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Atomistic structural mechanism for the glass transition: Entropic contribution
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A popular Adam-Gibbs scenario has suggested that the excess entropy of glass and liquid over crystal
dominates the dynamical arrest at the glass transition with exclusive contribution from configurational entropy
over vibrational entropy. However, an intuitive structural rationale for the emergence of frozen dynamics in
relation to entropy is still lacking. Here we study these issues by atomistically simulating the vibrational,
configurational, as well as total entropy of a model glass former over their crystalline counterparts for the entire
temperature range spanning from glass to liquid. Besides confirming the Adam-Gibbs entropy scenario, the
concept of Shannon information entropy is introduced to characterize the diversity of atomic-level structures,
which undergoes a striking variation across the glass transition, and explains the change found in the excess
configurational entropy. Hence, the hidden structural mechanism underlying the entropic kink at the transition
is revealed in terms of proliferation of certain atomic structures with a higher degree of centrosymmetry, which
are more rigid and possess less nonaffine softening modes. In turn, the proliferation of these centrosymmetric
(rigid) structures leads to the freezing-in of the dynamics beyond which further structural rearrangements become
highly unfavorable, thus explaining the kink in the configurational entropy at the transition.

DOI: 10.1103/PhysRevB.101.014113

I. INTRODUCTION

The glass transition is generally regarded as the phe-
nomenon in which a viscous liquid circumvents crystallization
and evolves continuously into a disordered solid state directly
during fast cooling [1–5]. It is a typical example of the falling-
out-of-equilibrium phenomenon that occurs for almost any
system the relaxation time of which surpasses laboratory time
scales [6]. Gibbs and DiMarzio [7] suggested that the excess
entropy of glass and liquid over crystal originates entirely
from the configurational entropy which governs the relaxation
timescale. This formulation lays a robust foundation for the
Adam-Gibbs relationship, which provides a connection be-
tween dynamics and thermodynamics of glass transition, i.e.,
time and entropy [8–11].

Also in the potential energy landscape (PEL) picture
[2,12,13], it is assumed that the vibrational entropy is in a
relation of linear response with temperature [14] and plays
a minor role compared to configurational entropy. A recent
simulation also revealed that the ideal glass state is not only
vibrational [15]. To validate the entropic scenario, configura-
tional, and vibrational contributions to the excess entropy have
been evaluated for molecular and network glasses [16,17],
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as well as computer Lennard-Jones liquids [18,19]; however,
there are only very few reports on metallic glass-forming
systems available in the literature.

It is the lack of thermodynamic stability of supercooled
liquids against crystallization in experiments that hinders
separating the vibrational and configurational entropy across
the glass transition. Recently, Smith et al. have successfully
obtained the phonon density of states (DOS) thanks to the
advances in neutron flux and instrument efficiency for in-
elastic neutron scattering (INS), which enables capturing of
vibrational states in a very short time window feasible above
Tg [20]. These experiments suggest that vibrational entropy
is indeed trivial, or featureless, against its configurational
counterpart.

Nevertheless, an entropic picture including atomistic in-
formation in the entire temperature space is missing. As a
result, a question naturally arises about which atomic-level
structures change the most across the transition [5,21,22].
While there exist some hints which may be recognized as
structural signatures of glass transition [23–26], an explicit
link between structural mechanism and configurational en-
tropy for the dynamical arrest is missing [5,21,22,27].

Here we fill this gap by disentangling the specific contri-
butions of vibrational and configurational entropy across the
glass transition and by relating the configurational entropy to
the distribution of atomic-level structures. Upon introducing
a Shannon information entropy measure of local structural
diversity, we rationalize the structural mechanism for the
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glass transition which is responsible for the variation in con-
figurational entropy. The resulting scenario also offers the
unprecedented perspective of linking entropy, structure, and
mechanical properties into a single unifying framework.

II. SIMULATION DETAILS

The molecular dynamics (MD) simulations are performed
by LAMMPS [28] on a prototypical Cu50Zr50 glass-forming
liquid which has been widely studied in simulations. The
force field is described by a Finnis-Sinclair type embedded-
atom method (EAM) potential [29]. A model simulation box
containing 10 976 atoms with dimensions 60 Å × 60 Å ×
60 Å is used for estimating the phonon density of states.
A bigger simulation box with 31 250 atoms is adopted for
studying the structural motifs and their statistical occurrence.
The glass sample is prepared by quenching an equilibrium
liquid at 2000 K to 0 K with a cooling rate of 1010 K/s. A
constant temperature, pressure, and atom number ensemble is
used for both cooling and heating. The phonon is obtained
by diagonalization of the Hessian matrix. Through Intel Math
Kernel Library and LAPACK, we diagonalize the Hessian
matrix based on the EAM formulation to obtain the vibrational
normal modes [30–32]. Then the phonon DOS is obtained
in a standard way as D(ω) = 1

3N−3

∑3N−3
l=1 δ(ω − ωl ), with N

being the number of atoms, l the number of vibrational modes,
and ω the eigenfrequency. Finally, the local structure motifs of
inherent structures are categorized by the Voronoi tessellation.
A standard four digit descriptor 〈n3, n4, n5, n6〉 is used to label
a Voronoi polyhedron, where ni is the number of facets with i
edges around a central atom [33,34].

III. RESULTS AND DISCUSSION

To quantitatively decouple the specific roles of vibrational
entropy Svib and of configurational entropy Sconf across the
glass transition, we treat the total entropy as Stot = Svib +
Sconf , which can be obtained by thermodynamic integration
after heating a glass to liquid, i.e.,

Stot =
∫ T

0

dQ

T
=

∫ T

0

dU

T
(P = 0). (1)

Here T is temperature, Q is the absorption heat, U is internal
energy, and P is pressure.

Figure 1 shows the variation of thermodynamic quantities
as temperature involves. In Fig. 1(a), the glass transition is
clearly signaled at Tg = 695 K by a kink of the volume-
temperature curve. The total entropy of glass and crystal over
their 0 K reference is displayed in Fig. 1(b) from 0 K to
1200 K. One may notice that the total entropy diverges around
glass transition. To further quantify this feature, we plot the
excess total entropy, �Stot, of glass and liquid over crystal in
Fig. 1(c). �Stot is defined as

�Stot = Sglass
tot − Sxtal

tot . (2)

Here, the multiple crystalline phases are considered as refer-
ences for the noncrystalline counterparts, i.e., the weighted
mean of orthorhombic Cu10Zr7 and Laves CuZr2 phases at
0–988.15 K, and a B2 Cu50Zr50 phase at 988.15–1208.15 K
according to Cu-Zr binary phase diagram [35]. In the
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FIG. 1. Glass transition and excess total entropy. (a) Temperature
dependence of the volume of a glass-forming liquid during cooling,
the discontinuity in slope indicates the glass transition temperature,
Tg = 695 K. (b) Temperature dependence of total entropy in disor-
dered phase and crystal. (c) Temperature dependence of excess total
entropy �Stot .

following, the symbol � denotes the difference between glass
(liquid) and crystal in a specific physical quantity. It is noted in
Fig. 1(c) that the excess total entropy exhibits two kinks in the
whole temperature range. The first one at low temperature is
due to a change in vibrational entropy, which will be explained
later in detail. With respect to the second kink at higher T,
it coincides with the glass transition temperature where the
excess entropy experiences a significant increase, consistent
with the Adam-Gibbs entropic scenario [8].

As for the vibrational entropy, we calculate the phonon
DOS of both glass (liquid) and crystals as shown in Fig. 2. The
phonon DOSs are calculated over a wide temperature range
spanning from far below to far above the glass transition. The
data are displayed in Fig. 2(a) for selected temperatures from
10 K to 1200 K. To calibrate the simulations, we also compare
the numerical data with INS experimental measurement of
phonon at 600 K, as shown in Fig. 2(b). Although MD
overestimates the soft modes and underestimates the high-
frequency vibration, the simulations are overall comparable to
the experiment. The extra soft modes in simulations are from
the model preparation with an extremely high cooling rate
due to the notoriously limited timescale in MD. For crystals,
the vibrational DOSs of Cu50Zr50, Cu10Zr7, and CuZr2 are all
shown in Fig. 2(c), accounting for the different thermodynam-
ically stable crystalline phases at different temperatures.

Considering the bosonic nature of phonon, the vibrational
entropy can be calculated from DOS via [20,36]

Svib(T ) = 3kB

∫ ∞

0
g(E ){[1 + n(T )] ln [1 + n(T )]

−n(T ) ln n(T )}dE . (3)
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FIG. 2. Phonon of glass-forming liquid and crystal. (a) Phonon
DOS of glass and liquid over wide temperature range. (b) Compari-
son of phonon DOS between simulation and experiment at 600 K.
(c) Phonon DOS of three crystal phases including orthorhombic
Cu10Zr7, Laves CuZr2, and B2 Cu50Zr50.

Here n(T ) = {exp[E/(kBT )] − 1}−1 is the Bose-Einstein oc-
cupation number with kB the Boltzmann constant. g(E ) is
the normalized phonon DOS and E = h̄ωl is the phonon
energy. The calculated vibrational entropy versus temperature
is shown in Figs. 3(a) and 3(b) for both glass and crys-
tals. It is seen that our calculations agree quantitatively with
experiments. The vibrational entropies evolve continuously
from glass to liquid without any noticeable discontinuity.
The excess vibrational entropy of glass (liquid) over crystal
�Svib = Sglass

vib − Sxtal
vib is further plotted in Fig. 3(c), which
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FIG. 3. Vibrational entropy of (a) glass-forming liquid and
(b) crystal as a function of temperature. The simulations are cal-
ibrated to the experiments. (c) Temperature dependence of excess
vibrational entropy of glass and liquid over crystal. The error bars in
(c) stand for the standard deviation of the entropy in five statistically
independent configurations.
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FIG. 4. Panorama of excess total and vibrational entropy over
entire temperature range. The excess total entropy experiences abrupt
increase upon glass transition with dominating contribution from
its configurational component. The simulations are calibrated by
experiments.

exhibits two kinks in analogy with the excess total entropy;
see Fig. 1(c).

Once one has the excess total entropy �Stot and the excess
vibrational entropy �Svib, the exact role of configurational
entropy

�Sconf = �Stot − �Svib (4)

played in glass transition can be examined by subtracting the
vibrational part from the total entropy. The excess entropy of
glass (liquid) over crystal is summarized in Fig. 4 over the
entire temperature range, which includes the temperature ob-
servation window of the experiments. The excess vibrational
entropy is trivial in most of the temperature range compared
with configurational entropy. The striking variation in excess
entropy near the glass transition is mainly from the change
in configurational entropy, whereas the vibrational entropy
varies moderately at the transition. The bare configurational
entropy is further shown in Fig. 5(d) to clearly confirm its
critical role in the glass transition. Such data unambiguously
support the Adam-Gibbs entropy scenario and are consistent
with experimental observations [20].

However, as a special case, the relative contribution of con-
figurational entropy and vibrational entropy to the excess total
entropy may be comparable, if only at extremely low tempera-
ture near 0 K. In this condition, the vibrational entropy is more
sensitive to temperature and should increase markedly from
zero to a finite value at the very beginning of heating from
0 K; see Fig. 3(c). Physically, the entropy from dynamical
sources increases as temperature goes up because the system
explores a larger volume in the phase space with stronger
excitations of dynamical degrees of freedom [36]. Finally, we
note that Tg in simulations is a bit higher than that found in
experiments. The slight difference is understandable since the
MD model is being quenched much faster, which makes the
inherent structure remain on higher positions in the PEL.
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FIG. 5. Shannon entropy of local structures across the glass transition as a microscopic measure of configurational entropy. (a) Distribution
and variation of 30 most frequent Voronoi polyhedra at 10 K and 1200 K, respectively. (b) Distribution of Voronoi polyhedra in crystals.
(c) Temperature dependence of Shannon entropy which is extracted from the distribution of local structures. The fractions of specific Voronoi
polyhedra 〈0, 3, 6, 4〉, 〈0, 0, 12, 0〉, and 〈0, 2, 8, 2〉 are also shown for comparison. Each data point is an average of five independent inherent
structures, with error bars in (c) denoting the standard deviation of entropy in five statistically independent configurations. (d) Temperature
dependence of excess configurational entropy of glass-forming liquid, which is extracted from the difference between total entropy and the
vibrational entropy as plotted in Fig. 4. The error bars in (d) stand for the standard deviation of entropy in five statistically independent
configurations.

Now that we have tested the validity of the Adam-Gibbs
scenario, the remaining unsolved issue is whether there is
any unambiguous structural variation that is linked with the
evolution of the configurational entropy. This link is crucial
to explain the variation in linear response to external fields
such as shear, which is deeply rooted in the microstructure
[37]. However, if one cares only about the structure at the
level of two-body correlation, or the fraction of a specific local
structure, usually there is no dramatic change accounting for
the dynamical arrest. To figure out the hidden variables, the
Voronoi tessellation scheme is adopted to analyze the inherent
structures [33,34].

The distributions of the 30 most frequent Voronoi poly-
hedra are displayed in Fig. 5(a) for both glass and liquid.
Although the geometries of the clusters do not change much

from liquid to glass, their distribution does change as evi-
denced by the difference, �Pi, of fractions at 1200 K and
10 K, respectively. The geometric structures that are most
frequent in the deep glass state become less populated in the
liquid state upon crossing the glass transition. Consequently,
the local structures in the liquid are more evenly distributed,
which in turn increases the diversity of structures and the cor-
responding configurational entropy. In order to compare with
disordered states, we also list the local structures of the three
crystalline phases in Fig. 5(b). Only very few local structures
are present in crystals, indicating very low configurational
entropy.

In order to further quantify the diversity of structures
and the configurational entropy, we introduce the concept
of Shannon information entropy [38–40] associated with the
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i.e., Cu46Zr54, Cu55Zr45, Cu64Zr36 and Cu50Zrso, include 32000
atoms, are listed for comparison. Even if the composition varies, the
remarkedly change of Shannon entropy on glass transition is clearly
seen and is general for all the compositions.

incidence of local Voronoi structures (polyhedra) in disor-
dered liquid and glass states [41], which reads

SShannon = −
n∑

i=1

Pi(xi ) ln Pi(xi ), (5)

here P(xi ) is the normalized probability density of a Voronoi
polyhedron xi. The Shannon entropy provides a “solid and
quantitative basis for the interpretation of the thermodynamic
entropy” [42], and here we use it as a qualitative measure for
the evolution of the configurational entropy in the physical
system.

The computed Shannon entropy of glass-forming systems
is shown in Fig. 5(c). It is seen that the Shannon entropy
rises abruptly at the glass transition temperature, which is
signaled by a kink. As Fig. 5(d) demonstrates, the variation of
excess configurational entropy �Sconf [Eq. (4)] is in very good
qualitative agreement with the change in Shannon entropy
�SShannon. This is not a coincidence but a strong evidence
that the change of diversity in local atomic structures yields
an abrupt rise of configurational entropy as suggested in
the Adam-Gibbs entropic scenario. It is clear that Shannon
entropy is a universal composition-independent metric to cap-
ture the glass transition, as shown in Fig. 6.

However, if one examines the temperature dependence of
specific local structures, such as 〈0, 3, 6, 4〉, 〈0, 0, 12, 0〉, and
〈0, 2, 8, 2〉, as shown in Fig. 5(c), only 〈0, 0, 12, 0〉 changes
pronouncedly across glass transition temperature. Note that
none of the Voronoi structures has a fraction larger than
5%, which means there is no dominating structures in the
glass former; thus the change in any specific structure may
not be able to reflect complete structural information about
configurational variation [43]. Therefore, Shannon entropy
presents more relevant statistical information about the whole
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FIG. 7. Size dependence of the Shannon entropy about Voronoi
structures. Three independent large, medium and small systems
include 31 250, 21 296 and 10 976 atoms, respectively. As the size
becomes larger, the Shannon entropy is bigger with increase in
structural diversity. But the data of Shannon entropy convergence to
a fixed value if the system size is approximately of the large system.
Therefore, the present model with 31 250 atoms is believed to yield
reliable statistics on Voronoi polyhedra.

scenario of structural evolution across the glass transition.
Thus, we do find a hidden structural change across the glass
transition from a statistical perspective, which has been puz-
zling for decades. For a first approximation, we deduce the
Kauzmann temperature as TK = 590 K by extrapolating the
excess configurational entropy to zero, which is supported
by the experimental data, such as TK = 571 K in Ref. [44],
and TK = 627 K in Ref. [20]. Finally, we note that a larger
model with 31 250 atoms is applied for the Voronoi structure
analysis. As seen in Fig. 7, such model size yields nearly
converged diversity of local Voronoi structures.

We further propose to use a centrosymmetry parameter to
characterize the feature of local atomic environment in glass
and liquid, since the parameter can be an effective measure of
the degree of local disorder around an atom. It is usually used
to recognize versatile structural defect in crystals. For each
atom, it is defined as follows:

P =
∑
i=1,n

| �Ri + �Ri+n|2, (6)

where �Ri and �Ri+n are the vectors or bonds representing the
n pairs of opposite nearest neighbors of the atom. By adding
each pair of vectors together, the sum of the squares of the
n resulting vectors, i.e., the centrosymmetry parameter is
derived. It is a scalar. The magnitude of the centrosymmetry
parameter provides a metric of the departure from centrosym-
metry in the immediate vicinity of any atom considered.
The higher the centrosymmetry parameter is, the stronger the
structural disorder and the more noncentrosymmetric the local
atomic environment.

It is evident that the increase of the fraction of certain
geometrically favored local structures upon lowering the
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temperature is linked to the reduced degree of local cen-
trosymmetry [45], as demonstrated by the evolution of the
average noncentrosymmetry parameter, as shown in Fig. 8.
This fact reflects the fact that certain structures (Voronoi
polyhedral) which are centrosymmetric (e.g., dodecahedra
with 〈0, 0, 12, 0〉) become more frequent as temperature de-
creases. This brings along an increase of rigidity, because
centrosymmetric structures do not possess nonaffine soften-
ing modes, as demonstrated in Ref. [45]. The proliferation
of these centrosymmetric structures is fast with decreasing
T in the liquid phase, until a situation is reached where
rigidity is such that further structural adjustments become
energetically unfavorable and the system gets frozen-in at
the glass transition. Upon further decreasing T in the solid
glass the configuration entropy thus flattens out due to high
penalty for structural rearrangements caused by rigidity. This
mechanism provides an explanation for the kink which signals
the glass transition in the configurational entropy. Hence the
configurationally favored structures give higher rigidity and
lower boson peak (lower soft modes) [45,46]. In terms of both
Voronoi polyhedra and entropies, a natural link between en-
tropy and rigidity/elasticity of glass-forming systems can thus

be established. Therefore, the present results may lead to a
unification of apparently different concepts of glass transition,
i.e., entropy in the Adam-Gibbs sense [8], the shear modulus
in the shoving-model [3,6,10,47], and Frenkel’s viscoelastic
crossover [48–50].

IV. CONCLUSION

Our results provide microscopic insights into the Adam-
Gibbs entropic scenario of the glass transition in a model
atomic glass former via quantification of temperature-
dependent total, vibrational, and configurational entropies.
The change of entropy that dominates the glass transition
is confirmed to be originated mostly from configurational
entropy, while the vibrational entropy is featureless at the
transition. The findings are in agreement with recent INS
experiments [20], and independent simulations [51], and pro-
vide additional atomistic details. The hidden emergence of
atomic-level structures leading to dynamical arrest is un-
ambiguously revealed by studying the distributions of local
Voronoi polyhedra in terms of Shannon information entropy.
In particular, upon decreasing T in the liquid it is seen that a
limited number of Voronoi polyhedra become more frequent
with respect to all the others, which makes the distribution of
Voronoi polyhedra more uneven and thus reduces the config-
urational and Shannon entropies. Since the favored polyhedra
are associated with a higher degree of local centrosymmetry,
hence with mechanical rigidity (they have less nonaffine
softening modes [45]), this eventually leads to a rigidification
process at the glass transition, after which further structural
rearrangements become energetically unfavorable due to the
rigid environment, and the configurational entropy then de-
creases much less with further decreasing T in the solid glass.
The emerging scenario may pave the way for constructing a
complete framework eventually connecting structure, entropy,
and viscoelasticity at the glass transition of liquids.
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