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A new model of two-phase thermocapillary-buoyancy convection with phase change at gas-liquid interface in
an enclosed cavity subjected to a horizontal temperature gradient is proposed, rather than the previous one-
sided model without phase change. We study the onset of multicellular convection and two modes of convective
instability, and find four different flow regimes. Their transition map is compared with the non-phase-change
condition. Our numerical results show the stabilizing effect of interfacial phase change on the thermocapillary-
buoyancy convection.

PACS: 47.55.Ca, 47.55.dm, 47.20.Hw, 47.55.P− DOI: 10.1088/0256-307X/37/1/014701

Convective flow with a phase-change interface has
recently gained a great deal of attention due to the
great importance in scientific and industrial appli-
cations, such as crystal growth, two-phase capillary
pumped loops and thermal management devices.[1−3]

Both thermocapillary and buoyancy effects play a role
in driving the convective flow in the liquid layer sub-
jected to a horizontal temperature gradient along the
free surface. The basic return-flow state becomes un-
stable when the temperature gradients exceed a crit-
ical value, and leads to steady cellular or oscillatory
flow states. Combined phase-changed phenomena at
gas-liquid interface, the onset of different flow states
and convective instability become more complex due
to the mass and heat transfer at the interface and the
dynamic behaviors of vapor in the gas phase.

However, in most of the previous investigations
on thermocapillary-buoyancy convection, interfacial
phase-change effect is out of consideration. Using
a linear stability analysis, Smith and Davis[4] found
a new mode of instability in an infinite liquid layer
bounded with horizontal temperature gradient when
buoyancy effect is ignored, which is referred to as
hydrothermal waves. They were then observed and
confirmed in the experiment performed by Riley and
Neitzel.[5] For a thin liquid layer (𝑂(1 mm)) with a
moderate Prandtl number 𝑃𝑟 = 13.9, hydrothermal
waves obliquely propagate from the cold to the hot
end, whereas for a thicker liquid layer, a transition
from the steady state to the oscillatory state with
the increasing Marangoni number, instead of the hy-
drothermal waves, was found. Jiang et al.[6] and
Wang et al.[7] investigated the instability of buoyancy-
thermocapillary convection, but non-volatile liquids
were employed in the experiments. Numerical sim-
ulation and theoretical analysis are essential to un-
derstand the mechanisms of onset of instability. How-
ever, for most previous studies,[8−11] phase change was

ignored and the so-called “one-sided" model was em-
ployed.

We previously conducted an experiment with the
volatile liquid in an open cavity differentially heated
at the lateral walls, the average evaporating rate was
measured and three major flow patterns were found
when increasing the temperature difference.[12] Li et
al.[13] found out that the onset of oscillating flow of a
volatile liquid layer in a sealed cavity is greatly influ-
enced by the concentration of noncondensables in the
gas phase. One can find that interfacial phase-change
effect and gas phase dynamics have great impacts on
the onset of instability. Kazemi et al.[14] investigated
the evaporation of water from a concave meniscus un-
der a controlled pressure and temperature. Li et al.[15]
employed the volatile liquid layer in a shallow annular
pool to study the effect of surface evaporation on in-
stability of thermocapillary-buoyancy convection, and
found that the evaporation and buoyancy effects can
suppress the flow destabilization when evaporation
rate is low. Several numerical models[16,17] have taken
into consideration of phase change, but the one-sided
model was employed and the evaporation intensity is
defined by an evaporation Biot number which was con-
fined in the low temperature difference. Grigoriev and
Qin[18] conducted a linear stability analysis on the
two-phase convective flow and found that the effect
of phase change and vapor transport in gas phase can
significantly affect the stability of the flow. Qin et
al.[19−21] performed 2D and 3D simulations using the
two-sided model with phase change, but the dynamic
Bond number for a single-component liquid layer is
fixed at 0.853, which means that thermocapillary ef-
fect balances the buoyancy effect. Therefore, in the
present study, we develop a numerical model account-
ing for interfacial phase change and dynamics of gas
phase, and investigate the phase-change effect on the
onset of instability of thermocapillary-buoyancy con-
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vection.
The two-sided model shown in Fig. 1 describes the

thermocapillary-buoyancy convection in an enclosed
cavity with phase change occurring at the liquid-
gas interface. The incompressible, Newtonian liquid
(volatile 0.65 cSt silicone oil) and gas (component of
air and vapor, where air dominates) are contained in
a two-dimensional rectangular cavity of height 𝐻 =
𝐻l + 𝐻g and width 𝐿, where the liquid layer aspect
ratio 𝛤 = 𝐿/𝐻l is 20, and the height ratio of gas layer
to liquid layer, 𝛱 = 𝐻g/𝐻l, is 3. Hereafter, subscripts
l, g, v, a, i, c and h denote liquid phase, gas phase, va-
por component, air component, liquid-gas interface,
cold wall and hot wall, respectively. A temperature
difference ∆𝑇 = 𝑇h − 𝑇c is imposed parallel to the
free surface between the lateral walls.

x

z

L

g

Liquid

Air and vapor
HotCold

Tc Th

Hg

Hl

Fig. 1. Schematic of the two-sided model. White and grey
regions correspond to the gas phase and liquid phase, re-
spectively. Phase change (evaporation and condensation)
occurs at the gas-liquid interface (𝑧 = 0) and the cavity is
enclosed.

To reduce the number of parameters and make
the mathematical model more concise, all the gov-
erning equations and boundary conditions are written
in dimensionless form. In the liquid phase and gas
phase, dimensionless Navier–Stokes equations with
the Boussinesq approximation, heat transport equa-
tions and the advection-diffusion equation of vapor in
gas phase are expressed as follows:

∇ · 𝑢l = 0, ∇ · 𝑢g = 0, (1)
𝜕𝑢l

𝜕𝑡
+ 𝑢l · ∇𝑢l = −∇𝑝l + ∇2𝑢l +

𝑅𝑎

𝑃𝑟
𝛩l𝑘,

𝜕𝑢g

𝜕𝑡
+𝑢g ·∇𝑢g = − 1

𝜌*
∇𝑝g+𝜈*∇2𝑢g+

𝑅𝑎

𝑃𝑟
𝛽*𝛩g𝑘,

(2)
𝜕𝛩l

𝜕𝑡
+ 𝑢l · ∇𝛩l =

1

𝑃𝑟
∇2𝛩l,

𝜕𝛩g

𝜕𝑡
+ 𝑢g · ∇𝛩g =

𝛼*

𝑃𝑟
∇2𝛩g, (3)

𝜕𝑌v

𝜕𝑡
+ 𝑢g · ∇𝑌v =

𝜈*

𝑆𝑐
∇2𝑌v, (4)

where 𝑢, 𝑝, 𝛩 = (𝑇 − 𝑇c)/∆𝑇 and 𝑌v = 𝜌v/𝜌g
represent the dimensionless velocity vector, pressure,
temperature and the mass fraction of vapor, respec-
tively. Properties of the working liquid (0.65 cSt sil-
icone oil) are the density 𝜌 = 761 kg/m3, the ther-
mal diffusivity 𝛼 = 9.52 × 10−8 m2/s, the thermal
conductivity 𝑘 = 0.1 W/(m·K), the thermal expan-
sion coefficient 𝛽 = 1.34 × 10−3/K, the kinematic
viscosity 𝜈 = 6.5 × 10−7 m2/s and the dynamic vis-
cosity 𝜇 = 4.95 × 10−4 kg/(m·s); 𝑘 is the unit vec-
tor in the 𝑧 direction and superscript * denotes the

ratio of the physical parameters of the gas to the
liquid. 𝑃𝑟 = 𝜈l/𝛼l = 6.83 is the Prandtl num-
ber, 𝑅𝑎 = 𝑔𝛽𝑙∆𝑇𝐻3

l /(𝜈l𝛼l) is the Rayleigh number,
and 𝑆𝑐 = 𝜈g/𝐷 = 0.604 is the Schmidt number.
𝐷 = 2.5 × 10−5 m2/s is the diffusion coefficient of the
vapor in air. We use 𝐻l, 𝐻2

l /𝜈l, 𝜈l/𝐻l, 𝜌l𝜈2l /𝐻2
l and

∆𝑇 as scales for length, time, velocity, pressure and
temperature, respectively.

For 0.65 cSt silicone oil, the surface-tension num-
ber 𝑆 = 𝜌l𝐻l𝜎l/𝜇2

l tends to infinity and the capillary
number Ca = 𝜇l𝑢l/𝜎l tends to zero, thus the liquid-
gas interface is assumed to be flat and non-deformable.
The surface tension at the interface is considered to be
a linear function of temperature: 𝜎 = 𝜎0−𝜎𝑇 (𝑇−𝑇0),
where 𝜎0 = 1.59 × 10−2 N/m is the surface tension at
the reference temperature 𝑇0 = 𝑇c and 𝜎𝑇 = −𝜕𝜎
/𝜕𝑇 = 7× 10−5 N/(m·K) is the surface tension coeffi-
cient, which is constant and positive. At the interface,
no-slip condition for horizontal velocity in each phase
is

𝑢l = 𝑢g, (5)
and tangential stress balance between shear stress and
thermocapillary stress is given by(︂

𝜕𝑢l

𝜕𝑧
+

𝜕𝑣l
𝜕𝑥

)︂
− 𝜇*

(︂
𝜕𝑢g

𝜕𝑧
+

𝜕𝑣g
𝜕𝑥

)︂
= −𝑀𝑎

𝑃𝑟

𝜕𝛩i

𝜕𝑥
, (6)

where 𝑀𝑎 = 𝜎𝑇 ∆𝑇𝐻l/(𝜇l𝛼l) is the Marangoni num-
ber. Scaling the interfacial phase-change mass flux 𝑗
with 𝑘l∆𝑇/(𝐻lℒ), where ℒ = 2.14 × 105 J/kg is the
latent heat. Introducing the dimensionless evapora-
tion number 𝐸 = 𝑘l∆𝑇/(𝜌l𝜈lℒ), which indicates the
ratio of phase-change rate to viscous diffusion rate, we
obtain the interfacial mass conservation and mass flux
balance in the presence of rate-limiting phase-change
process as follows:

𝐸𝑗 = 𝑣l = 𝜌*𝑣g,

𝐸𝑗 = − 𝜌*𝜈*

𝑆𝑐 (1 − 𝑌v)

𝜕𝑌v

𝜕𝑧
. (7)

The classic Hertz–Knudsen equation based on the ki-
netic theory is used to describe the non-equilibrium
conditions for interfacial dimensional phase-change
mass flux

𝑗𝑚 =
2𝜆

2 − 𝜆

√︂
𝑀v

2𝜋�̄�

(︃
𝑝sat (𝛩i)√

𝑇i

− 𝑝v (𝑌v)√︀
𝑇g

)︃
, (8)

where 𝜆 = 1 is the accommodation coefficient, 𝑀v

is the molecular weight of the vapor, and �̄� =
8.314 J/(mol·K) is the universal gas constant. Here
𝑝sat(𝛩i) is the dimensional interfacial saturation vapor
pressure which can be computed using the Clausius-
Clapeyron relation

𝑝sat (𝛩i) = 𝑝v,0 exp

[︂
−𝑀vℒ

�̄�

(︂
1

𝑇i
− 1

𝑇0

)︂]︂
, (9)

where 𝑝v,0 = 4400 Pa is the dimensional saturation
vapor pressure at the reference temperature 𝑇0 =
293.15 K. The gas phase is a mixture of air and va-
por, and each component is considered to be ideal gas,
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according to the Dalton law of partial pressures, the
dimensional vapor pressure 𝑝v(𝑌v) is given by

𝑝v (𝑌v) = 𝑝g
𝑌v

𝑌v + 𝑟 (1 − 𝑌v)
, (10)

where 𝑟 = 𝑀v/𝑀a = 5.6 is the molecular weight ra-
tio of vapor to air. Particularly, 𝑝sat(𝛩i) and 𝑝v(𝑌v)
are scaled by 𝑝g, Eq. (8) can be transformed into the
dimensionless form

𝑄𝐸𝑗 =
𝑝v,0
𝑝g

exp

[︂
−𝑀vℒ

�̄�

(︂
1

𝑇i
− 1

𝑇0

)︂]︂
− 𝑌v

𝑌v + 𝑟 (1 − 𝑌v)
, (11)

𝑄 is a dimensionless number that indicates the re-
sistance to phase change caused by interfacial non-
equilibrium effect and defined as

𝑄 =
(2 − 𝜆) 𝜌l𝜈l

2𝜆𝑝g𝐻l

√︃
2𝜋𝑅𝑇i

𝑀v
. (12)

The temperature at the interface is considered to be
continuous,

𝛩l = 𝛩g = 𝛩i. (13)

However, the heat flux is discontinuous due to the la-
tent heat absorbed in liquid evaporation and released
in vapor condensation, the energy balance gives

𝑗 = −𝜕𝛩l

𝜕𝑧
+ 𝑘*

𝜕𝛩g

𝜕𝑧
. (14)

The remaining boundary conditions at all the walls
are standard no-slip and no-penetration conditions ex-
pressed in the following.

At the top adiabatic wall (𝑧 = 3),

𝑢g = 𝑣g = 0,
𝜕𝛩g

𝜕𝑧
= 0,

𝜕𝑌v

𝜕𝑧
= 0. (15)

At the bottom adiabatic wall (𝑧 = −1),

𝑢l = 𝑣l = 0,
𝜕𝛩l

𝜕𝑧
= 0. (16)

At the left cold wall (𝑥 = 0),

𝛩l = 𝛩g = 0, 𝑢l = 𝑣l = 𝑢g = 𝑣g = 0,
𝜕𝑌v

𝜕𝑥
= 0. (17)

At the right hot wall (𝑥 = 20),

𝛩l = 𝛩g = 1, 𝑢l = 𝑣l = 𝑢g = 𝑣g = 0,
𝜕𝑌v

𝜕𝑥
= 0. (18)

The governing equations in both liquid and gas phases
along with the boundary conditions are solved based
on the finite difference method. Fully second order
accurate projection method is used to decouple the
computation of pressure from velocity in the Navier–
Stokes equations, leading to a pressure Poisson equa-
tion at each time step which is solved by Fourier

analysis-cyclic reduction algorithm (FACR). The dif-
fusion terms are discretized by the Crank–Nicolson
scheme, the convective terms are discretized by the
Adams–Bashforth scheme and all the spatial deriva-
tives are discretized by standard central finite differ-
ence. Uniform staggered mesh 800 × (40 + 120) is
selected for good grid convergence. The accuracy of
the two-sided model is validated by comparing the
two-layer flow without phase change given by Liu et
al.,[22] two-phase flow with phase change given by Qin
et al.,[19] and the experimental results of the evapo-
rating liquid layer given by Zhu and Liu.[12]

We introduce the laboratory Marangoni number
to compare our numerical results with other experi-
mental studies, which applies the imposed horizontal
temperature gradient ∆𝑇/𝐿,

𝑀𝑎L =
𝜎𝑇𝐻

2
l

𝜇l𝛼l

∆𝑇

𝐿
=

𝑀𝑎

𝛤
, (19)

and the interfacial effective Marangoni number which
applies the practical temperature gradient in the core
region of the interface 𝜏 = 𝜕𝑇i/𝜕𝑥,

𝑀𝑎i =
𝜎𝑇𝐻

2
l 𝜏

𝜇l𝛼l
. (20)

The strength of buoyancy convection and thermocap-
illary convection is characterized by the Rayleigh num-
ber and Marangoni number, respectively. To measure
the relative strength of buoyancy force to thermocap-
illary force, one should introduce the dynamic Bond
number as

Bo =
𝑅𝑎

𝑀𝑎
=

𝜌l𝑔𝛽l𝐻
2
l

𝜎𝑇
, (21)

which only depends on the height of the liquid layer.
Four major flow regimes are found in the

thermocapillary-buoyancy convection of the volatile
liquid layer in an enclosed cavity, followed by Riley
and Neitzel,[5] these different flow regimes are referred
to as steady unicellular flow (SUF), steady multicel-
lular convection (SMC), oscillating multicellular con-
vection (OMC) and hydrothermal waves (HTW). The
typical flow patterns are shown in Fig. 2. Subjected
to the imposed horizontal temperature gradient, fluids
in both liquid phase and gas phase flow counterclock-
wise and clockwise, respectively, which are driven by
thermocapillary force on the interface and buoyancy
force in the bulk. When 𝑀𝑎L is small, only one uni-
form convection cell is observed in the core region of
the steady flow away from the lateral walls. As 𝑀𝑎L
is increased, separate small rolls start to emerge from
the hot side to the cold side in sequence until several
uniform and steady rolls occupy the core region. The
onset of the time-dependent flow, which propagates
from the cold side to the hot side in travelling-wave
state (HTW when Bo < 0.22) or oscillates in standing-
wave state (OMC when Bo > 0.22) depending on the
dynamic Bond number, shows up when 𝑀𝑎L exceeds
the critical value. Time evolutions of the typical peri-
odic oscillating multicellular convection are shown in

014701-3
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Fig. 3 and the dimensionless fundamental frequency
for oscillating flow is 𝑓1 = 2.78.

(a)

(b)
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Fig. 2. Streamlines of steady unicellular flow (SUF),
steady multicellular convection (SMC) and one typical in-
stant of time during the oscillation period of oscillating
multicellular convection (OMC) when Bo = 0.6.
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Fig. 3. Time evolution of the streamlines at five evenly
spaced instants over one oscillating period for oscillating
multicellular convection for 𝑀𝑎L = 2283 and Bo = 0.6.

The transition map of different flow regimes is il-
lustrated in Fig. 4. To investigate the impact of phase
change on convection instability, the corresponding
cases without phase change (𝑗 = 0 on the interface and
𝑌v = 0 in gas phase) are compared numerically and
experimentally, respectively. As Bo increases, the crit-
ical 𝑀𝑎L for the onset of the instability also increases
due to the stabilizing effect of the increasing buoy-
ancy force. In our numerical simulation and in com-
parison with the previous experimental results given
in Refs. [5,8], it is also found that the critical 𝑀𝑎L of
the onset of the time-dependent flow for phase-change
model is obviously higher than that of the model omit-
ting phase change.

Due to the evaporation (distributed at the hot
side) and condensation (distributed at the cold side)
occurs at the interface, the latent heat absorbed and
released, respectively, can decrease the average inter-

facial temperature gradient along the gas-liquid inter-
face (shown in Fig. 5), which determines the strength
of the thermocapillary effect on the thermal convec-
tion. Thus, the critical 𝑀𝑎L for the onset of the in-
stability increases as a result of phase change at the
interface.

OMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

SMC

SUF

HTW

Bo

×

Phase-change model

Without phase change (j=0)

Riley & Neitzel

Burguete et al.

M
a

L
 (1

0
3
)

(c)

(b)

(a)

Fig. 4. Transition map of flow regimes from steady uni-
cellular flow (SUF) to hydrothermal waves (HTW), steady
multicellular convection (SMC) and oscillating multicellu-
lar convection (OMC) for models with and without phase
change (𝑗 = 0). The points noted by symbols ⋆(a), ⋆(b)
and ⋆(c) correspond respectively to three typical flow pat-
terns shown in Fig. 2.
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Fig. 5. Interfacial temperature gradient 𝜏 = 𝜕𝑇i/𝜕𝑥 for
two-phase flow with phase change (𝑗 ̸= 0) and without
phase change (𝑗 = 0) when Bo = 0.6.

The numerical results are also compared with the
experimental data reported by Riley and Neitzel[5] and
Burguete et al.[8] These two experiments are in a large
spanwise aspect ratio which allows the 2D approxima-
tion in the streamwise direction. The critical 𝑀𝑎L for
the transition from SUF to SMC of the phase-change
model are in good agreement with Riley and Neitzel,
even omitting phase change, the critical 𝑀𝑎L are very
close to the phase-change model. This phenomenon
can be elucidated by interfacial temperature gradient
𝜏 , as shown in Fig. 5. At relatively low 𝑀𝑎L, con-
vection is within the SUF regime, phase-change effect
is relatively weak and unable to alter the interfacial
temperature gradient in the core region and then the
flow regime almost remains unchanged. As 𝑀𝑎L is in-
creased, the average value and fluctuation amplitude
of 𝜏 is apparently reduced under the influence of in-

014701-4

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 37, No. 1 (2020) 014701

tensive phase-change effect. It is notable that phase
change has a minor influence on the thermal boundary
layer near the lateral walls.

Also shown in Fig. 4, specially for microgravity
condition (Bo = 0) in space where buoyancy con-
vection vanishes, the critical Mai for the onset of
HTW predicted by Smith and Davis[4] is approxi-
mately equal to 260, which is very close to our numer-
ical result Mai = 280 for the non-phase-change condi-
tion, but lower than the critical 𝑀𝑎i = 311 for phase-
change condition. In fact, Burguete et al.[8] also used
a volatile 0.65 cSt Rhône-Poulenc silicone oil as the
working liquid whose 𝑃𝑟 = 10.3 is slightly larger than
ours, but special treatment of liquid was applied to re-
duce evaporation in their experiment. Thus, the crit-
ical 𝑀𝑎L of our numerical simulation for none phase-
change condition agrees well with Burguete’s experi-
ment for the onset of instability within the range of
0.14 ≤ Bo ≤ 0.4.

In summary, a two-sided model of thermocapillary-
buoyancy convection, which fully accounts for the in-
terfacial phase-change heat transfer and the gas flow,
is proposed and analyzed numerically. A new feature
of instability and flow regime transition of the flow
coupling with phase-change effect on the interface are
found and the mechanism of interfacial phase-change
effect is analyzed numerically. The critical 𝑀𝑎L of
phase-changed thermocapillary-buoyancy convection
for onset of steady multicellular convection and the
instability transition is also compared with the exper-
imental results. In this study, it is found obviously
that the phase change of evaporation and condensa-
tion plays an evident role of stabilizing the thermocap-
illary convection due to the decrease of the interfacial

temperature gradient and thermocapillary force at in-
terface. In other words, the mass and heat transfer
with phase change at gas-liquid interface tends to sta-
bilize the thermocapillary-buoyancy flows.
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