water depth gets larger due to its lower cost and 

easier installment. Its dynamic response and restoring 

performance become more complicated, as the length of the 

mooring-line become larger, and the structural and fluid 

dynamics the mooring-line become consequently more obvious. 

Compared to the quasi-static method where the static restoring 

force is mainly involved, the dynamic behaviors and its hysteresis 

of the catenary mooring-line are considered here so as to 

comprehensively examine the non-linearly restoring 

performance of mooring-lines. Based on the 3d dynamic vector 

equations along with the modified FEM simulations, the 

hysteresis character of the restoring stiffness and the influences 

of the catenary dynamics on its restoring performance are 

presented and discussed.  

It is found that, principally owing to the damping and 

inertial effect coming from the fluid and structural dynamics, the 

restoring force of the mooring-line depends on both the 

structural displacement and velocity. Moreover, the dynamic 

stiffness behaves as a hysteresis loop, instead of a curve. Our 

numerical results show that the energy consumption during one 

period rises nonlinearly with the increase of the body frequency 

ωd and amplitude A0. And, the influence of nonlinear restoring 

stiffness on the structural response along with the slack-taut 

phenomenon caused by structural /hydrodynamic inertia and 

damping is discussed. 

* Contact author: wmchen@imech.ac.cn

Keywords: dynamic response; catenary mooring-line; 
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NOMENCLATURE 
ωd angular frequency 

A0. amplitude of body motion 

T concentration force 

q distributed force 

ρ density of catenary 

A   cross section area 

r position vector 

EI  bending stiffness 

λ   effective tension 

ε    strain 

f   hydrodynamic force 

CD  drag coefficient 

CA added mass coefficient 

D   structural diameter 

u  structure displacement 

V   fluid velocity 

M  mass matrix 

M added mass matrix 

U  displacement vector 

C  damping matrix 

K  stiffness matrix 
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F         external load vector 

θ         rotation angle 

INTRODUCTION 
 In recent years, more and more ocean energy, oil/gas and 

wind industries have been developing towards deeper ocean 

area. The supporting systems of the floating bodies, such as oil 

rig/production platform and wind turbine, includes catenary 

mooring-lines, tendon lines and vertical tension legs[1]. Among 

the three ones, the first one, i.e. catenary mooring-line, is 

increasingly used due to its lower economic cost and easier 

installment implementation in deeper water. And, as the floating 

platform are developed toward deeper water depth, the length of 

the mooring-line become larger and consequently the dynamics 

such as the structural inertia and hydrodynamic damping of the 

mooring-line become more obvious. Moreover, the translating 

and rotational motions of the floating body should be no less the 

threshold value, and the economic cost of mooring-lines is 

supposed to be as low as possible under the condition of required 

structure strength. Therefore, more reasonable analysis and 

results of mooring-lines’ restoring performance, along with its 

dynamic behaviors is crucial to safety design of mooring lines 

along with floating bodies. 
There have been fruitful researches of the mooring-line, 

which are mostly on restoring force (top tension) and floating 

body stability[2-4]. Quasi-static method is one of the most 

popular approaches to calculate the static restoring force of 

catenary. For examples, Qiao[2] presented the static restoring 

force of a catenary, made up of three wire ropes and chains, with 

different buoyancy unit weights and structural properties based 

on classic static catenary theory and piecewise extrapolation. 

Van Den Boom[3] found that the nonlinearities coming from the 

geometry, elastic deformation and acting loads can significantly 

enlarge top tension. Fan[4] studied the mooring line damping for 

the design of a truncated mooring system using an improved 

quasi-static method. 

However, as water depth and structural length increase, the 

dynamic characteristics of mooring-line become more 

significant. Chen[5] calculated the dynamic response of a system 

including a spar and its mooring-lines based on a linear coupling 

approach. He pointed out that if the inertial and damping forces 

of the mooring-line are involved during dynamic response, the 

top tension would get larger. By now, there have been two kinds 

of methods, i.e. lumped-mass method and flexible-bar 

method[6,7], were used to involve the dynamic behavior of 

catenary. In the lumped-mass method, the mooring-line is 

modeled by a series of concentrated-mass points connected by 

linear springs, the inertial force and the added mass coming from 

the fluid is calculated by the motion of the concentrated-mass 

points. For the flexible-bar model, the nonlinear dynamic 

equations of curved flexible bar are build and to be numerically 

solved so as to model nonlinear structural stiffness and to get 

large displacement of catenary. Given an ideal assumption of the 

two ends of catenary being at same level, Zhang[8] studied the 

nonlinear dynamic response of a catenary. Still, the dynamic 

behaviors of mooring line need further research to model a 

practical catenary with less assumptions, and few results of the 

extreme situations such as slack-taut based on the current 

approaches are seen.  

In this study, the non-linearly restoring performance of 

catenary mooring-lines, under consideration of its dynamic 

behaviors, is comprehensively examine based on our 3d dynamic 

vector equations along with the modified FEM simulations 

model. Particularly, the hysteresis character of the restoring 

stiffness and the influences of the catenary dynamics on the 

structure’s performance are presented and discussed. It is found 

that the restoring force of the mooring-line depends on both the 

structural displacement and velocity due to the fluid and 

structural dynamics, and the top-end response can be 

significantly decreased. 

1 The Governing Equations and FEM Simulation of a 
Dynamic Catenary 

The static restoring force and tension distribution of the 

mooring-line can be calculated according to the classical 

catenary theory[2], where only the static force of the mooring 

system is considered. Here, to consider the catenary dynamics 

along with nonlinear geometry/structural and the fluid dynamics, 

the dynamic equations based on 3d curved flexible beam 

approach is employed. The governing equations of a 3d catenary 

(see Fig.1) in terms of vectors[9] can be written as: 

 ( ) ( )EIr r q Ar           (1) 

where λ is a scalar variable represents the effective tension, r is 

the position vector of the catenary, q is the distribute force, ρ and 

A are structural mass density and area respectively, EI is the 

bending stiffness. And the deformation equation is: 

 
2(1 )r r       (2) 

where ε is the strain of the catenary. If the value of the bending 

moment in Eq.(1) is zero, we will have the dynamic equation of 

a catenary of which the external loads include the gravity, 

buoyancy and hydrodynamic forces.  
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FIGURE 1: CATENARY MOORING-LINE MODELS 

Generally, the hydrodynamic force acted on per unit 

structure length can be expressed by the Morison formula[10] as: 

 
2 21

( ) C ( )
2 4 4

D A

D D
f C D V u V u V u V

 
          (3) 

where D and u are the structural diameter and displacement 

respectively. V is the fluid velocity. Combing Eqs.(1), (2) and (3), 

we have a group of nonlinear equations of the dynamic catenary, 
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and a numerical simulation based on FEM is used to solve the 

dynamic equations. 

The catenary is uniformly divided into N two-node Euler 

beam elements. For representativeness and simplicity, only the 

translation displacement in x-y plane [ui,vi] and one rotation 

around z axis θi, of per node, are considered. Then the governing 

equation of the catenary with many degrees of freedom can be 

written as follow： 

 (M + M)U +CU + KU = F   (4) 

where M and M  are respectively the structure mass matrix and 

the added mass matrix. C is the structure damping matrix. K is 

the stiffness matrix. F is the hydrodynamic force and gravity 

acted on the catenary. U is the displacement vector. In order to 

model simultaneously its original catenary shape and the large 

rotation/translation flexibilities the rotation motion between two 

neighboring beam elements is released in our model, it means 

that the rotation angles of the two beam elements are no longer 

consistent with each other at same grid. Subsequently, the system 

rotational degrees of the freedom θ would double as θ,θ′
because of the additional rotation angle. The displacement vector 

of beam element changes from the original form:  

 1 1 1 1[ , , , , , , , ] 1, ,T

i i i i i i i i iu v w u v w i N     U   (5) 

as 

1 1 1 1

1 1 1 1 1
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T

i i i i i i i i i

T

i i i i i i i i i i i

u v w u v w i N

u v w u v w i N

 

   

   

    

 

    

U

U
  (6) 

Then, given the statically indeterminate characteristics 

along with stronger stiffness singularity of the system, here the 

original shape and top tension based on traditional static catenary 

theory is used as the definite conditions so as to eliminate the 

singularity of the stiffness matrix. To run the dynamic response 

analysis, the Newmark method is employed here so as to adjust 

the distribution of the structural acceleration and the nonlinearity 

of the catenary during the integration range by properly changing 

the integration parameters.  

2 Dynamic Response and Restoring Performance of 
the Catenary Mooring-lines 

The structural and geometrical parameters of the catenary 

are listed in Table 1. The dynamic response of the catenary under 

surge motion of the top-end body is analyzed based on our 

numerical simulations, i.e. the displacement, velocity and 

tension of the catenary along structural span are calculated. Then 

the restoring performance and its hysteresis are discussed. 

TABLE 1: THE GEOMETRICAL AND MATERIAL 

PARAMETERS OF THE CATENARY 

Geometrical Value 

Length 800m 

Initial horizontal projection 706m 

Initial vertical projection 350m 

Diameter 0.19m 

Young’s modulus  210GPa 

Density 2513kg/m3 

Poisson’s ratio 0.3 

2.1 Top Tension and Displacement along Catenary 

The typical dynamic response of the catenary for case of a 

regular motion, i.e. 0.05Hz frequency and 5m surge amplitude, 

of the floating wind turbine (FWT) is shown in Fig. 2a. In Fig.2a, 

the top tension of the quasi-static method is also plotted as a 

comparison. It is seen that either the value of the peaks or the 

trough get extremer than, the maximum tension increases by 

30% and the gap value between the peak and trough is about 3 

times of the quasi-static ones owing to the inertial and damping 

effects, while the period of dynamic tension is consistent with 

that of the top-end surge.  

As the motion of the top-end gets larger, the top tension 

response under the condition of the top movement with 0.1Hz 

frequency and 5m amplitude is give in Fig.2b. There is an abrupt 

increase of the dynamic tension while the minimum tension 

almost reaches zero value, which means slack-taut happens. In 

this case, the maximum tension is around three times of the static 

method and even the peak-trough value is about ten times of the 

static method. 

 
(a) 

 
(b) 

FIGURE 2: TOP TENSION RESPONSE OF THE CATENARY (a) 

TOP-END SURGE AMPLITUDE=4m, PERIOD=20s (b) TOP-END 

SURGE AMPLITUDE=5.5m, PERIOD=10s 
The displacements and velocity change significantly as the 

motion of the top-end gets larger, see Fig.3 where the phase track 

of the catenary middle point. It is noted that the center of the blue 

curve, corresponding to smaller motion of the top-end (T=20s, 

A=5.0m) is close to the zero position, that indicates the dynamic 

balance position deviates from the static one. While the center of 

the red curve, i.e. the top-end motion of T=10s, A=5.5m, deviate 

from the zero position, and the shape of the track phase looks no 

longer like elliptical one. Moreover, in Fig.3b, the vertical 

velocity almost keeps being a constant value, i.e. the minimum 

velocity, as the displacement change from its positive peak to 
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negative trough. That means owing to the additional dynamic 

behavior of the catenary, the structural initial/damping forces and 

fluid drag force can balance the structural gravity which is 

supposed to principally cause the structural tension, and 

consequently, slack would happen if no tension is caused. 

 
(a) 

 
(b) 

FIGURE 3: PHASE TRACK OF THE VELOCITY VERSUS 

DISPLACEMENT OF THE MIDDLE POINT (a) HORIZONTAL 

MOTION (b) VERTICAL MOTION 
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FIGURE 4: TOP TENSION RESPONSES OF THE CATENARY 

MOORING-LINE UNDER DIFFERENT CONDITIONS (a) 

TENSION AMPLITUDE OF THE CATENARY (b) TENSION GAP 

OF THE CATENARY 

The maximum top tension and tension gap at different 

amplitudes and frequencies of the top-end motions are given in 

Fig.4. It shows that the values of the maximum top tension (and 

the tension gap) gets larger, e.g. up to 3.5 times of the static value 

particularly for case of snap, as the amplitude and/or frequency 

of the top end get larger.  

2.2 The Non-Linear Restoring Stiffness and Its 
Hysteretic Behaviors 

As presented above, the mooring-line dynamics could 

produce an increase of top tension along with tension amplitude 

difference. In fact, because of involvement of catenary 

dynamics, i.e. the inertial and damping effects, the restoring 

stiffness may change too. The horizontal restoring stiffness will 

be examined here, which are calculated under conditions of 

different top-end amplitudes, i.e. A=7, 5, 4 and 3m, and different 

periods, i.e. T=5, 10, 20 and 40s. The selected results are 

presented in Fig.5 and 6. 
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FIGURE 5: RESTORING CHARACTERISTICS OF SINGLE 

MOORING-LINE (a) RESTORING STIFFNESS OF THE MOORING 

LINE (b) SPECTRUM OF THE RESTORING FORCE 

Fig.5a shows the horizontal restoring stiffness curve of the 

catenary at 20s period and 5m amplitude, and the static stiffness 

is also plotted as a comparison. Interestingly, the dynamic 

stiffness curve shows that the top tension is no longer linearly 

related to only the top-end displacement as it does for case of 

quasi-static scenario, but, notably, it depends on both the top-end 

displacement and velocity approximately in a way of 

approximately ellipse loop, which is called hysteresis loop. And 

differently from the static stiffness, the dynamic restoring force 

does not get its maximum value at the maximum displacement 
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but at a smaller displacement, that produces a smaller dynamic 

stiffness. The hysteresis character of the dynamic stiffness is 

mainly due to the damping effect coming from the structure and 

fluid of the mooring-line. The spectrum plot, shown in Fig.5b, 

indicates that the peak values at frequencies of odd times of the 

excitation frequency is much larger than others.  

It is found that the energy consumption during a period get 

larger as the amplitude (and/or the frequency) increases. In other 

words, the hysteresis effect of the dynamic stiffness gets more 

obvious as the amplitude and/or frequency increase, as shown in 

Fig.6. The energy consumption and mooring-line top tension 

under different load cases are presented in Fig.7.  

 
FIGURE 6: RESTORING LOOPS AT DIFFERENT FREQUENCY 

AND AMPLITUDE 
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(b) 

FIGURE 7: ENERGY CONSUMPTION AND TOP TENSION 

RESPONSES UNDER DIFFERENT TOP-END AMPLITUDES AND 

FREQUENCIES (a) ENERGY CONSUMPTION (b) TOP 

TENSION 

The load cases of the top-end motion are list in Table 2. It 

can be seen in Fig. 7b that, the value of energy consumption from 

Case1 to Case 6 gradually increases, except for Case 1 and Case 

6, where the minimum top tension approaches to zero, or slack 

happens. Then we may say that, the energy consumed by 

hysteretic damping in one cycle may get smaller as the mooring-

line becomes slack. 

TABLE 2: THE LOAD CASES OF THE TOP-END MOTION 
Load cases 1 2 3 4 5 6 

Period/s 40 20 20 10 10 5 

Amplitude/m 6 4 6 4 6 4 

2.3 The Influence of Hysteresis Characteristics on the 
Catenary Response 

   Fig.8 shows the trajectories of different positions along the 

mooring-line while the motion frequency changes (the amplitude 

of the top-end is 6m). It shows that the trajectory loop becomes 

more obvious and the vertical/horizontal displacements become 

smaller owing to the hysteresis characteristics of the mooring-

line, as the motion of the top-end gets faster (or the period gets 

smaller). The trajectory loop becomes more obvious as the 

motion of catenary points, e.g. point 2 and point 3, get larger, 

because of the larger damping effect coming from larger catenary 

motion.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

FIGURE 8: TRAJECTORY OF THE CATENARY (a) 

TRAJECTORY OF POINT 1 (b) TRAJECTORY OF POINT 2 (c) 

TRAJECTORY OF POINT 3 (d) TRAJECTORY OF POINT 4 (e) 

TRAJECTORY OF POINT 5 (f) AXIAL LOCATION OF POINT 1-5  

Particularly, the hysteresis of point 5 appears to be the most 

obvious, see Fig. 8e. And, Fig.9 shows the velocity spectrum of 

Point 5. It can be seen that, as the motion period decreases, the 

moving speed of Point 5 gradually increases. The peak values at 

higher frequencies also gradually increases. If comparing the 

peak values at double and triple excitation frequencies, we can 

see that peak value at triple excitation frequency gets larger, or 

even larger than that of double excitation frequency as the period 

of top-end motion decreases. That also means that the hysteresis 

characteristics of the mooring-line becomes more obvious. 

 
(a) 

 
(b) 

 
(c) 

FIGURE 9: VELOCITY SPECTRUM OF THE CATENARY POINT 

5 (a) TOP-END PERIOD 40s (b) TOP-END PERIOD 20s (c) TOP-

END PERIOD 10s 
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In order to examine the influence of the mooring-line 

hysteresis on the motion the top-end, the dynamic response of 

the top-end is calculated and compared with the quasi-static 

method. The period of the excitation force is 20s, and the first-

order natural period of the system is 30s. The displacement of 

the top-end is shown in Fig.10. It is noted that the displacement 

significantly decreases due to the hysteresis of the mooring-line. 

For examples, the maximum amplitude decreases from 9.4m to 

4.0m, or by more than 50%, and the amplitude decreases from 

4.7m to 3.4m, or by approximately 28% during the steady phase 

of the dynamic response. 

 
(a) 

 
(b) 

FIGURE 10: COMPARISON OF THE TOP-END RESPONSES 

BETWEEN THE DYANAMIC AND STATIC RESULTS  (a) TIME 

HISTORY OF TOP-END DISPLACEMENT (b) THE MAXIMUM 

AND STEADY STATE AMPLITUDE 

3 Conclusion 

The non-linearly restoring performance of catenary 

mooring-lines under consideration of its dynamic effects is 

comprehensively examined based on our modified flexible-beam 

model combining with the FEM simulations. By our numerical 

simulations, the hysteresis characteristics of the restoring 

stiffness and the influences of the catenary dynamics on the 

catenary and top-end responses are presented and discussed. 

Based our numerical results we draw the following conclusion:  

Owing to the damping and inertial effect coming from the 

fluid and structural dynamics, the restoring force of the mooring-

line depends on both the structural displacement and velocity. 

The dynamic stiffness behaves as a hysteresis loop, instead of a 

static line. The energy consumption during one period get larger 

as the amplitude (and/or the frequency) increases. The 

displacement significantly decreases due to the hysteresis of the 

mooring-line. The maximum amplitude decreases by around 

50%, and the amplitude decreases by 28% during the steady 

phase of the dynamic response. 
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