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Abstract

Three distinct length scales are involved in the deformation evolution and catastrophic rupture of het-

erogeneous rocks in general: two essential ones are the specimen size macroscopically and the grain size

at micro-scale respectively, the other is the emerging localized band of deformation and damage. The band

initiates almost nearby the peak load, and the rupture eventually occurs afterwards within the localized

band. In this paper, we report that with the evolution of concentrated high strain and damage in the

localized band, a power-law singularity emerges within the localized band preceding the eventual rupture.

The localization of deformation imposes a spatial non-uniqueness on the power-law singularity, and then

leads to a trans-scale characteristic of the power-law singularity. Based on this characteristic, it is demon-

strated that the singularity presented by the global response of a whole specimen comes from the

singularity of local response in the localized band. The localization and the power-law singularity are

associated precursory events, spatially and temporally, respectively, before macroscopic rupture. In par-

ticular, based on the power-law singularity exhibited in the zonal areas near or across the rupture surface,

a prediction of the occurrence time of catastrophic rupture can be made accordingly. This provides a

practically helpful approach to the prediction of rupture, merely by means of monitoring the zonal areas

adjacent to the localized band.
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Introduction

Localization of deformation and damage is a general phenomenon in concrete (Jin et al., 2018; Li and
Wu, 2018; Markeset and Hillerborg, 1995) and geological materials (Baud et al., 2004; Dewers et al.,
2017; Harnett et al., 2018; Xu et al., 2004) and serves as an effective precursor of catastrophic rupture
(Hao et al., 2007, 2010; Li et al., 2000). After localization, the strain field of a specimen bifurcates into a
two-part continuum consisting of a less-deformation zone and a localized band where the deformation
and damage are concentrated (Bai et al., 2001; Colpo et al., 2017; Hao et al., 2007, 2010; Hill and
Hutchinson, 1975; Lockner et al., 1991; Rudnicki and Rice, 1975; Toussaint and Pride, 2002). The
localized band then becomes mechanically and physically distinct from the outside zones. The rupture of
a specimen eventually occurs in this localized band. As a consequence, the localized band with a smaller
characteristic scale is a key inducing catastrophic rupture (Bai et al., 2001; Hao et al., 2007, 2010), which
strongly depends on the nonlinear evolution and the rapid cascade of the micro-damages and micro-
defects (Kale and Ostoja-Starzewski, 2017; Main et al., 2010; Rong et al., 2006; Wei et al., 2000).

Catastrophic rupture occurs when the energy release from the testing system and (or) the outside
of the localized band compensates the requirement of the rupture energy of the localized band
(Cook, 1965; Hao et al., 2007, 2010). It is a self-sustaining process that does not need any supplying
of external work. In order to characterize the catastrophic rupture, Hao et al. (2013) and Xue et al.
(2018) introduced a response function

R ¼ d�=d� ð1Þ

defined as the relative change of response quantity X with respect to the controlling variable �. At
the rupture point, an infinitesimal increase of the controlling variable will lead to a finite increment
of the response quantities (Hao et al., 2013). Thus, R is divergent at catastrophic rupture point and
exhibits a singularity. More importantly, in the vicinity of the rupture point, R increases with a
power-law acceleration with approaching to rupture point, that is

R ¼ BF 1� �=�Fð Þ
�F ð2Þ

where BF is a constant and bF is the power-law singularity exponent. Subscript F represents the
value at the rupture point. If the controlling variable � increases linearly with respect to time,
equation (2) can be rewritten as

d�=dt ¼ K 1� t=tFð Þ
�F ð3Þ

where K is a constant and tF is the rupture time. This expression (equation (3)) can also be deduced
from the famous Voight’s relation (Voight, 1988, 1989)

€� _��� ¼ A ð4Þ

with K¼ [A(� � 1)]1/(1��) and bF¼�1/(� � 1). Here � is an exponent measuring the degree of non-
linearity, and A is a constant. The dot represents the first and second derivatives of the response
quantity X with respect to time. The validation of predicting rupture time based on equations (2)
and (3) has been widely verified in many retrospective predictions (Boué et al., 2015; Hao et al., 2016;
Smith and Kilburn, 2010; Voight and Cornelius, 1991; Xue et al., 2018) of laboratory experiments
(Hao et al., 2013; Kilburn, 2012), landslides (Helmstetter et al., 2004), earthquakes (Ben-Zion and
Lyakhovsky, 2002; Sornette and Sammis, 1995), and volcanic eruptions (Kilburn, 2003;
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Main, 1999). Especially when bF¼�1 (i.e., �¼ 2), the rupture time can be determined by extra-
polating the inverse rate R�1 to the abscissa (Boué et al., 2015; Voight, 1988).

However, the power-law singularity exponent bF is not always a constant in reported measure-
ments but exhibits a large dispersion (Boué et al., 2015; Cornelius and Scott, 1993; Hao et al., 2017;
Jin et al., 2012; Kilburn, 2003; Voight and Cornelius, 1991; Xue et al., 2018). The uncertainty
resulting from the scatter of the exponent makes it difficult to use such methods for prediction of
the rupture time (Boué et al., 2015; Hao et al., 2017; Xue et al., 2018). On the one hand, this change
of the power-law exponent is inherently related to the energy criterion of catastrophic rupture (Xue
et al., 2018). It has been shown that the power-law exponent bF ranges from �1/2 to �1 (Xue et al.,
2018). The closer to its lowest value �1 of bF, the closer to the rupture process without work input
the loading process becomes. On the other hand, this may also be related to the various data sets
adopted from various stations corresponding to the concerned rupture event, for some of them are
within or without the localized zone. As mentioned above, after localization, damage and deform-
ation concentrate in the localized band and increase rapidly, and the eventual rupture occurs in this
localized band. Hence, recognizing the relationship between localization and power-law acceleration
precursor is essential for understanding catastrophic rupture and the scatter of the power-law expo-
nent. Especially, the effects of localization on the power-law singularity with a changeable power-law
exponent are crucial for the prediction of catastrophic rupture. This is particularly important in
practice, because the data such as changes of length, tilt, acoustic emission and deformation, moni-
tored in landslides, earthquakes and volcanic eruptions, are always measured in some local stations.

In this paper, the relationship between localization and power-law singularity has been investi-
gated, based on the uniaxial compression tests of marbles. The spatio-temporal evolution of strain
field on the specimen surface is measured by using the digital image correlation (DIC) method, and
then the trans-scale behavior of the power-law singularity with a changeable power-law exponent is
investigated by varying the size of sampling zone. Based on the power-law singularity of the
responses near or across the rupture surface, a method is suggested to predict the lower and
upper bounds of the rupture time in real-time. This method further implies a feasibility to predict
the occurrence time of the natural catastrophic ruptures like earthquakes in terms of the data sets
surveyed in local areas nearby the faults.

Experimental methodology

In experiments, rock (Marble) specimens are compressed by moving the crosshead of the testing
machine at a speed of 0.05mm/min. The governing displacement U of the testing machine, which is
continuously measured by a linear variable differential transformer (LVDT) with a resolution of 1mm,
is the controlling variable. Specimens are cut into cubes with sizes of 20� 20� 40mm3 (Figure 1(a))
and loaded along the length direction by using MTS 810 material testing system with a stiffness about
210 kN/mm (Figure 1(b)). The average initial linear stiffness of specimens is 283 kN/mm.

The deformation u of a specimen along the length direction is measured by an extensometer held
between the upper and lower platens (Figure 1(c)) with a resolution of 1 mm. The force sensor with a
resolution 1 kN is mounted on the upper platen (Figure 1(b)). The DIC method (Hao et al., 2007; Xu
et al., 2004) is used to acquire the displacement field and the strain field of a specimen surface
(Figure 1(b)), and the speckle photos of the specimen surface are recorded with a rate of 25 frames
per second by using a charge coupled device (CCD) with a resolution of 768 (H)� 576 (V). The
loading and acquisition systems are shown in Figure 1(d).

Catastrophic rupture usually occurs beyond the peak load when the specimen is loaded by
controlling the displacement (Figure 2). According to the energy criterion of catastrophic rupture,
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the tangent slope of the F–u curve is equal to the negative stiffness (i.e., �k) of the testing machine at
the rupture point (Figure 2; Cook, 1965; Salamon, 1970). It has been shown (Hao et al., 2013; Xue
et al., 2018) that the response function R¼ du/dU, defined as the relative change of the global
deformation u of a specimen with respect to the controlling displacement U, presents a power-law
acceleration before rupture

R ¼ BF 1�U=UFð Þ
�F ð5Þ

When U¼UF, R tends to infinite and exhibits a power-law singularity, which can be derived from
the energy criterion (Xue et al., 2018).

Deformation localization and its spatiotemporal evolution

In order to illustrate the evolution properties of localization, a series of zonal areas parallel to the
rupture surface (Figure 3(a)) of a specimen are meshed on the observed surface (Figure 3(b)).

Figure 1. Illustrations of a tested specimen, the testing machine and the acquisition system. (a) A tested specimen

with a speckle surface. (b) The MTS 810 testing system and the DIC acquisition system. (c) A close view of the

platens, a tested specimen and the extensometer. (d) Schematic diagram of the testing and acquisition system.
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A Cartesian coordinate system (xy-plane) is established on the observed surface, and the y-axis is
parallel to the loading direction (Figure 3(b)). A reference axis of Y-direction is set to be perpen-
dicular to the rupture surface, and then, as shown in Figure 3(b), Yi denotes the distance between the
center of the ith zonal area and the rupture surface. The width of one zonal area is far less than the
characteristic length of a whole specimen, thus, these meshed zonal areas can be used to investigate
the local evolution of the displacement filed and strain field on the observed surface of a specimen.

Figure 3. Rupture photo and the reference coordinate axes. (a) Eventual state of a specimen with a rupture surface.

(b) The Cartesian coordinate systems on the observed surface of a ruptured specimen. The load is applied along

y-direction, and Y-direction is perpendicular to the rupture surface. The narrow green zone parallel to the rupture

surface illustrates one of the zonal areas.

Figure 2. The typical force–displacement curve (F�U) and the force–deformation curve (F�u) of a specimen. Four

points A, B, C, and D denote the representative states of the specimen at different loading stages. UF and uF represent

the values of U and u at the catastrophic rupture. k represents the stiffness of the testing machine, and the red straight

line with slope �k is the tangent of F–u curve at the catastrophic rupture.
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Figure 4 shows the displacement field (removed the global average values u
�

x and u
�

y) on the
observed surface of a specimen at four representative points of A, B, C, and D in Figure 2, where
u�x and u�y represent the displacements in x- and y-directions, respectively. The upper symbol ‘‘¼’’
denotes the average value of each displacement component of the whole specimen at every individual
time. For example, u

�

x ¼
1
M

PM
i¼1 u

�
xi, where M is the number of all calculation points on the whole

observed surface. It can be seen that at the early elastic stage (e.g., at the point of A), the displacement
field is almost uniform with small random fluctuations, and the contour lines are consistent with no
distortion. Near the peak load point (subgraphs B in Figure 4), it begins to deviate from the uniform
state and the contour lines become distorted. In some areas, the displacement gradients become large
and then the deformation becomes concentrated, i.e., localization of deformation and damage begins
to nucleate. The nucleation zone of the localization is located near the corners and the diagonal of a
specimen surface (subgraphs B in Figure 4). After the peak load, the specimen enters the softening
stage (Figure 2), and the sampling point C is located in such a stage. At this stage, the displacement
contour lines of the surface are further distorted and become denser near the diagonal line. Both of the
amplitude and gradient of the displacement increase rapidly. The localized band formed in this stage.
Subgraphs D in Figure 4 are corresponding to the last photo captured before rupture. It can be seen
that the rupture eventually occurs in the localized band (Figures 3(a) and 4).

Localization of damage and deformation is an essential characteristic preceding catastrophic
rupture. Beyond the peak load, the bearing capacity of a specimen decreases rapidly (Figure 2)
and the local displacement field changes drastically (Figure 5). In Figure 5, the average displacement
components (i.e., �u�x and �u�y) of all of the zonal areas present dramatically changes near the rupture
point after removing the entire average values u

�

x and u
�

y, and a large displacement gradient occurs
between the positive growth region and the negative growth region. It is resulted from the trans-scale
cascade of micro-damages and micro-defects, which destroys the uniformity of the field and leads to
the emergence of localization (Rong et al., 2006).

The evolution of strain field (Figure 6) shows a more clear process of localization. As shown in
Figure 6, �"Y represents the strain component on the observed surface that is perpendicular to the
rupture surface, and four subgraphs A, B, C, and D correspond to the representative states
illustrated in Figure 2. It is seen that at the early elastic stage, the strain field is almost uniform
(Figure 6-A) with small random fluctuations, then the localized band nucleates (Figure 6-B) and
extends (Figure 6-C), finally the extension of the localized band leads to a catastrophic rupture
(Figure 6-D).

Response function and power-law singularity in zonal area

The localized band shown in Figure 6 is very narrow with a width �7mm and is about 18% of the
characteristic length of a specimen. Once the localized band formed, the strain concentrated in this
area increases rapidly as the loading progresses (Figure 7(a)). Especially, the averaged strain com-
ponent �"Y perpendicular to the rupture surface in this localized band presents a sharp increase in the
vicinity of rupture (Figure 7(a)). In order to characterize this accelerating behavior, based on equa-
tion (1), the response function corresponding to these zonal areas is defined as

Rz ¼
wzd �"Y
dU

ð6Þ

where z denotes the concerned zone and wz is the width of the zonal area. The linear part of the
normalized zonal response function Rz/Rz,end with respect to 1 � U/UF in the double logarithmic
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Figure 4. The evolution of the displacement field on the surface of a specimen. Here, the average values of

displacement components of the entire field of the specimen, namely u
�

x and u
�

y , have been removed. (a) The field of

u�x � u
�

x . (b) The field of u�y � u
�

y . (c) The field of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu�x � u

�

x Þ
2
þ ðu�y � u

�

y Þ
2

q
. The letters A, B, C, and D in the figures

correspond to the representative states illustrated in Figure 2, respectively.

Xue et al. 7



graph shown in Figure 7(b) indicates that the acceleration behavior of Rz follows a power-law
relationship

Rz ¼ BF, z 1�U=UFð Þ
�F, z ð7Þ

Figure 6. The evolution and localization of the vertical strain field on the surface of a specimen. Here "Y is the strain

component perpendicular to the rupture surface. Four subgraphs A, B, C and D correspond to the representative

states illustrated in Figure 2.

Figure 5. The spatio-temporal evolution of the average displacement of the zonal areas. Here, the average

values of displacement components of the entire field of the specimen, namely u
�

x and u
�

y , have been removed.

(a) �u�x Yi,Uð Þ � u
�

x ðUÞ and (b) �u�y Yi,Uð Þ � u
�

y ðUÞ correspond to the spatio-temporal evolution of the average displacement

components along x- and y-directions in a narrow zonal area located at Yi. The highlighted part near the rupture

surface (Y¼ 0 mm) indicates a large gradient of the displacement.
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with U approaching to UF, where BF,z is a parameter, bF,z is the power-law singularity exponent
in the zonal area, and the normalization factor Rz,end is set to be the last value of Rz captured
before rupture, for the increase of Rz is monotonous and its last value is the maximum.
When U¼UF, Rz will tend to infinite. The least square fitting shows that the power-law singularity
exponent bF,z in all zonal areas in the localized band almost presents an identical value of bF,z¼�1
(Figure 7(b)).

Power-law singularity and localization are two essential characteristics of catastrophic rupture
(Figure 8). The former shows the temporal acceleration evolution of the strain in the localized band,
and the latter reflects the spatial accumulation of deformations and damages. The power-law accel-
eration coupled with localization of deformation and damage induces the eventual catastrophic
rupture.

Trans-scale characteristic of power-law singularity

The coupled relationship between localization and power-law acceleration exhibits a trans-
scale characteristic, which can be characterized by various response functions Rz in various sampling
zones with a variable width w (see Figure 9(a)). The center of the sampling zone is set on the rupture
surface, and the area of the sampling zone and the whole observed surface of a specimen are
denoted as Aw and A0, respectively. As Aw changes with w, Rz always presents the power-
law singularity (Figure 9(a)), but the values of the power-law exponent bF,z increase with the increase
of Aw (Figure 9(b)). When the sampling zone is narrow (Aw/A0 ! 0) and covers the rupture
surface where the strain is concentrated, bF,z is almost equal to �1. In contrast, when the
sampling zone covers the whole observed specimen surface (Aw/A0¼ 1), Rz becomes the macroscopic
average response of the whole specimen. Therefore, the global power-law singularity
exhibited by the response function R (equation (5)) and others calculated in different sampling

Figure 7. The emergence of the power-law singularity of the response function Rz in zonal areas near the rupture

surface. (a) Accelerating evolution of the average strain component �"Y perpendicular to the rupture surface in each

zonal area and (b) the power-law singularity of the normalized zonal response function Rz/Rz,end, corresponding to the

zones 1 to 5 with different distances to the rupture surface in (a). Here Rz,end is the last value of Rz captured before

rupture.
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zones all come from the singular response of the localized band. Furthermore, it has been
demonstrated that the power-law exponent bF of the global response function R inherently ranges
from �1/2 to �1 (Xue et al., 2018). Therefore, the power-law exponent bF,z of Rz also falls into
this range.

Figure 9. The trans-scale characteristics of the power-law singularity. (a) The log–log relation between the nor-

malized responses function Rz/Rz,end and the normalized governing displacement, showing the power-law behavior

with different values of exponent resulting from the different widths of the sampling zones across the rupture surface.

Here, as shown in the inset, w is the width of the sampling zone across the rupture surface and l is the characteristic

length of the specimen. Aw and A0 are the areas of the sampling zone and the whole observed surface of a specimen,

respectively. (b) Power-law singularity exponent varies with the area of the sampling zone across the rupture surface.

Figure 8. A sketched relationship between localization of deformation and damage, power-law singularity and

eventual catastrophic rupture.
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Analytical description of relationship between localization and power-law
singularity

The trans-scale characteristic of the power-law singularity and its relationship with localization can
be further demonstrated based on a simplified mean-field model (Hao et al., 2007, 2010). When
localization occurs, a specimen can be regarded as two parts in series (Figure 10), i.e., a localized
zone with continuing deformation and a non-localized zone (unloading zone) with potential release
of elastic energy. The load apparatus remains the other elastic part with stiffness k. The relative scale
of the localized band to the characteristic length l of a sample is �. Then, the whole deformation of a
specimen can be expressed as

u ¼ u1�� þ u� ð8Þ

where u1�� and u� represent the deformations of the non-localized zone and the localized zone,
respectively. Then the response function of a specimen R¼ du/dU can be rewritten as

R ¼
du1��
dU
þ
du�
dU

ð9Þ

The deformation u1�� of the non-localized zone is

u1�� ¼ "1�� 1� �ð Þl ð10Þ

where "1�� is the average strain of the non-localized zone. Therefore

du1�� ¼ d "1�� 1� �ð Þl
� �

¼ l 1� �ð Þd"1�� þ "1��d 1� �ð Þ
� �

ð11Þ

Figure 10. A simplified mean-field model for a series system consisting of a specimen with localized deformation

band and the loading apparatus. Here l and � represent the characteristic length of the specimen and the proportion

of the localized band in the specimen, respectively. The spring with a stiffness k represents the load apparatus. u is the

deformation of the specimen. U and F represent the governing displacement and force of the testing machine.
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In equation (11), l 1� �ð Þ, "1�� and both of their increments are finite (see Figures 6, 7 and 10), so
du1�� 51. Additionally, dU is also finite. Thus, in equation (9), du1��

�
dU does not cause the

singularity. Meanwhile, the deformation of localized zone is

u� ¼

Z l� Uð Þ

0

"� y,Uð Þdy ð12Þ

where "� is the average strain of the localized zone. Then

du�
dU
¼

Z l� Uð Þ

0

d"� y,Uð Þ

dU
dyþ "� �l,Uð Þ

ld�

dU
ð13Þ

In equation (13), "� , l�, and d�=dU are finite, thus the second term to the right of equation (13)
does not tend to singularity. Moreover

�"� ¼
1

l�

Z l� Uð Þ

0

"� y,Uð Þdy ð14Þ

leads to that

Rz ¼
l�d �"�
dU
¼

Z l� Uð Þ

0

d"� y,Uð Þ

dU
dy ð15Þ

Consequently, the singularity of the global response function R (equation (9)) results from the
singularity of the response function Rz (equation (15)) in the localized band.

Predicting catastrophic rupture based on power-law singularity of localized
band

The power-law singularity of localized band gives a way to predict catastrophic rupture through the
evolving process of the local information. For the sake of prediction, equation (7) is rewritten as a
linear form that

R
1=�F, z
z ¼ C UF �Uð Þ ð16Þ

where C ¼ B
1=�F, z
F,z =UF. When U¼UF, R

1=�F, z
z ¼ 0. Hence, UF can be determined by linearly extra-

polating the line R
1=�F, z
z to the abscissa. This kind of prediction method has been validated and

applied in many catastrophic ruptures and natural hazards especially when bF,z¼�1 (Cornelius and
Voight, 1994, 1995; Kilburn, 2003; Kilburn and Voight, 1998; Voight, 1988). However, because of
the trans-scale characteristic of the power-law singularity mentioned above and the inherent change-
ability (Xue et al., 2018), the power-law exponent is not always equal to �1. Moreover, the value of
bF,z is even unknown before rupture. To solve this problem for prediction, Xue et al. (2018) suggest a
prediction method by replacing UF with the current sampling endpoint Ut in equation (7), and then
the response function in a zonal area can be expressed as

Rz ¼ Bt, z 1�U=Utð Þ
�t, z ð17Þ
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where Bt,z is a parameter and bt,z is the reduced exponent. Experimental results indicate that bt,z
decreases as Ut approaches to UF (Xue et al., 2018). Apparently, bt,z¼ bF,z when Ut¼UF (see
equations (7) and (17)). Similarly, the linearizing form of equation (17) can be written as

R
1=�t, z
z ¼ Ct Ut �Uð Þ ð18Þ

Figure 11. A prediction of the catastrophic rupture based on the zonal response function and the range of the

power-law exponent from �1 to �1/2. Here, as an example, the zonal response function is adopted from the zone 3

in Figure 7. The red pentagram denotes the rupture point, i.e., UF¼ 0.2390 mm. Both UF,bt,z and UF,�1/2 provide the

predicted lower bounds of the catastrophic rupture, and UF,�1 is the upper bound, respectively. (a) bt,z¼�0.31,

UF,bt,z¼ 0.2386 mm, UF,�1/2¼ 0.2389 mm, UF,�1¼ 0.2394 mm. (b) bt,z¼�0.33, UF,bt,z¼ 0.2387 mm, UF,�1/2

¼ 0.2389 mm, UF,�1¼ 0.2393 mm. (c) bt,z¼�0.42, UF,bt,z¼ 0.2388 mm, UF,�1/2¼ 0.2389 mm, UF,�1¼ 0.2392 mm.

(d) bt,z¼�0.56, UF,bt,z¼ 0.2389 mm, UF,�1/2¼ 0.2389 mm, UF,�1¼ 0.2392 mm.
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where Ct ¼ B
1=�t, z
t,z =Ut. It is clear that R

1=�t, z
z has a linear relationship with U, and the intersection of

R
1=�t, z
z and the abscissa will be the lower bound (denoted as UF,bt,z) of UF. Furthermore, as the

analysis before, bF,z ranges from �1/2 to �1, and bF,z is the lower bound of bt,z. Substituting �1/2
for bt,z in equation (18), the another lower bound (denoted as UF,�1/2) of UF can be predicted
(Figure 11). Similarly, the upper bound (denoted as UF,�1 in Figure 11) of UF can be determined
by setting bt,z¼�1. As an example, Figure 11 shows details of a predicting process based on the
power-law acceleration behavior of response function of band 3 in Figure 7. It is seen that the
prediction interval constructed by the lower and upper bounds containing UF narrows gradually as
sampling in real-time. Both predicted values of the lower and upper bounds consistently converge to
the actual value UF as Ut approaching to the real rupture point UF.

Figure 12 illustrates the real-time prediction results of the upper bounds with different sizes of the
sampling zone. It is shown that the power-law precursor of response function in different zonal areas with
different sizes of the sampling zone gives good predictions, although it has different values of the power-
law exponent. This implies that the local information monitored at the stations in the zonal areas may be
available to predict the occurrence time of catastrophic rupture in spite of the existence of localization.
And the narrower is the sampling zone surrounding the rupture surface, the predicted values is closer to
UF. These results provide an operability and a convenience in application, since it is no longer necessary to
capture the complete spatiotemporal information of the whole field in practice at all.

Conclusions

In summary, the present study reveals a close relationship between the localization of deformation
and the power-law singularity, both characterizing the catastrophic rupture. It is found that the

Figure 12. The comparison of predictions made by means of the zonal strain field information, but either from the

narrow zones in the localized band with different distances to the rupture surface (circle) or from the zones with

different areas across the rupture surface (square). Aw and A0 are the areas of the sampling zone (Figure 9(a)) and the

whole observed specimen surface, respectively.
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accelerating evolution of the strain in the zones near or across the rupture surface always exhibits
a power-law singularity, but with a changeable power-law exponent from �1/2 to �1, prior to
catastrophic rupture. In particular, as the concerned zone, either near or across the rupture surface,
gets closer to the rupture surface or narrower, the power-law singularity exponent decreases, nearly
down to �1, showing a location-dependent characteristic. This power-law singularity obtained in
these zonal areas can be used to make prediction of the occurrence time of catastrophic rupture
in real-time. Furthermore, owing to the scale-invariance of power-law, the reported results imply a
feasibility to predict the catastrophic rupture in even larger scales, perhaps earthquakes based on the
surveys in the local areas nearby the faults.
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Appendix

Notation

Aw the area of the sampling zone on a specimen surface
A0 the area of the observed surface of a specimen
l characteristic length of a specimen
R response function of a specimen, R ¼ du/dU
Rz response function in a zonal area, Rz ¼

wzd �"Y
dU , where z denotes the concerned zone, while

wz and �"Y are the width and the average strain in the concerned zone, respectively
u deformation of a whole specimen along loading direction

u�x, u
�
y components of the displacement field along x- and y-direction on the observed surface

of a specimen
�u�x, �u�y average values of u�x and u�y in a zonal area on the observed surface of a specimen
u
�

x, u
�

y components of the global average displacement on the observed surface of a specimen
U governing displacement of the testing machine

UF displacement of the testing machine at catastrophic rupture
UF,�t,z lower bound of UF predicted by using �t,z
UF,�1/2 lower bound of UF predicted by using �t,z ¼ �1/2
UF,�1 upper bound of UF predicted by using �t,z ¼ �1

Ut governing displacement of the testing machine at real-time termination of data sampling
w the width of the sampling zone on a specimen surface
wz the width of the zonal area

�F power-law exponent of R
�F,z power-law exponent of Rz

�t,z reduced exponent of Rz

� the ratio of the width of the localized band to the characteristic length of a specimen
"Y strain component perpendicular to the rupture surface
�"Y average value of "Y in a zonal area on the observed surface of a specimen
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