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Abstract: We discuss the tilt-to-length (TTL) coupling noise caused by interference between a
flat-top beam and a Gaussian beam. Several physical models are presented to research the effects of
non-diffracted and diffracted beams on TTL noise. A special case that can remove TTL coupling noise
is discovered and is verified via both theoretical analysis and numerical simulations. The proposed
case could provide desirable suggestions for the construction of high-precision interferometers such
as the Laser Interferometer Space Antenna (LISA), Taiji program, or other interferometry systems.
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1. Introduction

In the detection processes of space-borne and long-baseline laser interferometers such as the Laser
Interferometer Space Antenna (LISA) [1] and Taiji program [2,3], the coupling between the beam jitter
and the path length readout represents a significant noise source, this coupling is called tilt-to-length
(TTL) coupling [4]. In their current designs, the interferometer arm length of the LISA is 2.5 million
kilometers, and Taiji is 3 million kilometers, meaning that a fundamental-mode Gaussian beam would
travel millions of kilometers in space and expand into a huge fundamental-mode Gaussian wavefront.
(The above is a simplified assumption; interested readers can find more detailed discussion in [5,6],
but these discussions are beyond the scope of this paper). The wavefront would then be clipped into a
flat-top beam and imaged via the local telescope to the local optical bench to interfere with the local
Gaussian beam. The wavefront will suffer diffraction and its propagation direction will jitter because
of beam clipping and pointing accuracy limitations, and when the obvious beam type differences
between the two interfering beams are considered, the above factors will produce more complex noise
in the length readout.

In this paper, both non-diffracted and diffracted models are constructed to research the interference
between a flat-top beam and a Gaussian beam. Then a special case, in which the TTL noise can be made
negligible by placing the beam waist in an appropriate position and using a suitably large detector
without clipping, is found and is verified via both analytical solutions and numerical simulations.

2. Optical Model

A simplified schematic of an interferometer is shown in the upper part of Figure 1;
this interferometer includes a flat-top beam, a Gaussian beam, an aperture stop and a quadrant
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photo-diode (QPD). In the face of aperture, the flat-top beam can be regarded as a fraction of a plane
wave. The electric field of an infinite plane wave can be given by:

Eplane = A exp[−i(~k ·~r−ω1t)] (1)

Please note that A is the amplitude and is irrelevant to the pathlength signal, so it is set to unity
here; ω1 is the angular frequency;~k is the wave vector and its direction is ordinarily the direction in
which the plane wave is traveling, so |~k| = k = 2π/λ, where k is the wavenumber. ~r is the position
vector that defines a point in three-dimensional space. Figure 1 shows that the direction cosine of~k is
(sin α, 0, cos α). The non-diffractive form of the flat-top beam can be derived simply. In this situation,
R can be regarded as the radial dimension of the flat-top beam, and a suitable expression for the
flat-top beam is derived as shown in Equation (2). It is then very simple to calculate the complex
amplitude of the flat-top beam on the detector by replacing “z” with “s” in Equation (2), s is the
position of the detector.

E(x, y, z) f lat =

{
exp[−ik(x sin α + z cos α) + iω1t] x2 + y2 ≤ R
0 else

(2)

The fundamental Gaussian beam serves as the most appropriate description for the output of
most lasers. The amplitude of the electric field is also set to unity here and Gouy phase is assumed to
be static phase and can thus be ignored in the situation shown in Figure 1, the electric field can then be
written as:

E(x, y, z)gauss = exp[−ik(
x2 + y2

2q
+ z− z0) + iω2t] (3)

where the complex parameter q = (z− z0) + izr, the Rayleigh range zr = πω2
0/λ, ω0 is the waist

radius, z0 is the z-axis value of the waist position, and ω2 is the frequency.
Next, we analyze the diffraction form. When a beam travels through free space, Kirchhoff’s

diffraction formula can be used to calculate the beam model of diffracted propagation. As shown
in Figure 1, the coordinates on the aperture are represented by x1,y1, while the coordinates on the
detector are represented by x,y. Therefore, the field distribution E(x, y)di f f of the diffracted beam on
the detector can be calculated as:

E(x, y)di f f =
1
iλ
∫ ∞
−∞

∫ ∞
−∞

exp(ikr)
r

1+cos θ
2 Eaper(x1, y1)dx1dy1

r =
√

z2 + (x− x1)2 + (y− y1)2, cos θ =
z
r

(4)

where r is the distance between point (x, y) and point (x1, y1), and Eaper(x1, y1) is the pre-diffracted
complex amplitude of beam on the aperture.

In current high-precision laser interferometers such as LISA or Taiji, heterodyne interference is
used as the method of measurement, the QPD is usually used as the detector. And phasemeter is
then used to analyze the photocurrents generated on the QPD to obtain the pathlength signal [7].
The optical simulation software ”ASAP”, known throughout the optics industry for its accuracy and
efficiency on optical modelling, is used as the modelling tool to simulate heterodyne interference
and obtain beat signal on detector. Then MATLAB is used as signal-processing tool to imitate the
quadrature-phase(IQ) demodulation technique, which is used on the phasemeter of LISA pathfinder
to compute interference signals [7]. An example is shown in the lower part of Figure 1, where the
sampling number of the beat period is 16. The following simulations in Section 3.1 adopted the above
way to perform the numerical analyses.
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Figure 1. The upper part of the figure is a simplified schematic of an interferometer. Here, we set a
Gaussian beam as the reference beam that propagates along the z axis and strikes the center of the
detector; We also set a flat-top beam as the measurement beam that is tilted by an angle α around the y
axis, and to simplify the calculations, we set its pivot as the coordinate origin O. The aperture stop is
placed at the coordinate origin and is perpendicular to the z-axis and R is its radial dimension. s is the
position of the QPD. do f f set is the distance between the centers of the two beams. z0 is the waist position.
D and L are the diameter size and the gap size of the QPD, respectively. The interference pattern per
sampling on the detector shown as the left side of the lower part of the figure, is respectively summed
over the area of detector to acquire a beat signal shown as the right side. The signal-processing tool
based on MATLAB then can process the beat signal to obtain the phase information.

3. Theoretical Analysis

In the current theoretical analysis, the complex amplitude is normally used to calculate the phase
information [8,9]:

C =
∫

S
EmeasE∗re f dr2 (5)

Because the QPD has four segments as shown in Figure 1, it gives researchers some degrees of
freedom to define signals with different pathlengths. The phase definition selected by LISA Pathfinder
is LISA Pathfinder (LPF) signal, which first sums the complex amplitudes of each quadrant of QPD
and then uses the following argument [10]:

φLPF = arg
( 4

∑
n=1

Cn

)
(6)

We focus here on the change in the optical path difference between the two beams. Because the
path difference does not change over time, we can set t = 0 in the theoretical analysis. In addition,
to simplify the calculations and obtain intuitive analytical solutions that clearly illustrate the parameter
interdependency, we remove some of the terms that are unrelated to α from the calculation.

3.1. Non-Diffractive Form

The aperture stop in Figure 1 is moved to the front of the detector along the z-axis, but the
rotation point of the flat-top beam is fixed and its size is assumed to be larger than the aperture
stop in this analysis. So, beams can propagate freely without being diffracted. Then we derive the
analytical expressions for the complex amplitude of each quadrant on the detector without diffraction.
To research how the different factors are coupled into the measured path length, the final computation
results will be visually decomposed into the sum of the different corresponding formulas in the
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simplification process. In Figure 1, the flat-top beam is rotated along the y-axis, so quadrants 1, and 2
have the same field distribution, and quadrants 3, and 4 have the same field distribution:

C1 = C2 =
1
2

∫ R

−R

( ∫ R

L/2
E f latE∗gaussdx

)
dy

≈ 1
2

ε exp
(
− 1

2
ikz sin2(α) + ikz(1− cos(α)) +

1
2

ikz0 sin2(α)
)
(F(L/2) + F(R))

(7)

C3 = C4 =
1
2

∫ R

−R

( ∫ −L/2

−R
E f latE∗gaussdx

)
dy

≈ 1
2

ε exp
(
− 1

2
ikz sin2(α) + ikz(1− cos(α)) +

1
2

ikz0 sin2(α)
)
(F(−L/2) + F(−R))

(8)

with:

F(r) = Erfi
[( 1

2 + i
2

)√
k(r− q sin(α))
√

q

]
(9)

where ε represents the collection of terms that are unrelated to α, and will be ignored in the following
calculation. The longitudinal pathlength signal (LPS) that results from LPF signal can then be
derived as:

LPSLPF =
arg(∑4

n=1 Cn)

k

≈ −1
2

sα2 +
1
2
(s− z0)α

2

+

arg
[

2
(

F(L/2) + F
(

R
))

+ 2
(

F(−L/2) + F
(
− R

))]
k

(10)

We then set L = 0 and D/2 = R = ∞ to give the idealized detector shape and integral area.
Formulas are presented using Taylor expansions based on the premise of preserving the precision of
the calculations to obtain more intuitive analytical expressions. The LPSLPF is then changed to:

LPSLPF ≈ −
1
2

sα2 +
1
2
(s− z0)α

2 + O(α4) (11)

In the case shown in Figure 1, the geometrical optical path difference (LPSOPD) between the two
beams can be derived easily as:

LPSOPD =
( 1

cos α
− 1
)
· s ≈ −1

2
sα2 + O(α4) (12)

The above obviously shows that when compared with LPSOPD, LPSLPF contains extra terms,
including the factor “s− z0”. Figure 1 shows that “s− z0” is the distance between the waist position
and the detector, which determines the wavefront curvature of the Gaussian beam on the detector.
When we set the beam waist on the detector, e.g., z0 = s, the wavefronts of the two beams on the
detector are both planar. The pathlength signal is then caused by the geometric path only and not by
the wavefront mismatch; therefore, LPSLPF is equal to LPSOPD. Furthermore, Equation (11) illustrates
an interesting phenomenon in that when the waist position of the Gaussian beam coincides with
the pivot point of the flat-top beam, e.g., when z0 = 0, the pathlength generated by the wavefront
mismatch then has the same magnitude as LPSOPD but a different sign. The resulting LPSLPF then
becomes negligible. However, Equation (10) indicates that the extra TTL coupling will be generated if
the detector size is not large enough or its gap size is not equal to 0.

Next we use the numerical simulation tool to verify and increase confidence in the accuracy of the
theoretical analysis above. In the simulation, we set the position of detector s = 500 mm, the Gaussian
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waist ω0 = 0.5 mm and its waist position z0 = 0. The radius dimension of flat-top beam R = 9 mm,
the diameter of detector D = 10 mm, while the gap size of detector L is set to be 0 and 20 µm
respectively to enable observation of the change in LPSLPF with respect to the angle α. The results
are illustrated in Figure 2, which shows that the simulation results are in good agreement with the
results derived from the analytical solution. Therefore, the TTL coupling in an interferometer with
one Gaussian beam and one large flat-top beam and a large single-element photo-diode (SEPD) (i.e.,
a QPD with gap size equal to 0) can be made to vanish by setting appropriate optical parameters.

Figure 2. (a) When the waist position of the Gaussian beam coincides with the rotation point of the
flat-top beam and the detector is an large enough plane with no gap, LPSLPF is shown to be significantly
below the picometer scale. (the differences are numerical errors related to the ray tracing algorithm).
(b) When the gap size of detector is 20 µm, the balance of (a) is disturbed and LPSLPF is shown to be
increased to 10 pm order.

3.2. Diffraction

The basis of the situation shown in Figure 2a is that no diffraction occurs during the beam
propagation process. However, the amplitude and the phase of flat-top beam wave on the detector
could not be flat if diffraction occurred during propagation, but diffraction is very common in practical
situations . Therefore, it is necessary to research whether the TTL coupling can also be eliminated as
shown in Figure 2a when diffraction occurs.

The aperture stop is located on the coordinate origin O as shown in Figure 1 in this case.
For consistency with Figure 2a, we also set s = 500 mm, ω0 = 0.5 mm, L = 0, and z0 = 0 in the
analysis. The diffraction effects regime could be determined by using the Fresnel number as follows:

NF =
R2

sλ
(13)

Fresnel numbers of around 1 or higher characterize a case of Fresnel diffraction (near-field
diffraction). From Equation (13) we know that when NF is approximately 1, then R is approximately
0.7 mm. We thus set R = 0.7 mm to study the effect of the Fresnel diffraction and set D = 30 mm to
ensure that almost all the energy is detected. Equation (4) is used to calculate the field distribution
of the diffracted beam. The field distribution of the diffracted flat-top beam on detector in polar
coordinates(i.e., x1 = ρ1 cos ψ1, y1 = ρ1 sin ψ1, x = ρ cos ψ, y = ρ sin ψ) can then be written as:

E(ρ, ψ) f lat−di f f =
1
iλ

∫ 2π

0

∫ R

0

exp(ikr)
r

1 + cos θ

2
exp[−ik(ρ1 cos ψ1 sin α)]ρ1dρ1dψ1 (14)

The field distribution of the diffracted Gaussian beam on detector can then be written as

E(ρ, ψ)Gauss−di f f =
1
iλ

∫ 2π

0

∫ R

0

exp(ikr)
r

1 + cos θ

2
exp[−ik(

ρ2
1

2(izr − z0)
− z0)]ρ1dρ1dψ1 (15)

where r =
√

s2 + (ρ cos ψ− ρ1 cos ψ1)2 + (ρ sin ψ− ρ1 sin ψ1)2, cos θ = s
r . There we analyze two

situations. The first is the case where the aperture stop only works for the flat-top beam and not for
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the Gaussian beam (sometimes no stop is present in the transmission path of the Gaussian beam).
This leads to the path length change:

LPSLPF =
arg(

∫ 2π
0

∫ D/2
0 E f lat−di f f E∗gaussρdρdψ)

k
(16)

The second case is where both interfering beams are affected by the aperture diffraction. This leads
to the path length change:

LPSLPF =
arg(

∫ 2π
0

∫ D/2
0 E f lat−di f f E∗gauss−di f f ρdρdψ)

k
(17)

It is difficult to obtain analytic solutions for Equations (16) and (17), so numerical integrals are
used to perform the analysis by using MATLAB (ASAP software was not selected due to data accuracy).
The results for the two cases are shown in Figure 3a,b, respectively. Simultaneously, the analytical
solution Equation (10) from the previous section is used to calculate the result for the case without
diffraction for the comparison(the aperture stop is located on the detector). The result is shown
in Figure 3c

Figure 3. Numerically computed LPSLPF results for interference of the diffracted flat-top beam with
(a) a non-diffracted Gaussian beam and (b) a diffracted Gaussian beam. The analytically result LPSLPF

obtained when both beams are non-diffracted is shown in (c).

Comparison of Figure 3a–c shows that in the case of interference between the non-diffracted
flat-top beam and the Gaussian beam, the value of LPSLPF is close to that of LPSOPD. The reason for
this is that the small size of the flat-top beam reduces the degree of wavefront mismatch between the
two beams and the geometric noise then becomes the main component of the TTL noise. However,
when the two beams in the model or only flat-top beam used in the model are diffracted, the value of
LPSLPF can be below the picometer order. This is similar to the situation shown in Figure 2a.

To explain why the TTL noise is eliminated in Figure 3a,b, the propagation path of flat-top beams
is reset as shown and described in Figure 4a. The dynamic relationship between α and do f f set is
given by:

do f f set = s tan α (18)

Then the propagation paths of the flat-top beams in Figure 4a and Figure 1 are the same and there
is only a difference ∆S between them. We denote the coordinate system by~rre f , the location of the
pivot by ~ppivot, the translation vector by ~Mtrans, the rotation matrix for a rotation around the y-axis
is Mrot

~rre f = (x1, y1, z)T ,~ppivot = (do f f set, 0, s)

~Mtrans = (do f f set, 0, 0)T , Mrot =

 cos α 0 − sin α

0 1 0
sin α 0 cos α

 (19)
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Then the transformed coordinate system~rmeas is given by:

~rmeas = M−rot(~rre f + Mtrans − ~ppivot) + ~ppivot =

 x1 cos α + (z− s) sin α + do f f set
y1

(z− s) cos α− x sin α + s

 (20)

Combining Equations (14), (18) and (20), The field distribution of the diffracted flat-top beam on
detector in Figure 4 can be given by:

E(ρ, ψ) f lat−di f f =
1
iλ

∫ 2π

0

∫ R

0

exp(ikr)
r

1 + cos θ

2
exp[−ik(s− ρ1 cos ψ1 sin α− s cos α)]ρ1dρ1dψ1 (21)

where r =
√

s2 + [ρ cos ψ− (ρ1 cos ψ1 cos α− s sin α + s tan α)]2 + (ρ sin ψ− ρ1 sin ψ1)2, cos θ = s
r .

Then Equations (16) and (17) are used for numerical integration. The range of α is set also to
−400 µrad–400 µrad in the calculations.

Figure 4. (a) The flat-top beam is placed with a transverse offset do f f set and a tilt angle α around the
pivot O on the detector. The dummy stop only works for flat-top beam and its center is always at
the starting point of flat-top beam. There is no geometric path difference between the two beams in
this case. (b) The upper part is the numerically computed LPSLPF results for interference between
the flat-top beam and the Gaussian beam on the detector with an initial offset between the two beam
centers. The lower part is analytically computed the geometric optical path difference LPSOPD.

The two calculations present the same result, so just one LPSLPF is shown in Figure 4b.
Simultaneously Equation (12) is used for calculating the geometric optical path difference. The results
shows that while there is no geometric optical path difference between the two interference beams,
the pathlength signal, which caused by the initial offset and the relative angle, has same magnitude as
LPSOPD and a different sign. Therefore the reasons of the negligible TTL noise shown in Figure 3a,b
can be regarded as the offset of the geometric optical path difference and the pathlength signal caused
by lateral offset with the tilt between the two beams.

3.3. Discussion

To increase the credibility of the conclusion, we respectively set the aperture stop size R = 0.5 mm,
1 mm, 1.5 mm to recalculate path length signals for the same situations in Figure 4a,b. The results
are shown in Figure 5a,b. Therefore we can conclude that in the case of the diffraction model shown
in Figure 1, the TTL coupling noise can be eliminated if the detector used is a large single-element
photo-diode (SEPD) (i.e., a QPD with gap size equal to 0) and z0 = 0 (even if the Gaussian beam is
non-diffracted). This provides a different approach to use of an imaging system [11] which is based on
Fermat’s principle of imaging the point of rotation onto the detector to eliminate the TTL noise.
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Figure 5. The TTL couplings shown in (a,b) are slightly different because of different optical parameters,
but they are below the picometer order.

In reality, the balance that eliminates the TTL noise can be broken by other non-ideal factors,
such as different beam parameters, beam misalignment, incomplete detection or wavefront aberrations.
As an example, Figure 6 shows the numerical simulations of the coupling for the same situation in
Figure 3a but with slightly different waist positions for the Gaussian beam.

Figure 6. When compared with Figure 3a, the result shows that the deviation of waist position of
Gaussian beam can break the balance of the coupling, therefore LPSLPF is increased to nanometer scale.

4. Conclusions

Based on a non-diffracted model, we first derived the analytical form of the LPSLPF signal for
interference between a flat-top beam and a Gaussian beam. We found that when the Gaussian beam
waist position coincides with the rotation point of the flat-top beam, the TTL noise could be removed
by using a large flat-top beam and an SEPD because of the offset between the geometric optical path
and the pathlength caused by the wavefront mismatch. Similarly, for more general and practical
diffraction models, the results show that the TTL noise can also be removed by the offset between the
geometric optical path and the pathlength caused by a lateral offset with tilt. When the beam energy
and the interference efficiency are considered, the above method may not be suitable for direct use
in space optical systems for gravitational wave detection. However, the method can be adopted in
ground interferometers or used in simulations to stabilize proposed systems or to study the effects of
other factors on the optical path noise.
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