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Discrete Greenwood–Williamson
Modeling of Rough Surface
Contact Accounting for Three-
Dimensional Sinusoidal
Asperities and Asperity
Interaction
The Greenwood–Williamson (GW) model has been one of the commonly used contact
models to study rough surface contact problems during the past decades. While this has
been a successful model, it still has a number of restrictions: (i) surface asperities are
spheres; (ii) the overall deformation must be assumed to be small enough, such that
there is no interaction between asperities, i.e., they are independent of each other; and
(iii) asperity deformation remains elastic. This renders the GW model unrealistic in many
situations. In the present work, we resolve above restrictions in a discrete version of the
GW model: instead of spherical asperities, we assumed that the surface consists of three-
dimensional sinusoidal asperities which appear more similar to asperities on a rough
surface. For single asperity mechanical response, we propose a Hertz-like analytical solu-
tion for purely elastic deformation and a semi-analytical solution based on finite element
method (FEM) for elastic–plastic deformation. The asperity interaction is accounted for
by discretely utilizing a modified Boussinesq solution without consideration of asperity
merger. It is seen that the asperity interaction effect is more than just the delay of
contact as shown in the statistical model, it also contributes to the loss of linearity
between the contact force and the contact area. Our model also shows that: for elastic
contact, using spherical asperities results in a larger average contact pressure than
using sinusoids; when plasticity is taken into account, using a sphere to represent asperities
results in a softer response as compared with using sinusoids. It is also confirmed that sinu-
soidal asperities are a much better description than spheres, by comparison with fully
resolved FEM simulation results for computer-generated rough surfaces.
[DOI: 10.1115/1.4044635]
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1 Introduction
A rough surface, at a small length scale, is seen to consist of

asperities whose geometrical properties (e.g., height, size, etc.)
are stochastically distributed. These asperities play a key role in
surface engineering problems related to contact, such as conduc-
tance of electrical component [1], or friction and wear [2,3]. There-
fore, it is vital to understand the mechanical responses of these
asperities. However, the complexity of the rough surface contact
problem lies in the fact that the overall surface behavior is the
result of all asperities that are involved during the contact. There-
fore, a reasonable prediction not only requires the accurate descrip-
tion of geometrical properties and mechanical behavior of
individual asperities but also the interaction among asperities
during the deformation.
By far, one of the best-known theories for modeling rough

surface contact is the statistical Greenwood and Williamson (GW)
method [4]. The theory treats asperities as half sphere of the same
size, and the height of these asperities follows a Gaussian or

exponential distribution. Furthermore, it is assumed that the
overall deformation is small such that neighboring asperities do
not interact elastically. Mechanical response of spherical asperities
is described by the classic Hertz solution in contact mechanics [5],
Fs = 4

3E*R
1/2δ3/2, where Fs is the contact force of a single asperity,

E* is the equivalent Young’s modulus, R is the radius of the sphere,
and δ is the deformation. The GW model successfully predicts the
linear dependence of the real contact area on the contact (normal)
force. However, the assumptions of the GW model are very
strong and for most situations quite unrealistic, which is why a
number of researchers tried to relax these assumptions.
On one hand, regarding the asperity geometry, for example, Bush

et al. [6] generalized spherical asperities to be paraboloids with the
same principal curvatures and applied the classical Hertz solution
for their deformation. The model is known as BGT model and pre-
dicts a linear relationship between the contact force and the contact
area: F/(E*Anom) =

������
m2/π

√ · (A/Anom) where Anom is the surface
nominal area and m2 is the surface spectrum moment. Rough
surface profile measurements [7] clearly show that a sinusoidal
description is much more realistic than a circular asperity geometry.
Moreover, also from a computational point of view, a sinusoid is
better than a half sphere: the sharp corner between the half sphere
and the substrate creates stress concentrations which become prob-
lematic when considering plasticity. Sinusoids, on the other hand,
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do not have such problems because of the C1 continuity at the
asperity base. Indeed, the sinusoidal description of the asperity
geometry has been used in many studies of the mechanical response
of single asperities [8–10]. Through finite element method (FEM)
simulations, Saha et al. [11] recently analyzed the flattening of a
three-dimensional sinusoidal asperity and provided an empirical
expression for the average pressure that causes complete contact.
For the elastic contact, almost all studies that considered sinusoidal
asperities took the Hertz solution as the reference solution based on
the argument that the asperity tip can be treated as a spherical tip.
Unfortunately, it is not clear when the deformed asperity shape
would violate the assumption of a spherical shape. This emphasizes
the necessity of a Hertz-like analytical solution for the mechanical
response of a single sinusoidal asperity.
On the other hand, with respect to the asperity interaction, for

instance, Ciavarella et al. [12] included asperity interactions
through treating the contact pressures as uniformly distributed
over the apparent contact area and calculating the resulting deforma-
tion. Their correction is equivalent to an increase of the effective
separation between the rigid flat and asperity mean height by a quan-
tity proportional to the nominal pressure. Song et al. [13] used a sta-
tistical approach to find neighboring asperities of the asperity under
contact and to effectively adjust the mean plane separation. All the
above attempts, regardless of their assumptions and accuracy of
their results, highlighted the importance of asperities interactions.
All above models have problems in common: (i) the interaction
effect is averaged across the surface which is the only option for a
statistical model and (ii) the effect of asperity interaction in a statis-
tical model is mainly reflected as the delay of contact. However, the
interaction effect is physically highly localized and the effect decays
with the increasing distance to the contacting asperity. The asperity
interaction effect is more than just the delay of the contact: the inter-
action would change the asperity height distribution, therefore the
distribution of local contact points/regions. In order to capture the
localized feature of the asperity interaction and the change of asperity
height distribution, a discrete model is necessary.
Regarding the plastic deformation of an asperity, Kogut and

Etsion [14] proposed fitting formulas for contact force and contact
area based on a FEM simulation of a half sphere whose base is fixed.
Then, the fitting formulas are used in the statistical GW model to
predict the surface contact response. Following the same idea, Song
et al. [15] studied the effect of size-dependent plasticity on the rough
surface contact behaviors. However, the FEM-based single asperity
response strongly depends on the model geometry and boundary
conditions. It is clear that using a sphere to represent realistic surface
asperities becomes inappropriate when the deformation exceeds a
certain range, i.e., the argument of equivalent curvature radius
fails. Moreover, different shapes of asperities could have the same
equivalent curvature radius; however, they may have a different
mechanical response when considering plasticity. Furthermore, the
commonly used boundary condition in FEM simulations of a half
sphere is also debatable: fixing the bottom of the half sphere will arti-
ficially stiffen the asperity response while asperities are assumed to
stand on a half infinite domain in the GW statistical modeling.
In this paper, we propose a discrete GW model of rough surface

contact that includes three main improvements as compared with
the existing GW-type models. First, the asperity shape is chosen
to be sinusoidal, which is more realistic than the spherical shape.
An analytical solution of sinusoidal asperity contact is derived.
Second, the asperity interaction effect is obtained in a discrete
GW model during the contact utilizing a modified Boussinesq solu-
tion. Third, plasticity is considered based on FEM simulations of a
single asperity sitting on a large enough substrate. The effect of
plasticity and choice of asperity shape in the discrete GW model
are discussed based on the comparison with fully resolved FEM
simulations of computer-generated rough surfaces. The remainder
of this paper is organized as follows: Sec. 2 describes the analytical
solution for sinusoidal asperity under contact and comparison with
FEM solution. Section 3 is focused on the effect of the asperity
shape (sinusoidal versus spherical) on the rough surface elastic

contact behavior. Section 4 is focused on the elastic interaction
and the influence of the asperity interaction effect on the rough
surface response under contact. In Sec. 5, we focus on the effect
of plasticity on the asperity response and discuss the problems of
using spheres. Moreover, discrete GW model results are compared
with full-detail FEM simulation results. In Sec. 6, we summarize
our results. In Appendices A and C, we describe in detail the deri-
vation of the analytical solution of the sinusoidal asperity under
contact. We discuss the difference between asperity indentation
and asperity flattening problems which are the two options for sim-
plifications of two rough surface contact problems in Appendix B.
Details of fitting parameters of asperity elastic–plastic response are
shown in Appendix D.

2 Elastic Response of a Three-Dimensional Sinusoidal
Asperity Under Contact
2.1 Analytical Solution for a Sinusoidal Asperity Under

Contact. In what follows, an analytical solution is obtained for
the elastic response of a three-dimensional sinusoidal asperity flat-
tened by a rigid platen which is carried out as shown in Fig. 1 (2D
profile). The surface profile of the sinusoidal asperity is given by

z(x) =
1
2
h cos

2π
λ
x

( )
+ 1

[ ]
(1)

where h and λ represent the height and width of the asperity, respec-
tively. The radius of curvature at the tip of the sinusoidal asperity is
R= λ2/(2π2h).
According to Johnson [5], for the axisymmetric case, the distance

between rigid flat and the asperity surface g(x) can be approximated
through a Taylor expansion in the form of ΣAnx

2n where n is the
order of the expansion and An is the expansion coefficient (for
more details, see Appendix A). For n= 1, the solution has the form:

Fs =
2

��
2

√

3
λ

π
��
h

√ E*δ3/2, As =
λ2

2πh
δ (2)

where Fs is the contact force of the asperity and As is the contact
area. The solution is essentially the classical Hertz solution if one
substitutes R= λ2/(2π2h) into Hertz solution Fs = 4

3E*R
1/2δ3/2.

When the value of n is 2, the analytical results (from now on, we
term it “extended Hertz solution”) become

Fs=2
��
6

√
E*

hλ

π

3
4
−

���������
9
16

−1
2
δ

h

√( )3/2

− 8
5

��
6

√
E*

hλ

π

3
4
−

���������
9
16

−1
2
δ

h

√( )5/2

As=3λ2

2π
3
4
−

���������
9
16

−1
2
δ

h

√( )
(3)

Even higher orders of the expansion have been checked numeri-
cally. The results show that the deviation between the extended
Hertz solution (n= 2) and higher-order expansions (n≥ 3) is not

Fig. 1 Schematic of the problem: an elastic sinusoidal asperity
on the substrate is flattened by a rigid platen
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significant within the loading range under consideration, therefore
we will use n= 2.

2.2 Verification of the Extended Hertz Solution Through
Finite Element Method. To validate the analytical results, an axi-
symmetric asperity with a sinusoidal profile is located on the sub-
strate and is compressed by a rigid platen. The solid mechanical
boundary value problem is solved by the commercial finite
element package ABAQUS [16]. The material of the asperity and
the substrate are the same and are idealized as purely elastic, with
the Young’s modulus taken as 1, and the Poisson’s ratio taken as
0.3. Boundary effects are eliminated by using large dimensions
for the substrate and the substrate can be regarded as a half infinite
domain. In our simulation, the size of the substrate is taken to be
max{20h, 20λ} (more details are in Appendix B). Simulations
with different asperity height-to-wavelength ratios (h/λ= 0.1,
0.25) were carried out. The contact force Fs and the contact area
As of the asperity are normalized through F* = Fs/(E*hλ) and A* =
As/λ

2 to eliminate the asperity geometry effect. The results in Fig. 2
show that at small load levels, both the Hertz solution (n= 1) and
the extended Hertz solution (n= 2) agree well with the FEM
results. However, with increasing deformation, the Hertz solution
increasingly deviates from the FEM results. The reason is that the
estimate of the radius of curvature at the asperity tip is not adequate
anymore. This indicates that using Hertz solution describing sinu-
soidal asperity response is only valid for small load. By contrast,
the extended Hertz solution still matches the FEM results very
well and only slightly deviates in the high loading regime.
The reason for these deviations is that for high load levels, the

deformation of the substrate starts to influence the resulting defor-
mation of the asperity. As shown in Fig. 1, the total displacement
d is accommodated by the deformation of the asperity δ and the
deformation of the substrate uz (Eq. (4)), where only the former is
considered in the analytical solution

d = δ + uz (4)

Therefore, we utilize the deviation to quantify the substrate defor-
mation under the asperity as the function of the contact force in
the form of

uz = C · 1 − v2

πEa
· Fs (5)

where C is the fitting parameter and a is the contact radius which
can be calculated through the contact area As. The linear fitting
parameter C for different shapes of asperities is shown in Fig. 3,

where C= 0.48 · h/λ. Subsequently, the extended Hertz solution
considering the deformation of the asperity base as described in
Eq. (5) will be used to describe the single asperity response as
follows (more details can be found in Appendix C):

As = π ·

2h
25λ

+
1
4

( )
−

����������������������������������
2h
25λ

+
1
4

( )2

−
2
3

4h
125λ

+
1
12

( )
d

h

√

8
3
π2

λ2
4h
125λ

+
1
12

( )

Fs =
8
3
· E* hπ

1/2

λ2
A3/2
s −

64
45

· E* hπ
3/2

λ4
A5/2
s

(6)

3 Discrete Modeling of a Rough Surface With
Sinusoidal Asperities
In Sec. 2, we addressed the consequence of using Hertz solution

to describe single sinusoidal asperity mechanical response. In this
section, we focus on the consequences of using the Hertz solution

Fig. 2 (a) Comparison of Hertz and extended hertz solution with FEM results and (b) relative error of extended Hertz solutions
compared with FEM results (marker symbols as in (a))

Fig. 3 Fitting parameter C versus wavelength-to-amplitude
ratio. In our FEM simulations, the ratio of amplitude–
to-wavelength has been restricted to 0.01<h/λ<0.3, which
covers most of the asperity shapes in realistic engineering sur-
faces [10]
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for sinusoidal asperities on a rough surface under contact loading.
The contact of the surface is analyzed through discrete GW model-
ing: the surface consists of N asperities that are placed on a regular
grid—an approach typical for statistical models also used for

studying friction phenomena [17–19]—and whose height
follows a Gaussian distribution with the average value �h and
standard deviation σ. As shown in Fig. 4(a), the rigid platen is ini-
tially positioned at the highest asperity peak, and the loading dis-
tance is d. The contact force and area can be calculated by
F =

∑N
i=1 Fi, A =

∑N
i=1 Ai, where Fi and Ai are the contact force

and the contact area of each single asperity i, and they can be cal-
culated following Sec. 2.1 depending on the asperity shape. For
the rough surface shown in Fig. 4(b), we assume that
all asperities have the same base width λ, but different height. We
define the surface roughness parameter as β = σ/�h, i.e., the ratio
between standard deviation and average of the Gaussian
distribution.
The influence of randomness decreases as the number of asperi-

ties increases, ultimately recovering a Gaussian distribution in terms
of heights. As can be seen in Fig. 5, when the number of asperities is
chosen as N= 10,000 in the discrete GWmodel, the agreement with
the statistical GW model is nearly perfect. Therefore, N= 10, 000 is
used in the discrete model hereafter.
For a rough surface (β= 0.5 and �h:λ = 1:6), it can be seen in

Fig. 6(a) that using the Hertz solution for sinusoidal asperities
yields a slightly smaller contact force for the same loading magni-
tude, at the same time a slightly smaller contact area (shown in the
inset). However, the contact pressure which is the ratio of the
contact force to the contact area is larger than using the extended
Hertz solution.
Derived from the assumption of the full contact at all length scales,

Persson’s contact model [20] can also provide good predictions for

Fig. 4 (a) Schematic of the problem: asperities are flattened by a rigid platen and (b) example of a rough surface

Fig. 5 Effect of the number of asperities in the discrete GW
model

Fig. 6 Comparison of the discrete GW model results using different asperity shapes. (a) Force versus displacement. The inset
shows the evolution of the contact area with increasing loading displacement. (b) The ratio between normalized contact force
and normalized contact area. The inset shows the evolution of contact fraction (i.e., the number of asperities in contact normalized
by the total number of asperities) for increasing contact area
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rough surface contact problem, especially close to full contact. The
model [20,21] predicts a linear relationship between the contact
force and the contact area: F/(E*Anom) =

��������
πm2/4

√ · (A/Anom),
while the BGT model [6,21] predicts another linear dependence
F/(E*Anom) =

������
m2/π

√ · (A/Anom). For surfaceswith isotropic rough-
ness morphology, m2 can be calculated as AVG[(dz(x)/dx)2] [22],
where z(x) indicates a cross section along an arbitrary x direction
of the 3D surface and AVG stands for the arithmetic average. For
the surface roughness parameter chosen above, both results using
Hertz and using extended Hertz lie in between the predictions of
the Persson and BGT models, and the Hertz solution predicts a
higher contact pressure than the extended Hertz solution which
will result in more differences when plasticity is considered as
well. It is also worthy to notice that, in the inset of Fig. 6(b), for
the same total contact area, using the Hertz solution will result in
slightly more asperities in contact. This again emphasizes the impor-
tance of accuracy of the single asperity mechanical response which
influences the contact morphology of the whole surface.

4 Asperity Interaction
4.1 Asperity Interaction Model. One of the fundamental

assumptions of the GW model is that the deformation of a single

asperity happens independently from the deformation of other
asperities. In this section, we include asperity interaction by consid-
ering elastic deformation of a single asperity base caused by all
other asperities under contact. The advantage of the discrete GW
model is that it is possible to precisely determine the elastic interac-
tion rather than the average shift of the asperity height as done in the
statistical manner. Instead of using the displacement solution for the
substrate deformation from the Hertz theory, we use the Boussinesq
solution [5] for the displacement field caused by a concentrated
force. The choice of using a point force solution instead of the
Hertz theory is based on the following reason: asperity interaction
is essentially the elastic interaction of the surface substrate (where
all asperities are located). The Hertz theory requires the distribution
of the contact pressure to determine the displacement field, even
though the contact pressure distribution is known at the contact
(asperity tip); however, it is not known at the substrate (asperity
base). Assumptions in some studies [13,23,24] about the pressure
distribution at the substrate even violates the force equilibrium.
The Boussinesq solution has the form uinti = ((1 − v2)/πErij)Fj,
where ui is the substrate displacement under asperity i caused by
an asperity j under contact whose contact force is Fj, and rij is the
distance between the two asperities. The accuracy of using the
Boussinesq solution for the asperity interaction effect has been

Fig. 7 (a) Comparison of the displacement from FEM and Boussinesq solution, where r is measured from the center of the asper-
ity base; (b) for two asperities, displacement on the tip of one asperity due to the interaction of the other asperity under contact; (c)
verification of the proposed interaction model: comparison with FEM results (N=4) for two different asperity spacing; and (d ) the
effect of asperity spacing and comparison with Ciavarella’s model. The inset shows the asperity height distribution when the load
is d/σ=5. Solid line of the inset 5/λ; dots lines of the inset–Ciavarella model.
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verified in an experiment where a rigid patterned indenter indents a
softer flat surface [25]. Here, for the asperity flattening problem
shown in Fig. 7(a), where the displacement filed around an asperity
under contact is plotted against the Boussinesq solution, we can see
that Boussinesq solution matches the FEM solution very well.
Moreover, in Fig. 7(b), for two sinusoidal asperities (numbered as
1 and 2) of certain spacing on a large substrate, asperity 2 is flatten-
ing and the displacement at the tip of asperity 1 is recorded. When
the contact force is large, the Boussinesq solution and the FEM
result start to deviate. The reason is that when the contact force at
the asperity tip is large, the stress distribution at the asperity base
starts to violate the assumption of a concentrated force acting at
the asperity base. Since the deviations are approximately linear,
we propose a correcting factor k such that the displacements become

uinti = k · 1 − v2

πErij
· Fj (7)

According to simulations with different asperity height wavelength
ratios and different asperity, spacing k is taken as 0.9656, which is
still close to one. This means that the Boussinesq solution works
well for the asperity shape and spacing under consideration in
this paper. Clearly, when the asperity spacing is so small that asper-
ity merge/coalesce has to be taken into account, the Boussinesq
solution would fail to capture the interaction effect.

Any displacement at the asperity tip ui consists of two parts: the
displacement uselfi caused by the contact force Fi and the displace-
ment uinti caused by contact forces Fj( j= 1, 2, … N, j≠ i) of other
asperities. In each loading increment, we determine the resulting
contact forces and asperity displacements iteratively through the
conjugate gradient method where the residual value ri of each
asperity is defined as ri = di − uinti − uselfi , and di is the loading dis-
placement. In order to check the accuracy of the above proposed
method, a comparison with FEM simulation of four asperities is
carried out. In the FEM simulation, four sinusoids on a large sub-
strate are flattened, the results are shown in Fig. 7(c) for two differ-
ent asperity spacing. It is seen that the our asperity interaction model
is in good agreement with the FEM simulations.
For surfaces with the same number of asperities (N= 10,000 in

the discrete GW model) and roughness, the effect of the asperity
spacing is shown in Fig. 7(d ): when the asperities are very far
away from each other, interaction effects disappears; the effect of
asperity interaction increases with decreasing asperity spacing.
For close-packaged asperities (the spacing between two asperity
tip is λ), the interaction effect is expected to be the strongest.
However, the interaction model proposed by Ciavarella et al. [12]
predicts an even stronger effect of asperity interaction. The reason
is that in Ciavarella’s model, the asperity interaction is considered
as the equivalent shifting of the whole surface. As an effect, the
asperity height distribution still is a Gaussian distribution and

Fig. 8 Probability density distribution of single asperity contact areas for model (β=0.25) with and without asperity interaction
effect. (a) Small nominal contact (A/Anom = 0.1%); (b) large nominal contact area (A/Anom = 1%); (c) dependence of the normalized
contact force on the normalized contact area for two different rough surfaces, with and without asperity interaction; and
(d ) evolution of the contact fraction, i.e., how many asperities from all asperities on the surface are in contact
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only the average shifts. By contrast, our asperity interaction model
implemented through discrete GW model clearly shows that this is
not the case (shown in the inset when d/σ= 5), the asperity height
distribution deviates from the Gaussian distribution, and there are
fewer high asperities than they are in Ciavarella’s model. Hence,
Ciavarella’s model overestimated the effect of asperity interactions.
Besides the effect on the contact force, the asperity interaction

has another important effect on the contact area distribution
which cannot be studied in a statistical model. For the same total
contact area, we analyze how the contact area is distributed in the
model with interaction and without interaction. Figures 8(a) and
8(b) show the probability density distribution of the single asperity
contact area for different total contact area. It can be seen that, when
the total contact area is small, no clear difference is found as the
interaction effect is still quite limited (the difference is only the
smaller size distribution which does not dominate the overall
contact behavior). However, when the total contact area is larger,
the probability density distribution is very different: in the model
with interaction effects, there are many more larger contact areas,
i.e., loading is mainly accommodated by few asperities. The distri-
bution clearly reflects the physical process during the contact: when
considering interaction effect, contacting asperities tend to delay/
avoid forming new contacts, the increase of the contact load and
area is accommodated by increasing the contact area of existing
contact points. This is also consistent with the result in Fig. 8(c)

and shows in the linearity: in the GW-type model, the linearity
requires the increase of the number of contacts during the
loading. This affects the surface height statistics, since interaction
effects forces the existing contact to accommodate the increasing
load. This delays the increase of contact area, which is responsible
for the loss of linearity. In Fig. 8(d ) which shows the contact frac-
tion, we can see that the contact fraction tends to converge to a
smaller value in the model with interaction, i.e., the asperity inter-
action effect acts as to avoid forming new contacts which will
lead to a larger contact fraction. Moreover, it is seen that rougher
surfaces (larger β) result in a larger contact pressure (the slope of
the plotted curves in Fig. 8(c)) and less contacts (Fig. 8(d )) which
means that it is more difficult to completely seal an elastic
rougher surface.

5 The Effect of Plasticity on Single Asperity Response
and the Rough Surface Contact Behavior
In the previous sections, we have discussed the effect of the

asperity shape. In this section, we revisit the effect of the asperity
shape when plasticity is considered. For sinusoidal asperities, the
model geometry and boundary condition is the same as in Figs. 1
and 12. As a material model, we use a J2 plasticity model with
the yield strength Y= 200 MPa. The Young’s modulus is chosen

Fig. 9 Effect of the asperity shape on the asperity response considering plasticity. (a) Contact force as the function of the loading
distance; (b) contact area as the function of the loading distance; (c) contact force as the function of the contact area; and
(d ) normalized contact force versus normalized contact area
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to be 70 GPa, and the Poisson’s ratio is 0.33. Several shapes and
sizes of sinusoidal asperities are studied: λ= 6 mm, 10 mm,
20.9 mm along with h/λ= 0.08, 0.14, 0.29. The common feature
of these sinusoids is that they have the same radius of curvature,
R= 3.6 mm, at the asperity tip. It can be seen in Fig. 9 that the
mechanical response of an asperity is very sensitive to its shape.
Unlike the results in Fig. 2(a), the normalized asperity response
shown in Fig. 9(d ) for sinusoidal asperities still show strong depen-
dence on the asperity geometry. This clearly indicates that replacing
a sinusoidal asperity by a sphere that has the same radius of curva-
ture becomes inappropriate when plasticity is taken into account.
Using a sphere instead of sinusoids also becomes problematic

from the numerical point of view, as demonstrated by the equivalent
plastic strain distribution in Fig. 10. There, the unphysical sharp
corner between the spherical asperity base and the substrate
creates stress concentrations which result in plastic deformation.
Although the stress concentration could be solved by making
profile modifications (rounding corners), however, special attention
needs to be paid to the radius of the rounding. Some FEM models
like those in Kogut and Etsion [14] avoided such problems by only
considering a half sphere and fixing its base. However, this is con-
tradictory to the assumption used later on in the GW model: asper-
ities sit on the infinite large substrate.
It has been seen that the single asperity response is quite sensitive

to its shape when plasticity is considered. This also indicates that in

a rough surface contact problem, modeling surface asperities
through spheres can result in significant deviations/errors. For
example, for a computer-generated rough surface as shown in
Fig. 11(a), it is clear that the asperities look more like sinusoids
rather than spheres. The statistical information of asperities and full-
detail FEM results of this surface under contact can be found in
Song et al. [15]. In order to carry out a discrete GW modeling,
we have chosen sinusoids of different shapes and spheres that
have the corresponding radius of curvature for those sinusoids.
The details of Kogut and Etsion [14] type fitting of single asperity
mechanical response can be found in Appendix D.
With fitted single asperity mechanical response and the asperity

interaction method proposed in Sec. 4, the mechanical responses
of such surface is then modeled through our discrete GW model.
The results are compared with full-detail FEM simulation results
(see Ref. [15]) and shown in Fig. 11(b). It can be seen that for
purely elastic contact, within the loading range considered here,
no clear difference is observed between using spheres and using
sinusoids, because the contact area is small. In contrast, when plas-
ticity is considered, using spherical asperities results in large devia-
tion from FEM simulation results. Thus, representing surface
asperities as spheres should be avoided.

6 Conclusions
In this paper, we proposed a discrete GW contact model which

utilizes single asperity mechanical response and takes the asperity
interaction into account. The salient conclusions of the study are:

(1) An analytical solution is first derived for flattening of a
purely elastic sinusoidal asperity. Furthermore, the substrate
deformation, which cannot be neglected for high load, is also
taken into account. The analytical solution is implemented
into the discrete GW model for rough surface contact. The
commonly used spherical contact model is not valid
anymore at high load level, neither for the single asperity
nor for the rough contact.

(2) The interaction between neighboring asperities is taken into
account by using the Boussinesq solution. For elastic
contact of rough surfaces, the previous interaction model
proposed by Civarella et al. [12] overestimates the interaction
effect and predicts a lower stiffness than the accurate model,
especially at high load. For the same total contact area, inter-
action effects may reduce the number of contact patches, but
increase the area of the bigger contact patches.

(3) The elasto-plastic response of a single sinusoidal asperity
strongly depends on the overall shape of the asperity. There-
fore, it is inappropriate to use a sphere that has the same
radius of curvature to represent the surface asperities. The

Fig. 11 (a) Numerically generated rough surface (more details in Ref. [15]). (b) Comparison of discrete GWmodeling results with
full-detail FEM simulation results for purely elastic and elastic–plastic contact.

Fig. 10 Stress concentration of spherical model causes plastic-
ity at the corner, only a small portion of the substrate is shown
here
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consequence of using spheres to represent surface asperities
is also clearly shown through the comparison between our
discrete GWmodeling results and full-detail FEM simulation
results: spherical asperities significantly underestimate the
contact pressure when the overall contact area is large.

To summarize, for elastic contact of the rough surface, our model
is more accurate than statistical models [12,21] as the interaction
effect is explicitly modeled. For elasto-plastic contact, the compar-
ison between our model results and full-detail FEM simulation
results, on the one hand clearly shows the accuracy of our model,
on the other hand emphasizes the importance of a proper description
of the asperity shape. Moreover, in terms of computational cost, our
model performs much better than finite element based approaches:
in a customized workstation (Intel Xeon 2.5 GHz 16 central pro-
cessing units, 256 GB RAM), the full-detail FEM simulation of a
rough surface as shown in Fig. 11(a) through ABAQUS took around
45 h, while the discrete GW model implemented by MATLAB took
less than 5 min. It is therefore a very useful approach in particular
in situations where systems of realistic dimensions and with a
large number of asperities are to be considered.
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Nomenclature
a = contact radius of a single asperity
d = loading displacement
h = height of a single sinusoidal asperity
k = correcting parameter
n = expansion order
r = distance from the point on the surface to the center of the

asperity base
z = asperity height
A = contact area
C = fitting parameter
F = contact force
L = asperity base
N = total asperity number
R = radius of asperity summits
�h = average height of asperities
b1 = fitting parameter for elastic–plastic sinusoidal asperity
b0 = fitting parameter for elastic–plastic spherical asperity with

substrate
c1 = fitting parameter for elastic–plastic sinusoidal asperity
c0 = fitting parameter for elastic–plastic spherical asperity with

substrate
m1 = fitting parameter for elastic–plastic sinusoidal asperity
m0 = fitting parameter for elastic–plastic spherical asperity with

substrate
m2 = spectral moment of the surface
n1 = fitting parameter for elastic–plastic sinusoidal asperity
n0 = fitting parameter for elastic–plastic spherical asperity with

substrate
ri = residual value
rij = the distance between asperity i and asperity j
ui = the substrate displacement under asperity i
uz = the substrate displacement of a single asperity
An = expansion coefficient

Anom = nominal contact area

As = contact area of a single asperity
Fi = contact force of asperity i
Fj = contact force of asperity j
Fs = contact force of a single asperity
uinti = the displacement caused by the contact force Fj

uselfi = the displacement caused by the contact force Fi

A* = dimensionless contact area
E* = equivalent Young’s modulus
F* = dimensionless contact force
β = surface roughness, σ/�h
δ = deformation of a single asperity
η = asperity areal density
λ = width of a single sinusoidal asperity
v = Poisson’s ratio
σ = standard deviation

Appendix A: Derivation of Analytical Solution of Elastic
Contact
As shown in Fig. 1, the exact distance between the initial

position of the rigid flat and the elastic sinusoidal profile is
given by Eq. (A1) which can also be written in the form of
Taylor expansion

g(x) =
1
2
h 1 − cos

2π
λ
x

( )[ ]
= A1x

2 + A2x
4 + A3x

6 + · · · (A1)

where A1 = h(π/λ)2, A2 = − 1
3 h(π/λ)

4, A3 = 2
45 h(π/λ)

6 and so on,
representing the expansion coefficient.
According to Johnson (Eqs. (5.20), (5.21), and (5.22) in Ref. [5]),

in axisymmetric case, the contact force and the compression for a
single asperity can be obtained through

Fs =
∑n
i=1

4AnE*na2n+1

(2n + 1)
2 · 4 · · · 2n

1 · 3 · · · (2n − 1)

δ =
∑n
i=1

2 · 4 · · · 2n
1 · 3 · · · (2n − 1)

Ana
2n

(A2)

where a is the contact radius, δ is the deformation of the asperity
(which is the same as the displacement of rigid flat d if the de-
formation of the asperity base is ignored), and E* represents the
equivalent Young’s modulus, defined as (1/E*) = ((1 − v21)/E1)+
((1 − v22)/E2), where E1, E2 and v1, v1 are Young’s moduli and
Poisson ratios of the two contacting materials, respectively. Thus,
depending on the items used in the expansion, one can get
contact area and contact force under the given load.

Appendix B: Comparison of Asperity Flattening and
Asperity Indentation Models
For the problem of two rough surfaces contact, usually the

problem is simplified into a flat surface contacts with a rough
surface which has the equivalent roughness, and one of two sur-
faces is rigid, the other is deformable. If the flat surface is rigid,
then the problem essentially becomes rough surface (asperity)
flattening; if the rough surface is rigid, then the problem is inden-
tation. Indeed, some GW-type models consider flattening prob-
lems, while others consider indentation problems. For example,
Yin and Komvopoulos [25] simplified two rough surface
contact problem into a rough indenter with a flat substrate
while Kogut and Etsion [14] simplified the contact problem into
the flattening of asperity. In our simulation, not only the flattening
problem has been carried out, the indentation of a rigid sinusoidal
asperity on a large flat elastic substrate has been carried out as
well through FEM. Figure 12 shows an example of the employed
mesh of the flattening and indentation models with the asperity
dimension being h= 1 mm and λ= 4 mm and asperity base L=
80 mm.
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It can be seen from Fig. 13 that the rigid sinusoidal asperity
indentation problem is essentially the same with sinusoidal asperity
flattened by a rigid flat which are the two choices of simplification
for rough surface contact problems. However, one needs to be
careful when choosing the flattening problem: the asperity needs
to locate on a large enough substrate to utilize the Hertz-type solu-
tion which is based on half infinite assumption. When the contact
force/area is large, the constraint at the asperity base strengthens
the asperity (result shown in solid dots). This issue is ignored in
most of the FEM studies of asperity flattening. Furthermore, it is
also seen that using Hertz solution for a sinusoidal asperity is
only valid at small loading.

Appendix C: Derivation of the Approximate Extended
Hertz Solution Considering the Deformation of the
Asperity Base
As stated in Sec. 2, when the load is large, the deformation of the

substrate cannot be neglected. According to Eqs. (4) and (5), the
deformation of a single asperity can be calculated by

δ = d − 0.48 · 1 − v2

πEa
· Fs (C1)

where d is the total loading displacement and Fs is the contact force
of a single asperity.
The contact area can be obtained by substituting Eq. (C1) into

extended Hertz solution (Eq. (3))

As =
3λ2

2π
3
4
−

���������������������
9
16

−
d

2h
+
0.12
E*λ

· Fs

a

√( )
(C2)

which can be written by

d

2h
−
π2

λ2
a2 +

π4

9λ2
a4 =

0.12
E*λ

· Fs

a
(C3)

Substituting Eq. (C3) into extended Hertz solution (Eq. (3) in
Sec. 2), a quadric equation can be derived

16π4

3λ4
4h
125λ

+
1
12

( )
a4 −

4π2

λ2
2h
25λ

+
1
4

( )
a2 +

d

2h
= 0 (C4)

As the relationship between a2 and the total loading displacement
d is monotonically increasing, negative roots should be neglected

a2 =

2h
25λ

+
1
4

( )
−

����������������������������������
2h
25λ

+
1
4

( )2

−
2
3

4h
125λ

+
1
12

( )
d

h

√

8
3
π2

λ2
4h
125λ

+
1
12

( ) (C5)

By using Eq. (C5), the extended Hertz solution considering the
deformation of the asperity base can be obtained, which is Eq. (6)
shown in Sec. 2.

Appendix D: Fittings of Asperity Mechanical Responses
Based on the numerically generated random rough surface (see

Sec. 5) and its statistical parameters in Ref. [15], the surface mor-
phology parameters of our discrete model are rms= 0.08 mm, and
σ= 0.039 mm, which determine the value of average height
(�h = 0.07mm). The average asperity tip curvature �R is 0.36 mm,
so the fixed widths of each asperity can be calculated by:
λ = (2π2�h�R)1/2. According to the density of the rough surface (η=
1.5 mm−2), the nominal contact area can be determined by Anom=
N/η, where N is the number of asperities. As the height of asperities
obeys Gaussian distribution, the height range of a single sinusoid
is considered to be �h ± 3σ. Based on the above parameters, the

Table 1 Fitting parameters of plastic sinusoidal asperities

b1 m1 c1 n1

0 ≤ d
h ≤ 0.2 0.003

h

λ

( )−1.055

0.91
h

λ

( )−0.1

0.44 + 0.86 · h

λ

( )
1.17

h

λ

( )0

0.2 < d
h ≤ 0.4 0.005

h

λ

( )−0.912

1.26
h

λ

( )0.001

1.242
h

λ

( )0.286

1.246 + 0.29 · h

λ

( )

0.4 < d
h ≤ 0.6 0.010

h

λ

( )−0.712

2.207
h

λ

( )0.155

1.903
h

λ

( )0.406

1.295 + 1.3 · h

λ

( )

d
h > 0.6 0.017

h

λ

( )−0.546

1.20 + 5.51 · h

λ

( )
0.45 + 3.41 · h

λ

( )
1.249 + 2.9 · h

λ

( )

Fig. 12 Axisymmetric mesh example for left: flattening model
and right: indentation model (h=1 mm and λ=4 mm)

Fig. 13 Comparison between asperity flattening and
indentation
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FEM-based elastic–plastic simulations for single asperity of differ-
ent heights were carried out. Following the idea of Kogut and Etsion
[14], for different shapes of sinusoids, we have fitted the asperity
responses as the function of the loading distance in the form of

Fs

E*hλ
= b1 · d

h

( )m1

,
As

λ2
= c1 · d

h

( )n1

(D1)

where the fitting parameters are functions of the asperity ratio. The
entire elastic–plastic response is divided into four regimes, and the
details of fitting parameters are shown in Table 1.
Similarly, using the corresponding radius curvature of the sinu-

soid tip and the same boundary conditions, the spherical asperity
lying on a large substrate is also fitted, which has the form

Fs

E*R2
= b0 · d

R

( )m0

,
As

R2
= c0 · d

R

( )n0

(D2)

where the fitting parameters are b0= 0.018, m0= 0.676, c0= 6.695,
and n0= 0.98.
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