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This paper investigated the Hopf bifurcation and post-instability of tube bundles subjected to two-
phase cross-flow and loose support. A nonlinear dynamic model of a single tube in tube bundles con-
sidering the effects of two-phase flow force and impact force between the tube and tube support plate
was established. Based on this model, a numerical simulation program was written to calculate the
bifurcation diagrams, limit cycle motions, and quasi-periodic motions of the tube. The numerical results
showed that a supercritical Hopf bifurcation of a single flexible tube in a tube array at the original
stable equilibrium occurs at the Hopf bifurcation velocity within void fraction ranging from 0% to
80%. And, the vibrations of the tube for the high void fraction condition are much more complex than
those for the low void fraction which could be the reason for the early damage of the tube bundles in a
steam generator.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Two-phase cross-flow-induced fluidelastic instability of the
tube bundles in a steam generator is a key issue to the safety
of a nuclear power plant. Since the 1960s, a great effort has been
dedicated to this flow-induced instability of heat exchangers. The
fluidelastic instability of a tube placed in an array subjected to
two-phase cross-flow was studied by Joo and Dhir (1995). Their
investigation illustrated that the onset of fluidelastic instability
is associated with a rapid decrease of the effective spring con-
stant. Chung and Chu (Chen et al., 1998) investigated the fluide-
lastic instability of two different arrays of straight tube bundles
in two-phase cross-flow. The experimental results showed that
the vibration characteristics of the rotated square array tube bun-
dles in two-phase cross-flow were quite different from those of
the normal square array tube bundle. Based on unsteady flow
theory, Chen et al. (Chung and Chu, 2006) presented a mathemat-
ical model for fluid damping controlled instability of tubes in
cross-flow, which can be used to predict structural instability
due to fluid damping. Chu et al. (2009) performed an experimen-
tal study to investigate the fluidelastic instability of U-tube bun-
dles in air–water two-phase cross-flow, and the instability
constant of the Connors equation was assessed with a simplified
effective gap velocity. Mahon and Meskell (2009) studied the
interaction between fluidelastic instability and acoustic resonance
in a normal triangular tube array. They found that acoustic reso-
nance could modify the time delay between the tube motion and
flow field around the cylinder resulting in the drop in fluidelastic
vibration amplitude. Ricciardi et al. (2011) presented an experi-
mental study to analyze the vibration of a normal triangular tube
array subject to air–water cross-flow. Comparing with the results
obtained with a rotated triangular tube array, they found that the
normal triangular configuration is more stable than the rotated
triangular configuration. Zhao et al. (2014) used a fully coupled
model for fluid dynamics and structure to analyze the flow-
induced vibration of steam generator tubes. The dynamical
behaviors of two tubes with in-line and parallel configuration
were also studied. Bouzidi and Hassan (El and Bouzidi, 2015)
developed a computational fluid dynamics model to calculate
the fluid force inside the tube bundles. Then, considering the
effect of the time lag of the fluid force on the threshold of fluide-
lastic instability was also investigated. Jiang et al. (2015)
extended the streamtube model for fluidelastic instability in
single-phase flow to two-phase flow by two kinds of two-phase
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Fig. 1. Schematic diagram of a rotated triangular tube array subjected to two-phase cross-flow and loose support.
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flow models which are beneficial for predicting the fluidelastic
instability of tube bundles from existing stability maps and meth-
ods. Based on a bench-scale experimental setup, Liu et al. (2017)
measured the fluid excitation forces acting on the tube bundles in
a normal triangular tube array with water cross-flow, and pre-
sented a quasi-periodic mathematical model of fluid excitation
forces acting on a circular cylinder. Jiang et al. (2017) presented
a new set of upper bound of buffeting forces in two-phase flow
Table 1
Explanation and the values of the parameters.

Parameters Values

Elasticity modulus E = 210GPa
Length of the tube L = 0.312 m
Outer diameter of the tube D = 0.01748 m
Pitch between tubes P = 0.0259 m
Air density qG = 1.293 kg/m3

Water density qL = 1000 kg/m3

Void fraction reduction constant p = 0.75

Fig. 2. The bifurcation diagram for the tube bundles with loose support in 0% void fraction.

Table 2
A comparison of the critical velocity of the fluidelastic instability for the five void fraction conditions.

0% void fraction 20% void fraction 40% void fraction 60% void fraction 80% void fraction

Hopf bifurcation velocity (m/s) 3.57 4.94 7.27 8.29 10.03
Relative deviation 38.4% 103.6% 132.2% 180.9%

Fig. 3. The bifurcation diagram for the tube bundles with loose support in 0% void
fraction.



Fig. 4. Time history, phase-plane projection and spectrum of the tube in 0% void
fraction when the flow pitch velocity is 4.998 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.
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by modifying the mixture velocity proposed by de Lange which
has been compared with the one based on single-phase flow.
Based on transient interaction between a single tube and adjacent
flow streams of single-phase fluid, Shinde et al. (2018) presented
a theoretical model of fluidelastic instability of a tube array. The
critical velocity was also obtained as a function of mass ratio and
damping parameter. To predict the unsteady fluid forces in a par-
allel triangular array subjected to two-phase flow, Sadek et al.
(2018) presented a numerical model based on the RANS formula-
tion with aid of Spalart-Allmaras turbulence model. And the sta-
bility was also investigated by studying the eigenvalues of the
tube bundle system as a function of the flow pitch velocity. Ma
et al. (2020) investigated the flow-induced vibration characteris-
tics of three equally spaced cylinders using an inverse analysis
method.

Recently, some studies on the nonlinear dynamics of the tube
bundles subjected to single-phase flow and loose support have
been reported. The experimental and numerical analyses on the
problem of the nonlinear vibro-impact responses of loosely
supported heat-exchanger tubes subjected to single-phase flow
were performed by Piteau et al. (2012) Based on a five-mode dis-
cretization of the governing partial differential equation, Wang
et al. (2012) analyzed the instability and nonlinear dynamics of
planar motions of a cylinder array subject to single-phase cross-
flow considering the effect of the initial axial load. Their theoretical
results indicated that the tube system may lose stability by
increasing the initial axial load and flow velocity. Ni et al. (2015)
investigated the nonlinear dynamics of a cantilevered pipe convey-
ing fluid interacting with two support walls on both sides. Zhang
et al. (2016) studied the effects of increasing and decreasing flow
velocities on the fluidelastic instability of tube bundles in single-
phase cross-flow. Their results showed that the nonlinear hystere-
sis phenomenon occurred in both tube bundle vibrations.
Abdelbaki et al. (2018) presented a full nonlinear model for the
dynamics of a cantilevered cylinder subjected to confined, inverted
axial flow. Based on this model, the stability of the tube system
was investigated by means of bifurcation diagrams, time histories,
phase-plane, and power-spectral-density plots. The experimental
and numerical studies were utilized to obtain the threshold of flu-
idelastic instability of a tube array subjected to two-phase cross-
flow by Lai et al. (2019). And the nonlinear dynamics of the tube
array considering the effect of a clearance gap were further
investigated.

As mentioned above, several experimental and numerical stud-
ies have been carried out to obtain the threshold of fluidelastic
instability of a tube array subjected to two-phase flow, which is
a typical eigenvalue problem without considering the effect of
the constraint conditions of the tube bundles. However, in a steam
generator, it is important to note that the tubes are always
threaded through the tube support plates (TSP), or constrained
by the anti-vibration bars (AVBs). Thus, the tube bundles system
with TSP or AVBs processes nonlinear mechanism, and flow-
induced vibration of the tubes may very complicated within the
effect of two-phase flow. Despite the number of studies on flow-
induced fluidelastic instability of the tube bundles, few have con-
sidered the influence of the two-phase cross-flow loads and loose
supports. Therefore, it is still a problem deserving further investi-
gations for the bifurcation and post-instability of the tube bundles
with loose support in two-phase cross-flow. That is to say, what
effects can the two-phase cross-flow have on the nonlinear dynam-
ics of the tube bundles? Quantitative study has to be performed on
this problem because the post-instability vibration of a single flex-
ible tube in a tube array could be the reason for the early damage of
the tube bundles in a steam generator.
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In this study, the eigenvalue problem of fluidelastic instability
of a tube array in five void fraction conditions (0%, 20%, 40%, 60%,
and 80% void fraction) was investigated firstly. Then, the effect of
the loose support and void fraction of two-phase flow on the vibra-
tion characteristics of a single flexible tube in tube bundles was
taken into account. We have used a path-following method to cal-
culate the bifurcation diagrams for the tube bundles in the five
void fraction conditions (0%, 20%, 40%, 60%, and 80% void fraction).
By analyzing the bifurcation characteristics, the nonlinear dynam-
ics, we have determined the influence of loose support and two-
phase flow on the post-instability of the tube bundles.
2. Theoretical model

Fig. 1(a) shows a dynamics model of a rotate triangular tube
array subjected to two-phase cross-flow and the tube support
plate. In the event of one tube support plate failure, the tube bun-
dles can be regarded as two-span tube clamped at both ends and
loosely supported at the middle, as showed in Fig. 1(b). The equa-
tion of motion for a single flexible tube in a rotated triangular tube
array subjected to two-phase cross-flow and loose support can be
expressed as:
Fig. 5. Time history, phase-plane projection, spectrum, and Poincaré map of the tube in 0%
plane projection; (c) frequency spectrum; (d) Poincaré map.
EI
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where EI is the rigidity modulus of the tube, w is lateral displace-
ment of the tube, ct and mt is the damping coefficient and the mass
of the tube per unit length, d(y-ya) is the Dirac delta function,
Fstiffness(w) is the nonlinear force representing the effect of loose
support, Funsteady (w, _w,€w) is the fluid force of the two-phase
cross-flow, where dot and double dot indicate the velocity and
acceleration of the tube, respectively.

According to our previous studies (Lai et al., 2019), it is known
that the unsteady fluid force model can be used to predict the
threshold of fluidelastic instability of a rotated triangular tube
array in two-phase cross-flow. And, Funsteady (w, _w,€w) can be
expressed as:

Funsteady w;w
:
;w

::� � ¼ ma
@2w y; tð Þ

@t2
þ ca

@w y; tð Þ
@t

þ kaw y; tð Þ ð2Þ

where, the added mass of two-phase flow, ma, the damping, ca,
and the stiffness, ka, can be written as:
void fraction when the flow pitch velocity is 6.998 m/s: (a) displacement; (b) phase



Fig. 6. Time history, phase-plane projection and spectrum of the tube in 0% void
fraction when the flow pitch velocity is 7.998 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.

Fig. 7. The bifurcation diagram for the tube bundles with loose support in 20% void
fraction.
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ma ¼ p
4 qGpbþ qL 1� pbð Þ½ �D2 De=Dð Þ2þ1

De=Dð Þ2�1

h i
ca ¼ qU2

1CFcosUF
2

ka ¼ qU2
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where qG is the air density, qL is the water density, q is the two-
phase flow density, b is the void fraction of two-phase flow, D, De

is the tube diameter and pitch between tube bundles, respectively,
U1 is the flow pitch velocity,x is the angular frequency of the tube,
CF, UF is the unsteady fluid force coefficient magnitude and phase,
respectively.Introducing the following the non-dimensional
quantities:

g ¼ w
D ; n ¼ y

L ; s ¼ k21
ffiffiffiffiffiffiffiffi
EI

mtL4

q
t ¼ Xt; 1 ¼ ct

Xmt
; m� ¼ mt

qD2 ; U� ¼ 2pU1
DX ;

a ¼ 1
1þ4m�= pCmað Þ ; x

� ¼ x
X

ð4Þ
where L is the tube length, k1 is the dimensionless eigenvalue of the
first-order mode for a simply supported beam.

By substituting these dimensionless quantities into Eq. (1), the
partial differential equation of the motion of the tube bundles con-
sidering the effects of two-phase cross-flow and loose support can
be rewritten as:

1
1�a

@2g
@s2 n; sð Þ þ f� U�2CF sinUF

8p2m�x�

h i
@g
@s n; sð Þ þ 1

k41

@4g
@f4

n; sð Þ

� U�2CFcosUF
8p2m� � ax�2

1�a

h i
g n; sð Þ þ d n� nbð Þf � gð Þ ¼ 0

ð5Þ

According to the Galerkin method, it is reasonable to suppose
that:

g n; sð Þ ¼
XN
i¼1

ui nð Þqi sð Þ ð6Þ

where ui(n) is the modal shape of the simple supported tube. It is
known that the dynamic response of a tube is dominated by the first
low modes. Thus, the first five order modes were chosen in present
study.

Using the Galerkin expansion and modal truncation techniques,
a set of ordinary differential equations can be deduced from the
partial differential equation, as follows:



Fig. 8. Time history, phase-plane projection and spectrum of the tube in 20% void
fraction when the flow pitch velocity is 6.998 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.
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€qi
1�aþ f� U�2CF sinUF

8p2m�x�
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_qi þ k4i
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8p2m� þ ax�2
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where ga is the displacement at n = na.
Notice that the coupling term is the impact force between the

tube and tube support plate f*(ga) due to the constraint at the loose
support. In this study, the mathematical model presented by
Paidoussis et al. (Paidoussis et al., 1989) (Paidoussis et al., 1991)
was used to represent properly the restraining force of loose sup-
port, which can be written as:

f � gað Þ ¼ jg3
a ð8Þ

where j is the nondimensional stiffness of the cubic spring. In this
paper, j is chosen to be 1000 in accordance with reference
(Paidoussis and Li, 1992).

3. Eigenvalue analysis

To investigate the fluidelastic instability of the tube bun-
dles considering the two-phase flow load, we analyze the
eigenvalue problem for the linearized system of the tube bun-
dles. The linearized equations at the equilibrium position can
be written as:

M að ÞQ
::

þC f;U�;m�;x�;CF ;UFð ÞQ
:

þK U�;m�;x�;CF ;UF ;a;k1ð ÞQ ¼0

ð9Þ
Eq. (11) is the reduced-order equation, where q=(0,0) represents

the equilibrium position.

Q
:

¼ A½ �Q ; A½ � ¼ @f i
@qj

" #�����
q¼ 0;0ð Þ

; i; j ¼ 1; 2; � � � ; 5 ð10Þ

According to the Lyapunov’s indirect method, the stability of
the nonlinear system described by Eq. (7) in the neighborhood of
the tube equilibrium point can be determined by the eigenvalues
of Jacobian matrix A. If all the real parts of the eigenvalues of the
Jacobian matrix A are negative, the tube bundles are stable. If a real
part of the eigenvalues is zero, the tube system is at the critical
state, and the corresponding flow pitch velocity is the threshold
of fluidelastic instability.

In addition, it is obvious that, without the impact force between
the tube and tube support plate, the mass matrix M(a), damping
matrix C(n, U*, m*, x*, CF, UF), and stiffness matrix K(U*, m*, x*,
CF, UF, a, k1) is diagonal matrix, respectively, which can be
expressed as:

M ¼ diag 1
1�a
� 	

C ¼ diag f� U�2CF sinUF
8p2m�x�

h i
K ¼ diag k4i

k41
� U�2CFcosUF

8p2m� þ ax�2
1�a

h i ð11Þ

Based on our previous study (Liu et al., 2019), it is known that
the first-order mode of the tube may become unstable firstly.
Thus, the eigenvalues of the first-order mode corresponding to
fluidelastic instability of a tube in the rotated triangular tube
array were calculated for five different cases (b = 0%, 20%, 40%,
60%, and 80%). The values of the parameter were illustrated in
Table 1.

The results are presented in Fig. 2. The flow pitch velocity
corresponding to the zero-real part of the eigenvalue is the



Fig. 9. Time history, phase-plane projection, spectrum, and Poincaré map of the tube in 20% void fraction when the flow pitch velocity is 9.997 m/s: (a) displacement; (b)
phase plane projection; (c) frequency spectrum; (d) Poincaré map.

Fig. 10. The bifurcation diagram for the tube bundles with loose support in 40%
void fraction.
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critical velocity. It is clearly seen that the threshold of fluidelastic
instability of the tube increases monotonously as the void fraction
of the two-phase flow increases. For the example considered in this
study, the critical velocity of fluidelastic instability in two-phase
flow for 20%, 40%, 60%, and 80% void fraction is 4.94 m/s, 7.27 m/
s, 8.29 m/s, 10.03 m/s, which is 38.4%, 103.6%, 132.2%, and
180.9% more than the critical velocity in single-phase flow. A direct
comparison of the critical velocity of the fluidelastic instability for
the five void fraction conditions was illustrated in Table 2. It is
obvious that the real part of the eigenvalue increases with the
increasing void fraction of two-phase flow, which means that in
the high void fraction condition, the tube bundles are more stable.
Furthermore, it also can be seen that the void fraction of two-phase
flow has a significant effect on the damped frequency of the tube,
as showed in Fig. 2(b). With increasing of the flow pitch velocity,
once the flow pitch velocity exceeds the threshold of fluidelastic
instability, the tube bundles could impact with the tube support
plates, the tube modes become coupled. The periodic motion
may occur, and the vibration characteristics of the tube bundles
may become complicated.



Fig. 11. Time history, phase-plane projection and spectrum of the tube in 40% void
fraction when the flow pitch velocity is 11.919 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.
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4. Nonlinear dynamic analysis

On the basis of our dynamic model described above, the
dynamic response of the tube was calculated by using a fourth-
order Runge-Kutta integration algorithm, with a step size of 0.02.
The bifurcation diagrams of the tube subjected to two-phase
cross-flow and loose support were constructed by plotting the
peak-to-peak value of the vibration displacement of the tube in
the transverse direction, in this case, the flow pitch velocity being
the bifurcation parameter. In the following discussion, we focus on
five void fraction conditions: 0%, 20%, 40%, 60%, and 80% void
fractions.

Fig. 3 shows the bifurcation diagram of the tube in 0% void
fraction. The fluidelastic instability of the tube occurs at
Up = 3.614 m/s, resulting of a Hopf bifurcation at the original
equilibrium position, which is equal to the numerical result
obtained by eigenvalue analysis in the last section. It is obvious
to see that once the flow pitch velocity exceeds the threshold of
fluidelastic instability, the limit cycle motion of the tube occurs.
The flow pitch velocity at the critical state where the limit cycle
motion occurs is called the Hopf bifurcation velocity. It is impor-
tant to note that the instability of the tube in the transverse
direction is the supercritical Hopf type. Hence, the tube oscillation
may decay to the original equilibrium position, when the flow
pitch velocity of two-phase cross-flow is less than the threshold
of fluidelastic instability for all initial conditions. On the other
hand, when the flow pitch velocity is larger than the Hopf bifur-
cation velocity, as the flow pitch velocity is increased, the vibra-
tion amplitude of the limit cycle motion quickly grows. With
increasing the flow pitch velocity continuously, the effect of the
impact force between the tube and loose support could become
apparent. Over most of the flow pitch velocity concerned range
in present study, bifurcation results in transition between peri-
odic solutions. However, within the flow pitch velocity ranging
from 6.306 m/s to 7.382 m/s, a significant quasiperiodic regime
can be manifested. When the flow pitch velocity is larger than
7.459 m/s, another significant non-periodic regime can also be
manifested. We now turn to a closer investigation of the resulting
responses of the tube for the three typical regimes, the periodic
motion, quasi-periodic motion, and non-periodic motion,
respectively.

Fig. 4 shows the time history, phase-plane projection, and fre-
quency spectrum of the tube in 0% void fraction at flow pitch
velocity is 4.998 m/s, respectively. It can be clearly seen that
the time series are shown in Fig. 4(a) has a flat envelope and
no constant offset, and the signal is not sinusoidal in form. We
can expect this signal to contain harmonics of the basic fre-
quency. The velocity and displacement of the tube in 0% void
fraction at Up = 4.998 m/s were used to define the state space,
and a typical limit cycle motion can be seen in Fig. 4(b). The asso-
ciated frequency spectrum of the tube in 0% void fraction was
shown in Fig. 4(c). Unlike a linear tube bundles system, with
the nonlinear effect of the loose support, higher frequency vibra-
tions of the tube occur at multiples of the fundamental frequency,
the odd frequencies appear in addition to the fundamental
frequency. Fig. 5 shows the time history, phase-plane projection,
frequency spectrum, and Poincaré map of the tube in 0% void
fraction at Up = 6.998 m/s, respectively. Fig. 5(a) shows an
atypical periodic motion, and the phase-plane projection is more
complex. It is important to note that a typical quasiperiodic
motion occurs. This quasiperiodic solution is a dynamic solution
characterized by two incommensurate frequencies, X1 and X2,
as illustrated in Fig. 5(c). Thus, this quasiperiodic solution
can be called as a two-periodic quasiperiodic solution. A



Fig. 12. Time history, phase-plane projection, spectrum, and Poincaré map of the tube in 40% void fraction when the flow pitch velocity is 13.688 m/s: (a) displacement; (b)
phase plane projection; (c) frequency spectrum; (d) Poincaré map.

Fig. 13. The bifurcation diagram for the tube bundles with loose support in 60%
void fraction.
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two-dimensional system was utilized to construct a Poincaré sec-
tion, and the discrete points fall on a closed curve shown in Fig. 5
(d). Fig. 6 shows the time history, phase-plane projection, and fre-
quency spectrum of the tube in 0% void fraction at Up = 7.998 m/
s, respectively. At Up = 7.998 m/s, the vibration of the tube
becomes much more complex and appears non-periodic motion.
For this complex motion, although the significant periodic com-
ponent exists, the harmonic, sub-harmonic and multi-harmonic
response of the tube can also be observed in Fig. 6(a) and (c),
which indicates that the flow pitch velocity has a great effect
on the high-frequency vibration of the tube.

Fig. 7 displays the bifurcation diagram of the tube bundles in
20% void fraction, and the bifurcation parameter is the flow pitch
velocity, as previously. It can be clearly seen that the Hopf bifur-
cation of the tube at the original equilibrium position occurs at
Up = 4.980 m/s. In a small range of flow pitch velocity above
Up = 5.306 m/s, as the flow pitch velocity is increased, the vibra-
tion amplitude of the limit cycle motion grows, but the changes
have been small. Continue to increase the flow pitch velocity, it
is interesting to note that a jump occurs from the stable branch



Fig. 14. Time history, phase-plane projection and spectrum of the tube in 60% void
fraction when the flow pitch velocity is 12.688 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.
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to another stable branch, and the vibration amplitude of the peri-
odic motion quickly grows. At Up = 8.843 m/s, a quasi-periodic
motion occurs. In the concerned flow pitch velocity range, no
non-periodic regime was manifested in 20% void fraction. The
time history, phase-plane projection, frequency spectrum, and
Poincaré map of the tube within 20% void fraction for some spe-
cially chosen flow pitch velocity were shown in Figs. 8 and 9,
respectively. As shown in Fig. 8, at Up = 6.998 m/s, which is larger
than the Hopf bifurcation velocity, the trajectory of the tube is
toward a stable limit cycle, and the odd frequency in addition
to the fundamental frequency can also be observed in Fig. 8(c).
One example of the quasi-periodic solution at Up = 9.997 m/s is
shown in Fig. 9. We note that the frequencies, X1 and X2, are
incommensurate, and the frequency spectrum has peaks at X1-
2 X2, X1-X2, X1, X1 + X2, X1 + 2 X2, et al., as shown in Fig. 9
(c). The points in the Poincaré map of Fig. 9(d) lie on a closed
curve, indicating that the corresponding motion is a two-
periodic quasiperiodic.

The bifurcation diagram of the tube in 40% void fraction
was shown in Fig. 10. The Hopf bifurcation in 40% void frac-
tion occurs at Up = 7.290 m/s, which is equal to the results
obtained from the eigenvalue analysis. When the flow pitch
velocity is larger than the threshold of fluidelastic instability,
two significant regimes are manifested, the periodic motion
regime and the quasi-periodic motion regime. Fig. 11 displays
the time history, phase-plane projection, and frequency spec-
trum of the tube as an example of the periodic motion at
Up = 11.919 m/s. And, Fig. 12 displays the time history,
phase-plane projection, frequency spectrum, and Poincaré map
of the tube as another example of the quasi-periodic motion
at Up = 13.688 m/s.

Fig. 13 shows the bifurcation diagram for the displacement
amplitude of the tube in 60% void fraction versus the flow pitch
velocity. It can be clearly seen that the Hopf bifurcation occurs
at Up = 8.280 m/s. For Up < 14.995 m/s, the limit cycle motion
of the tube can be manifested. One example of the limit cycle
motion at Up = 12.688 m/s was shown in Fig. 14. When the flow
pitch velocity is larger than 14.995 m/s, the complex periodic
motion occurs, as shown in Fig. 15. The complex periodic state
cannot be characterized in terms of single frequency as simple
periodic oscillation can be. The finite number of points in the
Poincaré map shown in Fig. 15(d) confirm the periodicity of
the state, which corresponds to a phase-locked motion of the
tube.

The bifurcation diagram of the tube in 80% void fraction was
shown in Fig. 16. The Hopf bifurcation occurs at
Up = 10.080 m/s. Over a large range of flow pitch velocity
above 17.994 m/s, the periodic motion of the tube can be
observed. When the flow pitch velocity is larger than
17.994 m/s, quasi-periodic motion of the tube occurs. The time
history, phase-plane projection, and frequency spectrum of the
limit cycle motion for Up = 14.918 m/s were shown in
Fig. 17, respectively. The time history, phase-plane projection,
frequency spectrum, and Poincaré map of the quasi-periodic
motion for Up = 18.533 m/s were shown in Fig. 18, respectively.
A phase-locked motion of the tube can also be observed, as
shown in Fig. 18(d).

Summarizing the numerical results obtained, in the single-
phase cross-flow (0% void fraction), the tube vibration response
may be thought of as comprised of four regimes, the stable
regime, the periodic regime, the quasi-periodic regime, and the
non-periodic regime. In the stable regime, when the flow pitch
velocity is less than the threshold of fluidelastic instability, for
any initial conditions, the tube oscillation may decay to zero at



Fig. 15. Time history, phase-plane projection, spectrum, and Poincaré map of the tube in 40% void fraction when the flow pitch velocity is 15.380 m/s: (a) displacement; (b)
phase plane projection; (c) frequency spectrum; (d) Poincaré map.

Fig. 16. The bifurcation diagram for the tube bundles with loose support in 80%
void fraction.
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the equilibrium position. No impact between the tube and tube
support plates occurs in this regime. In the periodic regime, Hopf
bifurcation occurs, the tube bundles system is unstable. And the
amplitude of the limit cycle motion increases monotonously
with the flow pitch velocity. The tube collides with the tube sup-
port plate at a certain frequency. In the quasi-periodic regime, a
quasiperiodic solution is a dynamic solution characterized by
two incommensurate frequencies, X1 and X2. The vibration of
the tube is complex. In the non-periodic regime, the influences
of the tube support plate are obvious, and the tube vibration
becomes much more complicated. The early damage of the tube
bundles in a steam generator may be due to the violent collision
between the tube and tube support plate.

In addition, within the void fraction of two-phase cross flow
ranging from 20% to 80%, the bifurcation diagrams of the tube
are different from the one in single-phase cross-flow. The tube
dynamic response in two-phase cross-flow may be thought of
as comprised of three regimes, the stable regime, the periodic
regime, and the quasi-periodic regime. No non-periodic motion
has been observed in this study. It is interesting to note that



Fig. 17. Time history, phase-plane projection and spectrum of the tube in 80% void
fraction when the flow pitch velocity is 14.918 m/s: (a) displacement; (b) phase
plane projection; (c) frequency spectrum.
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the Hopf bifurcation velocity of the tube increases monotonously
as the void fraction of two-phase cross-flow increases. Although
the bifurcation diagrams in the two-phase cross-flow are similar,
there still exist some differences between the four void fraction
conditions considered in this study. In the low void fraction con-
dition (20% and 40% void fractions), the typical quasi-periodic
motions have been manifested for the high flow pitch velocity.
While in the high void fraction (60% and 80% void fractions), a
phase-locked oscillation has been observed. For examples consid-
ered in this study, the Hopf bifurcation velocity in 20%, 40%, 60%,
and 80% void fraction is 4.940 m/s, 7.270 m/s, 8.290 m/s,
10.030 m/s, which is 38.4%, 103.6%, 132.2%, and 180.9% more than
the Hopf bifurcation velocity in single-phase cross-flow. The
velocity of quasi-periodic motion occurs is 8.843 m/s, 13.227 m/
s, 15.072 m/s, and 18.071 m/s, which is 41.9%, 112.3%, 141.9%,
and 190.1% more than the quasi-periodic motion occurs in
single-phase cross-flow.
5. Conclusion

In this paper, a mathematical model of a single flexible
simply-supported tube in a rigid tube array subjected to
two-phase cross-flow and loose support modeled by a cubic
spring has been developed. Based on this model, the eigen-
value problem has been studied firstly. Considering the effect
of the loose support, the Hopf bifurcation and various post-
Hopf nonlinear dynamics of the single flexible tube in rigid
tube bundles within 0%, 20%, 40%, 60%, and 80% void fraction
were investigated. From these analyses, we have drawn the
following conclusions:

1) A supercritical Hopf bifurcation of a single flexible tube in a
rotated triangular tube array at the original stable equilib-
rium occurs at the Hopf bifurcation velocity within void frac-
tion ranging from 0% to 80%.

2) With increasing the flow pitch velocity of two-
phase cross-flow beyond the threshold of fluidelastic
instability, the amplitude of the limit cycle motion grows
monotonously.

3) For sufficiently high flow pitch velocity, the quasi-periodic
motion of the tube may occur for both the single-phase
cross-flow and two-phase cross-flow conditions. Nonethe-
less, a significant non-periodic motion has been manifested
in the single-phase cross-flow, while the non-periodic
motion has not been observed in the two-phase cross-flow
conditions.

4) Although the bifurcation diagrams of the tube in two-phase
cross-flow for the four void fraction conditions are similar,
the vibrations of the single flexible tube in a tube array for
the high void fraction condition are much more complex
than those for the low void fraction which could be the rea-
son for the early damage of the tube bundles in a steam
generator.
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Fig. 18. Time history, phase-plane projection, spectrum, and Poincaré map of the tube in 80% void fraction when the flow pitch velocity is 18.533 m/s: (a) displacement; (b)
phase plane projection; (c) spectrum; (d) Poincaré map.
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