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ABSTRACT The aim of this paper is to introduce a new semi-analytical method, namely PIMOL
(precise integration method of lines, the parametric finite difference method of lines based on
the precise integration method), which is developed and used to solve the ordinary differential
equation (ODEs) systems based on the finite difference method of lines and the precise integra-
tion method (PIM). Two examples of Poisson’s equation problems are given: a boundary value
problem and an ODE eigenvalue problem. The PIMOL can effectively reduce a semi-discrete
ODE problem to a linear algebraic matrix equation. Numerical results show that the PIMOL is
a powerful method.

KEY WORDS PIMOL, ODE, FDMOL, PIM, Poisson’s equation, Semi-analytical, Semi-discrete

1. Introduction
The precise integration method and method of lines (PIMOL) discussed in this paper is a newly

developed semi-analytical algorithm scheme for solving the boundary value problems (BVPs) of elliptic
type. It is based on the finite difference method of lines (FDMOL) and the precise integration method
(PIM). According to the review of MOL-related studies (see, for instance, [1]), the key of the method
of lines (MOL) is to semi-discretize a partial differential equation (PDE) into a system of ordinary
differential equations (ODEs) defined on discrete lines by means of replacing the derivatives with
respect to all but independent variables with the finite differences (FDs). The resulting two-point
boundary value ODEs may then be solved by analytical or numerical methods. Due to the requirement
of regular domain, inflexibility of meshes and ODE solving, the conventional MOL did not attract much
attention, and the related investigations and applications were limited. Some applications of MOL in
the Poisson’s equation and other BVPs can be found in [2–5] by Meyer and Janac, respectively. The
MOL has also been applied to solid mechanics by Irob [6], Gyekenyesi and Mendelson [7], Malik and
Fu [8, 9], Mendelson and Alam [10], and Alam and Mendelson [11]. In most of the aforementioned
applications, the ODEs were solved by ad hoc shooting-like numerical processes. Jones et al. [12],
however, studied the convergence of the MOL solution and found that the ODEs resulting from the
MOL may be inherently unstable for shooting methods. Xanthis [13, 14] and Yuan [15] solved the
system of ODEs by using an ODE solver and further developed a new computational tool in structural
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analysis, i.e., the FEMOL based on the finite element discrete ideas and a modern ODE solver [15–17].
The PIM is a powerful method for solving ODEs of both initial problems and boundary value problems
[18–20]. In this paper, the FDMOL is equipped with the PIM, and the old method will be gaining new
value, power, and efficiency.

2. The Finite Difference Method of Lines
To explore the finite difference method of lines, we consider the following Poisson’s equation defined

on a rectangular domain as shown in Fig. 1 [17].

∇2u =
∂2u

∂x2
+

∂2u

∂y2
= −f (1)

which is subject to the Dirichlet boundary condition

u = 0, x = ±a, y = ±b (2)

For simplicity, we assume that f (x, y) is bi-symmetric. Thus, we can solve the problem on a quarter
of the domain, which is semi-discrete by N + 1 equally spaced vertical lines with distance h = a/N as
shown in Fig. 2.

By defining

ui = ui (y) = u (xi, y) (3)

Fig. 1. The Poisson’s equation
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Fig. 2. FDMOL mesh for a quarter domain
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and using the three-point central difference of accuracy O
(
h2

)
to approximate the partial derivatives

with respect to the independent variable x at x = xi,
(

∂u

∂x

)

i

=
ui+1 − ui−1

2h
+ O

(
h2

)
;

(
∂2u

∂x2

)

i

=
ui+1 − 2ui + ui−1

h2
+ O

(
h2

)
(4)

the typical FDMOL equation on an interior line i can be written as a second-order ODE of the following

u′′
i = −ui+1 − 2ui + ui−1

h2
− fi, y ∈ (0, b) , i = 2, 3, . . . , N − 1 (5)

where ()′ = ∂ ()/∂y, fi = fi (y) = f (xi, y). To establish the FDMOL equation on the first line, an
auxiliary line i = 0 is introduced. Using the Neumann-type boundary condition ∂u/∂x = 0 at the left
boundary line yields u0 = u2, which eliminates the line function u0 at the auxiliary line. The ODE of
the first line can be rewritten as

u′′
1 = −2u2 − 2u1

h2
− f1, y ∈ (0, b) (6)

For the right boundary line i = N + 1, since uN+1 = 0, the ODE on line i = N can be rewritten as

u′′
N = −−2uN + uN−1

h2
− fN , y ∈ (0, b) (7)

The end-point boundary conditions for each line are

u′
i (0) = 0, ui (b) = 0, i = 1, 2, 3, . . . , N (8)

3. PIMOL: Standard Formulation of FDMOL Based on PIM
3.1. Precise Integration Method [18]

The ordinary differential equations of any order can always be changed into an equivalent system
of first-order ODEs. A set of ODEs can be given in the matrix/vector form as

v’ = Av + f (9)

where a prime (’) stands for the derivative with respect to ξ, v (ξ) is an n-dimensional vector function
to be determined, A is a given N × N constant matrix, and f (ξ) is a given n-dimensional external
force vector.

For the homogeneous equations,

v’ = Av (10)

Because A is a ξ-invariant matrix, its general solution can be given as

v = exp(Aξ) · v0 (11)

where v0 = v (ξ0) is assumed to be a known vector boundary condition.
The solution of Eq. (9) can be obtained by using Duhamel integration

v = exp(A · (ξ − ξ0)) · v0 +
∫ ξ

ξ0

exp (A · (ξ − ζ))f (ζ) dζ (12)

For calculation of exp(At), t = ξ − ξ0 for a given ξ and the precise numerical calculation of the
second integration part, and the precise numerical integration is also focused on the precise computation
of exp(At) for a given t = ξ − ζ.
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3.2. PIMOL Algorithm

In order to change the governing equations of Eqs. (5–7) into an equivalent system of first-order
ODEs, we define a new identity function on each line as

vi = u′
i, y ∈ (0, b) , i = 1, 2, 3, . . . , N (13)

and then the governing equations of Eqs. (5–7) can be rewritten as the following equivalent system of
first-order ODEs

⎧
⎪⎪⎨

⎪⎪⎩

v′
1 = − 2u2−2u1

h2 − f1

v′
i = −ui+1−2ui+ui−1

h2 − fi y ∈ (0, b) , i = 2, 3, . . . , N − 1

v′
N = −−2uN+uN−1

h2 − fN

(14)

Based on Eqs. (13) and (14), a set of first-order ODEs can be given in the matrix/vector form as

U’ = AU + F , y ∈ (0, b) (15)

where A is a 2N × 2N matrix:

A =
[

0 a
I 0

]
, a = 1

h2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −2 0 . . . 0 0 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . −1 2 −1
0 0 0 . . . 0 0 0 . . . 0 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

i

a11 = 2, a12 = −2
ai i−1 = −1, aii = 2, ai i+1 = −1, i = 2, 3, 4, . . . , N
the others: aij = 0

U = {v1, v2, v3, . . . vi, . . . , vN , u1, u2, u3, . . . ui, . . . uN}T
F = {−f1,−f2,−f3, . . . ,−fi, . . . ,−fN , 0, 0, 0, . . . , 0 . . . , 0}T

In addition, the end-point boundary conditions for each line can also be rewritten as

vi (0) = 0, ui (b) = 0, i = 1, 2, 3, . . . , N (16)

3.3. Solution Algorithm

The solutions of Eq. (15) can be expressed in the following form by using Duhamel integration as
Eq. (12)

U (y) = exp(Ay)U 0 +
∫ y

0

exp (A · (y − t))F (t) dt, y ∈ (0, b) (17)

When y = b, we have

U b = T bU 0 + F̂ b, T b = exp(Ab), F̂ b =
∫ b

0

exp (A · (b − t))F (t) dt (18)

where T b is a 2N × 2N matrix and F̂ b is a 2N column vector.
Substituting the end-point boundary conditions Eq. (15) in Eq. (18)

U b = T bU 0 + F̂ b

U 0 = {0, 0, 0, . . . 0, u1 (0) , u2 (0) , u3 (0) , . . . ui (0) , . . . uN (0)}T =
{

0 ū0

}T

U b = {v1 (b) , v2 (b) , v3 (b) , . . . vi (b) , . . . , vN (b) , 0, 0, 0, . . . 0}T =
{
v̄ b 0

}T

T b =
[
T̄ 11 T̄ 12

T̄ 21 T̄ 22

]
, F̂ b =

{
F̄ 1 F̄ 2

}T

(19)
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Fig. 3. FDMOL mesh for a square membrane

Notice that a semi-discrete BVP ODE problem is reduced to solving a set of linear algebraic
equations with 2N unknowns. It is easy to obtain that

⎧
⎨

⎩

ūT
0 = −T̄

−1
22 F̄

T
2

v̄T
b = T̄ 12ū

T
0 + F̄

T
1

(20)

At this point, we can say that the problem is solved. For any point (x, y) in the domain in Fig. 2,
the semi-analytical solutions with respect to y on each line can be obtained by using Eq. (17); for any
x which falls out of the mesh lines, the interpolating method and many other methods can be used to
obtain a relatively accurate solution.

4. ODE Eigenproblem Formulation of PIMOL
The free vibration of a unit square membrane is governed by the following eigenproblem PDE

∇2u + λu = 0, −b/2 < x, y < b/2
BCs : u = 0, x = ±b/2, y = ±b/2 (21)

By exploiting the symmetry and antisymmetry of the vibration modes, we can also solve this problem
on a quarter of the entire domain with the following four boundary conditions on x = 0 and y = 0

(i) x−symmetric and y−symmetric

∂u (0, y)
∂x

= 0,
∂u (x, 0)

∂y
= 0 (22a)

(ii) x−symmetric and y−antisymmetric

∂u (0, y)
∂x

= 0, u (x, 0) = 0 (22b)

(iii) x−antisymmetric and y−symmetric

u (0, y) = 0,
∂u (x, 0)

∂y
= 0 (22c)

(iv) x−antisymmetric and y−antisymmetric

u (0, y) = 0, u (x, 0) = 0 (22d)

As shown in Fig. 3, by means of the FDMOL, the domain is meshed by N + 1 equally spaced
vertical lines with distance h = b/2N . By defining ui = ui (y) = u (xi, y) and using the three-point
central difference of accuracy O

(
h2

)
to replace the partial derivative with respect to x, the PDE is

reduced to a set of BVP ODEs.

v′
i = −ui−1 − 2ui + ui+1

h2
− λui, y ∈

(
0,

b

2

)
(23)
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with the modification of the last line and the upper end-point boundary condition on each line

uN+1 = 0, ui

(
b

2

)
= 0 (24)

The modification of the first line, the lower end-point boundary condition on each line and the
range of line number are dependent on the boundary conditions as follows

(i) x − symmetric and y − symmetric
u0 = u2, u′

i (0) = 0, 1 ≤ i ≤ N (a)
(ii) x − symmetric and y − antisymmetric

u0 = u2, ui (0) = 0, 1 ≤ i ≤ N (b)
(iii) x − antisymmetric and y − symmetric

u1 = 0, u′
i (0) = 0, 2 ≤ i ≤ N (c)

(iv) x − antisymmetric and y − antisymmetric
u1 = 0, ui (0) = 0, 2 ≤ i ≤ N (d) (25)

By defining vi = u′
i on each line, a set of first-order ODEs can be given in matrix/vector form as

U ′ = AU (26)

where, for different boundary conditions as Eq. 25a–d, we have
(i) x− symmetric and y− symmetric
where A is a 2N × 2N matrix and U is a 2N column vector

A =
[

0 a
I 0

]

a = 1
h2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 − λh2 −2 0 . . . 0 0 0 . . . 0 0 0
−1 2 − λh2 −1 . . . 0 0 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 − λh2 −1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . −1 2 − λh2 −1
0 0 0 . . . 0 0 0 . . . 0 −1 2 − λh2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

i

U = {v1, v2, v3, . . . vi, . . . , vN , u1, u2, u3, . . . ui, . . . uN}T (27)

In addition, the end-point boundary conditions of each line can also be rewritten as

vi (0) = 0, ui

(
b

2

)
= 0, i = 1, 2, 3, . . . , N

(ii) x− symmetric and y− antisymmetric
Both A and U are the same as in case (i). In addition, the end-point boundary conditions of each

line can also be rewritten as

ui (0) = 0, ui

(
b
2

)
= 0, i = 1, 2, 3, . . . , N

(iii) x− antisymmetric and y− symmetric
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where A is a 2 (N − 1) × 2 (N − 1) matrix and U is a 2 (N − 1) column vector:

A =
[

0 a
I 0

]

a = 1
h2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 − λh2 −1 0 . . . 0 0 0 . . . 0 0 0
−1 2 − λh2 −1 . . . 0 0 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 − λh2 −1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . −1 2 − λh2 −1
0 0 0 . . . 0 0 0 . . . 0 −1 2 − λh2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

i

N
2 i N

U = {v2, v3, . . . vi, . . . , vN , u2, u3, . . . ui, . . . uN}T (28)

The end-point boundary conditions of each line can be rewritten as

vi (0) = 0, ui

(
b

2

)
= 0, i = 2, 3, . . . , N

(iv) x−antisymmetric and y−antisymmetric
Both A and U are the same as in case (iii). Furthermore, the end-point boundary conditions of

each line can also be rewritten as

ui (0) = 0, ui

(
b

2

)
= 0, i = 2, 3, . . . , N

The general solution can be expressed as

U (y) = TU 0, T = exp(Ay), y ∈
(

0,
b

2

)
(29)

In the above example, we consider case (i) and substitute the end-point boundary conditions in Eq. (26)

U b
2

= T b
2
U 0

U 0 = {0, 0, 0, . . . 0, u1 (0) , u2 (0) , u3 (0) , . . . ui (0) , . . . uN (0)}T =
{

0 ū0

}T

U b
2

=
{
v1

(
b
2

)
, v2

(
b
2

)
, v3

(
b
2

)
, . . . vi

(
b
2

)
, . . . , vN

(
b
2

)
, 0, 0, 0, . . . 0

}T
=

{
v̄ b

2
0
}T

T b
2

=
[
T̄ 11 T̄ 12

T̄ 21 T̄ 22

]
(30)

which can be rearranged as a set of linear algebraic equations with 2N unknowns:
[
T̄ 12 −I
T̄ 22 0

] {
ūT

0

v̄T
b
2

}

= 0 (31)

The eigenfunction with respect to λ can be obtained as

B (λ) = det
∣
∣
∣
∣
T̄ 12 −I
T̄ 22 0

∣
∣
∣
∣ = 0 (i) (32)

and the corresponding eigenfunctions for the other three cases can also be easily obtained.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B (λ) = det
∣
∣
∣
∣
T̄ 11 −I
T̄ 21 0

∣
∣
∣
∣ = 0 (ii)

B (λ) = det
∣
∣
∣
∣
T̂ 12 −I

T̂ 22 0

∣
∣
∣
∣ = 0 (iii)

B (λ) = det
∣
∣
∣
∣
T̂ 11 −I

T̂ 21 0

∣
∣
∣
∣ = 0 (iv)

(33)

So far, the semi-discrete ODE eigenproblem is thereby reduced to a matrix eigenvalue problem.
In this example, the FDMOL based on PIM is used to solve the free vibration of square membranes,
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Table 1. PIMOL solution on a square domain

NI h u|o e (%) (Error) e
100h2

∂u
∂y

∣
∣
∣
A

e (%) (Error) e
100h2

2 0.5 0.57557 2.34674 0.0939 −1.32414 1.98839 0.0795
3 1/3 0.58307 1.07473 0.0967 −1.33856 0.92076 0.0829
4 0.25 0.58579 0.61267 0.0980 −1.34378 0.53444 0.0855
5 0.2 0.58707 0.39569 0.0989 −1.34623 0.35329 0.0883
6 1/6 0.58777 0.27698 0.0997 −1.34757 0.25425 0.0915
7 1/7 0.58819 0.20512 0.1005 −1.34838 0.19432 0.0952
8 0.125 0.58847 0.15835 0.1013 −1.34890 0.15532 0.0994
9 1/9 0.58866 0.12623 0.1022 −1.34926 0.12855 0.1041
10 0.1 0.58879 0.10324 0.1032 −1.34952 0.10938 0.1094
11 1/11 0.58889 0.08621 0.1043 −1.34971 0.09519 0.1152
12 1/12 0.58897 0.07325 0.1055 −1.34986 0.08438 0.1215
13 1/13 0.58903 0.06316 0.1067 −1.34997 0.07597 0.1284
14 1/14 0.58908 0.05515 0.0932 −1.35006 0.06928 0.1171
15 1/15 0.58911 0.04868 0.0823 −1.35011 0.06556 0.1108
16 1/16 0.58914 0.04339 0.0733 −1.35021 0.05844 0.0988
Analytical [21] 0.5894 −1.351

NL = NI + 1, NI: number of intervals, NL: number of lines

Fig. 4. The error of displacement and its derivative along h2

an eigenvalue problem. The problem is reduced to an ODE eigenvalue problem by semi-discretization
with FDMOL, and then the ODE eigenproblem is reduced to a matrix eigenproblem by PIM, which
can be solved by many methods, such as the imbedding method (IBM) [22], the Müller Method [25],
the inverse iteration method [23], the super inverse iteration method [24].

5. Numerical Examples
We use the following two examples, calculated by self-programming program with the computer

package Maple 17.00 [26], to explore the precision and efficiency of this new semi-analytical algorithm
of PIMOL. The focus is on the numerical integration part in Eq. (15) for a given y. In this paper, the
Gaussian integral method is adopted to guarantee the convergence of a large-scale matrix A.

Before any numerical examples are given, let us remark that, as a semi-discrete method, the dis-
cretization errors introduced in the FDMOL formulation are limited to the x direction in terms of h,
as long as the associated ODE system can be accurately solved based on the PIM. Analytical solution
is obtained along the mesh line by ignoring the error from the numerical integration.

Example 1 A square membrane subject to a uniform transverse load
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Table 2. Eigenvalues for vibration of a square membrane

Case (i) x−sym. y−sym. Case (iv) x−antisym. and y−antisym.

PIMOL Exact [17] Error (%) PIMOL Exact Error (%)

19.71893 19.739 0.102 78.63320 78.957 0.410
97.06439 98.696 1.653 192.26482 197.39 2.596
98.67577 98.696 0.021 197.06846 197.39 0.163
176.02122 177.65 0.917 310.70007 315.83 1.624
244.18418 256.61 4.842 369.25022 394.78 6.467

Case (ii) x−sym. and y−antisym. Case (iii) x−antisym. y−sym.

PIMOL Exact Error (%) PIMOL Exact Error (%)

49.32775 49.348 0.041 49.02439 49.348 0.656
126.67320 128.3 1.268 127.98123 128.3 0.248
167.76300 167.78 0.010 162.65601 167.78 3.054
245.10845 246.74 0.661 241.61284 246.74 2.078
273.79299 286.22 4.342 285.89490 286.22 0.114

NI = 10

Table 3. The first eigenvalue with different mesh lines and errors

NI PIMOL e (Error) h2 e/h2

2 19.24219 0.02517 0.06250 0.40271
3 19.51578 0.01131 0.02778 0.40712
4 19.61302 0.00638 0.01563 0.40845
5 19.65830 0.00409 0.01000 0.40883
6 19.68297 0.00284 0.00694 0.40878
7 19.69786 0.00208 0.00510 0.40847
8 19.70754 0.00159 0.00391 0.40800
9 19.71418 0.00126 0.00309 0.40738
10 19.71893 0.00102 0.00250 0.40667
11 19.72245 0.00084 0.00207 0.40584
12 19.72512 0.00070 0.00174 0.40491
13 19.72721 0.00060 0.00148 0.40389
14 19.72886 0.00051 0.00128 0.40277
15 19.73019 0.00045 0.00111 0.40157
16 19.73128 0.00039 0.00098 0.40027
17 19.73219 0.00035 0.00087 0.39889
18 19.73295 0.00031 0.00077 0.39743
19 19.73359 0.00027 0.00069 0.39591
20 19.73440 0.00023 0.00063 0.37264

NL = NI + 1, Exact = 19.739

Let a = b = 1, f (x, y) = 2. The corresponding physical model is an elastic torsion of a square
bar or a small deflection of a square membrane subject to a uniform transverse load. The computed
results are given in Table 1; comparing with the analytical solution, it can be seen that the accuracy
is satisfactory and the convergence of u is indeed within the order of h2, as shown in Fig. 4.

Example 2 Free vibration of square membranes
As shown in Fig. 3, with b = 1, the corresponding physical model is a free vibration of a square

membrane. This example is solved by using an efficient algorithm based on the imbedding method
(IBM) [22] and the Müller method [25]. The computed results are given in Tables 2 and 3 (Fig. 5).
We can still see that the accuracy of the analytical solution is satisfactory and the convergence of
eigenvalue is indeed within the order of h2, as shown in Fig. 6.
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6. Conclusions
A new semi-analytical method for solving BVPs of elliptic type is presented, two examples of BVPs

of elliptic type and ODE eigenvalue problem are given, and the numerical results show that PIMOL
is a powerful method. It is of great value that PIMOL can reduce a semi-discrete BVP problem to a
linear algebraic matrix equation problem.

On the basis of numerical experimentation discussed above, the following conclusions can be drawn.
(1) New semi-analytical method The presented method, PIMOL, is a newly developed semi-

analytical method for elliptic BVPs. In this method, the PDEs defined on arbitrary domains (regular
domain is discussed in this paper, and arbitrary domains will be given in another paper) are semi-
discredited by MOL into a system of ODEs defined on discrete mesh lines, and then the analytical
result is expressed in algebraic matrix equations by using the precise integration method. The PIMOL
completely changes the PDEs of elliptic type into a linear algebraic matrix equation.

(2) Generality PIMOL is not only restricted to only the Poisson’s equation problems: It is easy
to be extended to plane problems, plate and shell problems, 3D problems, and so on. It can also be
extended to other subjects such as the pipes conveying fluid, fluid–structure interaction, and multibody
dynamics. And it is also easy to be extended to the parametric finite deference method of lines and
the finite element method of lines.

(3) Accuracy Theoretically, PIMOL is a semi-analytical method. As such, the highly precise results
are guaranteed by semi-discrete approximation of MOL. However, when the exponential matrix is large,
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the analytical expression can be computed directly, and the numerical integration by PIM is inevitable.
Fortunately, several numerical algorithms guarantee that the solutions have a desirable accuracy.

(4) Reliability The results are compared with the exact solutions which show good agreement.
(5) Efficiency The present work has demonstrated that PIMOL has high precision and computa-

tional efficiency in solving PDEs of elliptic type.
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