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Cohesive zone models have been widely used to model interface crack initiation and propagation both in 

single-material media and bi-material systems. For single-material media with cohesive elements inserted 

into interface among segments, in order to ensure that the introduction of interface cohesive zone models 

does not affect the mechanical properties of single-material media before the softening stage of cohesive 

zone models, a selection criterion of stiffness of cohesive elements is proposed theoretically firstly based 

on the properties’ equivalence. Taking the softening stage into account, the mechanical responses of the 

overall stress-strain relationship of single-material media, for the cases of stable increase of strain and 

snap-back instability of strain, are both obtained, and the related energy mechanism are investigated. For 

bi-material systems with cohesive elements at interface between two materials, the thickness-dependent 

failure characteristics of systems in uniaxial tension are found, which is attributed to the difference of 

the releasing rate of elastic strain energy in the materials with different thicknesses. Furthermore, as a 

more complex application of cohesive elements, based on the selection criterion proposed, failure behav- 

iors of the ceramic coating/substrate systems under three-point bending are modeled by finite element 

method and inserting cohesive elements into the coating segments and the coating/substrate interface 

simultaneously. The simulation results indicate the transition of dominated failure mode from coating 

cracking to interface delamination with increasing coating thickness, and show faster damage of thick 

coating systems, agreeing with experimental results. The effects of interface strength and toughness of 

cohesive elements on failure are also revealed. These results can provide guidance for the application of 

cohesive elements, and help us better understand the overall failure behaviors of interface systems. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

o  

a  

V  

t  

S  

o  

a  

2  

a

 

e  

c  

(  
1. Introduction 

Cohesive zone models (CZMs) have been widely used to predict

the initiation and propagation of cracks. The concept of cohesive

fracture was proposed by Barenblatt (1959, 1962 ) who assumed in

a narrow region ahead of the crack tip, the opposite surfaces are

hold together by cohesive forces. Consequently, the stress singular-

ity of the crack tip is removed. If the distributed cohesive forces

are constant and equal to the yield stress, this concept actually

refers to the Dugdale’s strip yield model ( Dugdale, 1960 ). After-

wards, a large variety of cohesive zone laws have been proposed

by defining the traction-separation relationship, such as polyno-

mial ( Tvergaard, 1990 ), piecewise linear ( Tvergaard and Hutchin-

son, 1992 ), exponential ( Xu and Needleman, 1993 ) and bilinear

( Camanho et al., 2003 ) cohesive zone laws. The CZMs gradually
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ecome a popular tool in finite element method (FEM) and are of-

en to be used to simulate fracture behaviors. The CZMs can not

nly be used to model cracks within single-material media, such

s coating cracking of coating/substrate systems ( Abdul-Baqi and

an der Giessen, 2002; Białas et al., 2005; Li et al., 2014 ) and ma-

rix cracking of composite materials ( Kumar et al., 2015; Shi and

outis, 2016 ), but also be used to investigate interface delamination

f bi-material systems, such as delamination of composite materi-

ls ( Airoldi et al., 2015; Cameselle-Molares et al., 2018; Zou et al.,

003 ), adhesive joints ( Lelias et al., 2015; Neumayer et al., 2016 )

nd some other layered structures ( Peng and Wei, 2016 ). 

Two basic approaches have been proposed to implement finite

lement simulations with CZMs ( Kubair and Geubelle, 2003; Vo-

ialta et al., 2017 ): intrinsic and extrinsic. In the intrinsic approach

 Xu and Needleman, 1994 ), the cohesive zone law is taken to be

nitially elastic and the cohesive elements are placed along the po-

ential crack path at the beginning of the simulation. This approach

llows easy and straightforward implementation, but its draw-

https://doi.org/10.1016/j.ijsolstr.2019.01.008
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ack is the introduction of artificial compliance ( Klein et al., 2001;

omar et al., 2004 ), which leads to the decrease of wave speed for

ynamic crack propagation problems ( Tabiei and Zhang, 2017 ). As

or the extrinsic approach ( Camacho and Ortiz, 1996 ), the cohesive

one law is taken to be initially rigid, and thus the artificial com-

liance is avoided ( Falk et al., 2001 ). However, considering that the

ohesive elements are inserted progressively as required during the

imulation involving local mesh modification and node duplication,

he extrinsic approach is challenging both in its serial and parallel

mplementation ( Vocialta et al., 2017 ). 

Since the intrinsic approach allows convenient implementation

nd has been widely adopted in previous studies, what we are

oncerned about is the intrinsic approach. As the intrinsic cohe-

ive elements, which are analogous to a series of springs, are in-

erted into the single-material media, the system becomes discrete,

nd the situation is naturally different from the standard contin-

um mechanics. But before the damage initiation (i.e., the traction

tress reaches its strength), the overall equivalent elastic constants

hould remain unchanged before and after the CZMs are inserted.

hus, we aim to propose an approach to ensure the equivalence of

ntrinsic CZMs. It is noteworthy that when zero-thickness cohesive

lements, which are mostly focused on by studies involving the in-

rinsic approach, are inserted to all continuum element boundaries

o allow arbitrary crack paths ( Xu and Needleman, 1994 ), the re-

uction of equivalent Young’s modulus becomes significant as the

ensity of cohesive elements increases ( Klein et al., 2001 ). Never-

heless, the element size should be small enough to capture the

tress distribution accurately inside the cohesive zone ahead of the

rack tip ( Tomar et al., 2004; Turon et al., 2007 ). A straight way

o get rid of the artificial compliance is to increase the initial stiff-

ess of CZMs. When it comes to the bilinear cohesive zone law,

amanho et al. (2003) called k penalty stiffness and a high initial

tiffness should be used to hold the adjacent faces together. After-

ards, Turon et al. (2007) pointed out that k � E/t , where E and t

re the Young’s modulus and the thickness of surrounding material

onnected by CZMs, respectively. However, large values of stiffness

an only ensure that the introduced fictitious compliance is small

 Blal et al., 2012; Turon et al., 2007 ), and they may cause oscilla-

ions of tractions ( Schellekens and de Borst, 1993 ) and convergence

roblems. Some other approaches such as introducing some con-

traints ( Zhang and Chen, 2015 ) are quite similar to the extrinsic

pproach. Therefore, for intrinsic CZMs with initially elastic cohe-

ive law, an efficient approach to ensure the equivalence of single-

aterial inserted with CZMs to the original is still lacking. 

Apart from the equivalence of CZMs before damage initia-

ion, the accurate acquisition of the traction-separation relation-

hip of CZMs is also essential to the failure characterization of

olid structures. The relationship can be directly determined from

xperiments by using the Digital Image Correlation (DIC) tech-

ique ( Abanto-Bueno and Lambros, 2005; Tan et al., 2005 ), and

xperiments calibrated with finite element simulations ( Alfano

t al., 2008; Lee et al., 2010 ) or other independent experiments

 Ferracin et al., 2003 ). On the other hand, parameters of phe-

omenological CZMs can also be extracted from atomistic simu-

ations ( Choi and Kim, 2007; Yamakov et al., 2006 ), especially for

icroscale and nanoscale cohesive laws. In order to obtain a con-

ergent and intrinsic interfacial cohesive law, models with differ-

nt thicknesses were investigated, and the overall failure of inter-

ace structures such as Al/Si systems ( Gall et al., 20 0 0 ) and Ag/MgO

ystems ( You et al., 2018 ) shows a thickness-dependent character-

stic. A theoretic explanation of this characteristic can shed light on

he better understanding of the overall mechanical responses when

e attempt to extract interfacial cohesive parameters by means of

tomistic simulations. 

The remainder of this paper is organized as follows.

ection 2 gives a brief introduction to CZMs. In Section 3 , in order
o ensure the introduction of CZMs does not affect the mechanical

roperties of single-material media before crack propagation, a

riterion of selecting the stiffness of finite-thickness cohesive ele-

ents is proposed based on a series model. And then, considering

he softening stages of CZMs, the overall mechanical responses

uch as stress-strain relationship are studied. Section 4 focuses on

 theoretic explanation of the thickness-dependent failure charac-

eristic of bi-material systems with cohesive elements at interface.

ince the failure of complex systems is always the mixture of

ingle-material cracking and interface delamination ( Abdul-Baqi

nd Van der Giessen, 2002; Li et al., 2014 ), cohesive elements

hould be inserted into the single-material media and the in-

erface simultaneously. Thus, as an example, failure behaviors

f ceramic coating/substrate systems under three-point bending

re simulated based on FEM in Section 5 . Finally, the relevant

onclusions are summarized in Section 6 . 

. Cohesive zone model 

The cohesive zone model with bilinear separation-traction law

s discussed in this paper. There are three different basic modes of

oading involving different crack displacements ( Hertzberg, 1996 ):

ode I (opening or tensile mode), mode II (sliding or in-plane

hear mode) and mode III (tearing or anti-plane shear mode). Cor-

espondingly, the bilinear separation-traction law ( Camanho et al.,

003 ) for pure Mode I and pure mode II or mode III loading is

hown in Fig. 1 (a) and (b), respectively. 

Except for the case of δn < 0, the bilinear traction-separation

aw can be expressed as 

i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k i δi , δi < δ0 
i 

δ f 
i 

− δi 

δ f 
i 

− δ0 
i 

σ 0 
i 
, δ0 

i 
≤ δi < δ f 

i 

0 , δi ≥ δ f 
i 

(i = n , t , s ) (1)

here σ is traction stress, δ is separation (displacement) and k

s stiffness. Subscripts n, t, and s represent the normal direction

Mode I), the first tangential direction (Mode II), and the second

angential direction (Mode III), respectively. Superscripts 0 and f

epresent the damage initiation point and the fracture point, re-

pectively. As shown in Fig. 1 , at the damage initiation point, the

raction reaches its maximum, i.e., the strength σ 0 , and corre-

ponding separation is the critical displacement δ0 . After a soften-

ng stage, the stress reduces to zero, and separation reaches the

racture displacement δf . The area under the traction-separation

urve is the respective fracture toughness: 

i = 

∫ δ f 
i 

0 

σi d δi = 

1 

2 

σ 0 
i δ

0 
i , i = n , t , s (2)

For the case of δn < 0, the following condition is introduced

o avoid interpenetration of the crack interfaces ( Camanho et al.,

003 ): 

n = k n δn , δn < 0 (3) 

Under mix-mode loading, damage may initiate before one stress

omponent reaches its tolerance. Therefore, the quadratic nominal

tress criterion ( Cui et al., 1992 ) for damage initiation is adopted

ere: 

< σn > 

σ 0 
n 

)2 

+ 

(
σt 

σ 0 
t 

)2 

+ 

(
σs 

σ 0 
s 

)2 

= 1 (4) 

Then, the power law criterion ( Camanho et al., 2003; Dassault

ystèmes, 2014 ) to predict crack propagation is used: 

G 

′ 
n 

�n 

)α

+ 

(
G 

′ 
t 

�t 

)α

+ 

(
G 

′ 
s 

�s 

)α

= 1 (5) 
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Fig. 1. Bilinear separation-traction law (a) for pure mode I loading, and (b) for pure mode II or mode III loading. 
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where G 

′ is the work done by traction stress and � is the fracture

toughness. The power law exponent is chosen to be α = 1. 

3. Single-material media with inserted cohesive elements 

3.1. Selection criterion of stiffness of cohesive elements 

3.1.1. Theoretical analysis based on a series model 

The artificial compliance problem of zero-thickness cohesive el-

ements has been clarified by means of 1D theoretical analysis in

a lot of literature ( Blal et al., 2012; Klein et al., 2001; Tabiei and

Zhang, 2017; Turon et al., 2007 ). In order to eliminate the artificial

compliance, i.e., ensure that the insertion of intrinsic cohesive ele-

ments does not affect the original mechanical properties of single-

material media before crack propagation, an effective approach is

proposed based on a series model in this section. This approach

actually is converted to a selection criterion of stiffness of finite-

thickness cohesive elements. Here, we consider cohesive elements

have a small thickness t 0 , which is not incorporated in the bilinear

cohesive zone law. 

The following discussion is limited in small deformation and

linear elasticity. And the softening stage of cohesive elements is

not considered. In order to express the generality of the criterion,

the three-dimensional case is discussed and there are four inde-

pendent parameters: t 0 , k n , k t and k s . 

Here, the single-material medium called matrix material is as-

sumed to be homogeneous and isotropic. Its Young’s modulus and

Poisson’s ratio are E m 

and νm 

, respectively. Fig. 2 (a) shows a piece

of matrix material with width of B and height of H . Many equal

spacing layers of cohesive elements with thickness of t 0 are in-

serted along the x direction, as shown in Fig. 2 (b). 

The discrete system composed of matrix material and cohesive

elements can be equivalent to a continuous medium. In order to

ensure that the insertion of cohesive elements does not affect orig-

inal mechanical properties, the elastic constants of the equivalent

continuous medium should be equal to those of the matrix mate-

rial correspondingly, from which the selection criterion of stiffness

can be obtained. 

To obtain the equivalent elastic constants, we consider the sys-

tem is in three basic loading modes, including uniaxial tension and

in-plane shear and anti-plane shear. Since the stress states in all

these cases are uniform, the following analysis is independent of

the number of cohesive elements. Furthermore, a representative

volume element (RVE) can be selected whether the system is in

tension or in shear, as shown in Fig. 2 (c) and (d). 
Due to the introduction of cohesive elements, the length of

he RVE increases from L to L ′ = L + t 0 , implying the increase of the

verall volume. If we let t 0 = 0, the finite-thickness cohesive ele-

ents reduce to zero-thickness cohesive elements and the overall

olume remains unchanged. 

Firstly, we consider the system in uniaxial tension, i.e., pure

ode I loading. As shown in Fig. 2 (c), the RVE is subjected to

niform tensile stress at the boundaries. In this series model, the

longation of the RVE can be divided into two parts: elongation of

he matrix material and elongation of cohesive elements. Thus, the

ormal strain of the RVE in the x direction can be expressed as 

 xx = 

�L ′ 
L ′ = 

1 

L + t 0 

(
σxx L 

E m 

+ 

σxx 

k n 

)
= 

σxx 

E eq 
(6)

here E eq is the equivalent Young’s modulus. Then it can be de-

ived as 

 eq = E m 

1 + t 0 /L 

1 + E m 

/ ( k n L ) 
(7)

here t 0 / L and E m 

/( k n L ) are two dimensionless parameters. t 0 / L

epresents the relative volume change of the RVE due to the in-

roduction of cohesive elements. And E m 

/( k n L ) denotes the relative

tiffness of the matrix material compared with that of cohesive el-

ments. Since it is required that E eq = E m 

, we obtain 

 n t 0 = E m 

(8)

It should be noted that Eq. (8) can be rewritten in the form of

he ratio of two lengths: t 0 /δ
0 
n = E m 

/σ 0 
n . Since the ratio of strength

nd Young’s modulus is about E m 

/σ 0 
n ≈ 10 2 ∼ 10 3 , the thickness of

ohesive elements is two or three orders of magnitude larger than

he critical displacement. 

If we consider cohesive elements as a special material, the nor-

al strain is given by ( εxx ) CE = σ xx /( k n t 0 ). Thus, the Young’s mod-

lus of cohesive elements can be defined by E CE = k n t 0 . Conse-

uently, Eq. (8) can be written as E CE = E m 

, i.e., the Young’s modu-

us of cohesive elements is equivalent to that of the matrix. 

When the system is in uniaxial tension, the equivalent Pois-

on’s ratio νeq and the equivalent bulk modulus K eq of the RVE

an be obtained. Considering that the lateral shrinkage of cohe-

ive elements always follows that of the matrix material passively,

he equivalence of Poisson’s ratio and bulk modulus are naturally

atisfied, i.e., νeq = νm 

and K eq = K m 

. Detailed analysis is given in

ppendix A . 

Next, we consider the system in in-plane shear, i.e., pure mode

I loading. As shown in Fig. 2 (d), the RVE is subjected to uni-

orm shear stress τ xy at the boundaries. The vertical displacement
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Fig. 2. (a) A piece of matrix material; (b) the system composed of matrix material and cohesive elements; (c) the representative volume element (RVE) in uniaxial tension; 

(d) the RVE in shear. 
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f right boundary ( x = L ′ ) relative to the left boundary ( x = 0) is

enoted by v̄ . Then, the engineering shear strain γ xy can be ex-

ressed as 

xy = 

v̄ 
L ′ = 

1 

L + t 0 

(
τxy L 

G m 

+ 

τxy 

k t 

)
= 

τxy 

G eq 
(9) 

here G eq is the equivalent shear modulus. Then it can be derived

s 

 eq = G m 

1 + t 0 /L 

1 + G m 

/ ( k t L ) 
(10) 

Since it is required that G eq = G m 

, we obtain 

 t t 0 = G m 

(11) 

If we consider cohesive elements as a special material, the

hear strain is given by ( γ xy ) CE = τ xy /( k t t 0 ). Thus, the shear mod-

lus of cohesive elements can be defined by G CE = k t t 0 . Conse-

uently, Eq. (11) can be written as G CE = G m 

, i.e., the shear modulus

f cohesive elements is equivalent to that of the matrix. 

At last, we consider the system in pure mode III loading. The

VE is subjected to uniform shear stress τ xz at the boundaries. The

tiffness k s can be obtained by similar analysis: 

 s t 0 = G m 

(12) 

To ensure that the equivalent elastic constants are equal to

hose of matrix material correspondingly, i.e., E eq = E m 

, νeq = νm 

or K eq = K m 

) and G eq = G m 

, Eqs. (8) , (11) and (12) are ob-

ained. Noting that the matrix material is isotropic, substitution of

 m 

= E m 

/[2(1 + νm 

)] in Eqs. (11) and (12) yields 
 

 

 

 

 

 

 

k n t 0 = E m 

k t = 

1 

2(1 + νm 

) 
k n 

k s = 

1 

2(1 + νm 

) 
k n 

(13) 

This is the selection criterion of stiffness of cohesive elements

or three-dimensional case. There are four parameters of cohesive

lements ( t 0 , k n , k t , k s ) in Eq. (13) . But only three conditions are

iven. One of these parameters should be selected as a free pa-

ameter, for example, the thickness of cohesive elements t 0 . If the

olume change due to the introduction of cohesive elements brings

dditional effects, for instance, the increase of span length of beam

tructure, we should ensure that the relative volume change is as

mall as possible, i.e., t 0 / L 	 1. In addition, the spacing L repre-

ents the continuum element size if cohesive elements are inserted

o all continuum element boundaries. Usually selection of L value

hould be much larger than t 0 . According to the present analysis,

hen t 0 / L < 0.1, the result should be mesh-independent. 

In the case of plane stress, k s should not appear and Eq. (13) re-

uces to 

 

k n t 0 = E m 

k t = 

1 

2(1 + νm 

) 
k n 

(14) 

In the case of plane strain, replacing E m 

and νm 

with

 m 

= E m 

/(1 −νm 

2 ) and νm 

= νm 

/(1 −νm 

) respectively in Eq. (14) ,
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we can obtain ⎧ ⎨ 

⎩ 

k n t 0 = 

E m 

1 − νm 

2 

k t = 

1 − νm 

2 

k n 

(15)

If we let t 0 = 0, finite-thickness cohesive elements reduce to

zero-thickness cohesive elements. Eqs. (7) , (A.3) and (10) reduce

to ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

E eq = E m 

1 

1 + E m 

/ ( k n L ) 

νeq = νm 

1 

1 + E m 

/ ( k n L ) 

G eq = G m 

1 

1 + G m 

/ ( k t L ) 

(16)

Thus, when zero-thickness cohesive elements are inserted, the

CZMs introduce a fictitious compliance and the equivalent elas-

tic constants are always less than those of the matrix material

correspondingly, i.e., E eq < E m 

, νeq < νm 

and G eq < G m 

. To mini-

mize the fictitious compliance, large values of stiffness should be

selected, i.e., k n � E m 

/ L, k t � G m 

/ L . These results agree with

that Turon et al. (2007) proposed. On the other hand, if zero-

thickness cohesive elements are inserted to all continuum ele-

ment boundaries, L represents the continuum element size. Thus

from Eq. (16) , the equivalent or effective elastic constants are

mesh-dependent. And when stiffness k i (i = n, t, s) or element size

L tends to infinity, the equivalent elastic constants are towards

those of matrix material correspondingly. This is similar to that

Klein et al. (2001) pointed out. 

3.1.2. Numerical verification 

In order to further validate the selection criterion of stiffness

of cohesive elements, we take the RVE in uniaxial tension under

plane stress state as an example to perform simulations based on

FEM. 

In the simulations, dimensionless analysis was carried out with

the equivalent Young’s modulus E eq and Poisson’s ratio νeq being

expressed by ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

E eq 

E m 

= f 1 

(
H 

L 
, 

k n L 

E m 

, νm 

)
νeq 

νm 

= f 2 

(
H 

L 
, 

k n L 

E m 

, νm 

) (17)

A series of values of the parameter k n L / E m 

are selected to in-

vestigate its influence. Other dimensionless parameters are fixed at

H / L = 0.5 and νm 

= 0.2. It should be noted that the thickness of co-

hesive elements t 0 is not an independent parameter since it is se-

lected according to Eq. (14) . Zero-thickness cohesive elements are

also considered for comparison. 

As shown in Fig. 3 (a) and (b), the theoretical predictions and

simulation results based on FEM match well: under the selec-

tion criterion of stiffness of finite-thickness cohesive elements pro-

posed, the equivalent Young’s modulus and the equivalent Pois-

son’s ratio are equal to those of matrix material correspondingly.

Compared to zero-thickness cohesive elements, the advantage of

finite-thickness cohesive elements is that no artificial compliance

is introduced without necessity of large values of stiffness of co-

hesive elements. However, how to deal with possible additional ef-

fects due to the increase of overall volume is a new problem. If

there is no obvious additional effect, finite-thickness cohesive ele-

ments should be preferred. 

In the above analysis, we can assume L ′ = L as well, which

means that the overall volume remains unchanged but the volume

of matrix material reduces. The same selection criterion of stiffness

of cohesive elements can be obtained. 
.2. The overall mechanical responses 

Taking into account the softening stage of cohesive elements,

he overall mechanical responses can be obtained. Based on the

D series model, the overall responses have been discussed based

n polynomial ( Chaboche et al., 2001 ), exponential ( Gao and

ower, 2004 ) and bilinear ( Hamitouche et al., 2008; Needleman,

014 ) cohesive law in the linear-elastic situation. The elastic-plastic

ituation based on the bilinear cohesive law have also been dis-

ussed by Yu et al. (2016) . It should be noted that the equivalence

f CZMs was not considered in these studies and most of them

ainly focused on the techniques to overcome convergence prob-

ems caused by snap-back instability. Here, based on the selection

riterion proposed in Section 3.1 , we consider the overall stress-

train relationship and interface separation-overall strain relation-

hip again, with the corresponding energy analysis in the whole

rocess. 

As an example, the RVE in uniaxial tension is considered here.

s illustrated in Fig. 2 (c), the normal strain of the RVE in the x

irection can be expressed by 

 xx = 

�L ′ 
L ′ = 

1 

L + t 0 

(
σxx L 

E m 

+ δn 

)
(18)

Considering σ xx = σ n in the series model, we can eliminate δn 

n Eq. (18) by substituting Eq. (1) . Then, the overall stress-strain

elationship simplified by utilizing E m 

= k n t 0 is given by 

σxx 

σ 0 
n 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E m 

σ 0 
n 

ε xx , ε xx < 

σ 0 
n 

E m 

(1 + �) �cr 

�cr − �

E m 

σ 0 
n 

ε xx 

− (1 + �cr )�

�cr − �
, 

min 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
≤ ε xx 

< max 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
0 , ε xx ≥ (1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

(19)

here � and �cr are two dimensionless quantities: 

= 

t 0 
L 

= 

E m 

k n L 
= 

E m 

σ 0 
n 

δ0 
n 

L 
, �cr = 

δ0 
n 

δ f 
n − δ0 

n 

(20)

It can be seen that � represents the relative change of overall

olume due to the insertion of cohesive elements, or the relative

tiffness of matrix material compared with that of cohesive ele-

ents. �cr is a function of δf 
n /δ

0 
n and it is a critical value of �

s suggested by Hamitouche et al. (2008) . The maximum between
0 
n / E m 

and (1 + �cr )�σ 0 
n / [(1 + �) �cr E m 

] in Eq. (19) relies on the

elative magnitude of � and �cr . 
Taking Eq. (1) into Eq. (19) , σ xx can be eliminated and the re-

ationship between separation and the overall strain can be ob-
ained: 

δn 

δ0 
n 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E m 

σ 0 
n 

ε xx , ε xx < 

σ 0 
n 

E m 

1 + �cr 

�cr − �
− 1 + �

�cr − �

E m 

σ 0 
n 

ε xx , 

min 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
≤ ε xx 

< 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
1 + �

�

E m 

σ 0 
n 

ε xx , ε xx ≥ (1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

(21)

Similar to the bilinear traction-separation law, the overall

tress-strain relationship and separation-strain relationship are
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Fig. 3. Influences of stiffness of cohesive elements on (a) the equivalent Young’s modulus E eq and (b) the equivalent Poisson’s ratio νeq . The solid lines are theoretical results 

based on Eqs. (7) and ( A.3 ), and the symbols are simulation results based on FEM. 

Fig. 4. (a) The overall stress-strain relationship, and (b) the interface separation-overall strain relationship of the RVE for several values of � and fixed �cr = 0.2. 
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iecewise linear functions. From Eqs. (19) and (21) , if we normal-

ze the strain with σ 0 
n / E m 

, both the stress-strain relationship and

he separation-strain relationship are functions of � and �cr only. 

When �cr is fixed at 0.2, the overall stress-strain curves and

eparation-strain curves for several values of � are shown in

ig. 4 (a) and (b), respectively. From Eq. (20) , different values of

can be obtained by changing the parameters of matrix such 

s E m 

and L , while the parameters of cohesive elements remain

xed. Since we have ensured that the equivalent Young’s modulus

s equal to that of the matrix, curves for different values of � are

oincident in the elastic stages ( ε xx ≤ σ 0 
n / E m 

), which is more rea-

onable than results in previous literature ( Gao and Bower, 2004;

amitouche et al., 2008 ). 

The relative magnitude of � and �cr determines the stability of

he system. For �= 0.3 >�cr , the system is stable. Both the stress

nd the interface separation are single-valued functions of the

verall strain. When the normalized overall strain is E m 

ε xx /σ 0 
n =

 . 0 , we have σxx /σ 0 
n = 1 . 0 and δn /δ0 

n = 1 . 0 . Afterwards, the cohe-

ive elements enter the softening stage: the interface separation

n increases continuously but the stress decreases. Meanwhile, the

lastic deformation in the matrix is released due to the decrease

f stress. When E m 

ε xx /σ 0 
n ≈ 1 . 4 , the stress reduces to zero and the

eparation reaches the fracture displacement. Consequently, frac-

ure occurs and the matrix is completely unloaded. 

The case of �= �cr = 0.2 is a critical state. When the nor-

alized overall strain reaches E m 

ε xx /σ 0 
n = 1 . 0 , the stress drops
bruptly to zero and the separation increases rapidly to δf 
n . The

racture shows a typical catastrophic characteristic, i.e., an infinite

mall increment of overall strain will lead to a finite response of

he damage ( Hao et al., 2010 ). 

For �= 0.1 < �cr , the system is unstable when the normalized

verall strain reaches E m 

ε xx /σ 0 
n = 1 . 0 . If the system is loaded by

rogressively increasing the overall strain, the responses of the sys-

em will follow the path AC, as the red dashed lines shown in

ig. 4 . Then a sudden drop in stress and a corresponding jump in

eparation will occur. However, path AC is not realistic since it is

ot incorporated in the solution. If the system is unloaded, there

re two possible paths: path AO corresponding to the elastic un-

oading (the decrease of separation) and path AB corresponding to

he continuous increase of separation. Only when path AB is fol-

owed, the fracture of cohesive elements will occur eventually. This

henomenon that the overall strain decreases following path AB is

alled snap-back instability. 

The snap-back instability can be explained by energy analysis.

he total energy U T , i.e., the work done by external forces, is calcu-

ated by U T = 

∫ ε xx 
0 σxx d ε xx � L 

′ 
. It should be noted that the energies

nvolved here refer to energies per unit area. And it can be seen

hat the increase of overall strain corresponds to the increase of

he external work. According to energy conservation, the total en-

rgy includes two parts: the interface dissipation energy consumed

y cohesive elements U I and the elastic strain energy stored in the

atrix U . 
E 
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Fig. 5. The external work U T , the interface dissipation energy U I , and the elastic strain energy U E versus the overall strain for fixed �cr = 0.2 and different values of �: (a) 

�= 0.1; (b) �= 0.2; (c) �= 0.3. 
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The interface dissipation energy is calculated by U I = 

∫ δn 
0 σn d δn ,

and it can be expressed by 

U I 

U 

0 
I 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[
σxx ( ε xx ) 

σ 0 
n 

]2 

, ε xx < 

σ 0 
n 

E m 

1 + �cr 

�cr 

− 1 

�cr 

[
σxx ( ε xx ) 

σ 0 
n 

]2 

, 

min 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
≤ ε xx

< max 

{
σ 0 

n 

E m 

, 
(1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

}
1 + �cr 

�cr 
, ε xx ≥ (1 + �cr )�

(1 + �) �cr 

σ 0 
n 

E m 

(22)

where U 

0 
I 

= 

∫ δ0 
n 

0 
σn d δn is the interface dissipation energy when

δn = δ0 
n , and σ xx ( εxx ) is the overall stress-strain relationship given

by Eq. (19) . 

The elastic strain energy stored in the matrix is calculated by

 E = 

∫ ( ε xx ) m 

0 
σxx d ( ε xx ) m 

� L . Since the matrix is linear elastic, U E is

given by 

U E 

U 

0 
I 

= 

1 
2 

( σxx ) 
2 

E m 
L 

1 
2 

(σ 0 
n ) 

2 

k n 

= 

1 

�

[
σxx ( ε xx ) 

σ 0 
n 

]2 

(23)

It can be found that the elastic strain energy is also a piecewise

linear function if we substitute Eq. (19) in Eq. (23) . 

The external work U T , the interface dissipation energy U I and

the elastic strain energy U E are plotted against the overall strain

for several values of � in Fig. 5 . It can be seen that all energies
ncrease at first with the increase of the overall strain. As the nor-

alized overall strain reaches E m 

ε xx /σ 0 
n = 1 . 0 for the first time, co-

esive elements enter the softening stages. The interface dissipa-

ion energy U I increases continuously while elastic strain energy

 E decreases. But whether the external work U T increases or de-

reases is associated with the values of � and �cr . 

The changes of energies in the softening stage of cohesive ele-

ents can be expressed by 
 

 

 

 

 

 

 

 

 

 

 

�U I = U I ( δn = δ f 
n ) − U I ( δn = δ0 

n ) = �n − (σ 0 
n ) 

2 

2 k n 
> 0 

�U E = U E ( δn = δ f 
n ) − U E ( δn = δ0 

n ) = − (σ 0 
n ) 

2 
L 

2 E m 

< 0 

�U T = U T ( δn = δ f 
n ) − U T ( δn = δ0 

n ) = �U I + �U E 

(24)

�U I > 0 and �U E < 0 imply that interface dissipation energy in-

reases while elastic strain energy is released. Note that the ratio

f � and �cr can be written as 

�

�cr 
= 

E m 

k n L 
( 
δf 

n 

δ0 
n 

− 1) = 

�n − 1 
2 

(σ 0 
n ) 

2 

k n 

1 
2 

(σ 0 
n ) 

2 
L 

E m 

= 

�U I 

| �U E | (25)

imilar to the discussion of Hamitouche et al. (2008) . Thus, in the

oftening stage, whether the change of external work �U T is posi-

ive or negative depends on the relative size of � and �cr . 

When �< �cr , as shown in Fig. 5 (a), it can be seen that

 �U E | > �U I from Eq. (25) , i.e., the released elastic strain energy

 �U E | exceeds the increase of interface dissipation energy �U I .

onsidering energy conservation, we obtain �U T = �U I + �U E 〈
. Thus, the system has to snap back, i.e., to reduce the overall

train, to make cohesive elements fracture. This can also be ex-

lained by noting that the system has to do work on the sur-
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Fig. 6. Schematic illustration of a bi-material system with a layer of cohesive ele- 

ments in uniaxial tension. 
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oundings to consume the excessive elastic strain energy since

�U E = �U I + ( −�U T ) > 0. In Fig. 5 (a), the snap-back phe-

omenon is observed when the normalized overall strain decreases

rom 1.0 to about 0.5. At last, the fracture of cohesive elements

ccurs, i.e., U I = �n , and the elastic strain energy is released com-

letely. 

The case of �= �cr shown in Fig. 5 (b) is a critical state. In the

oftening stage, the increment of interface dissipation energy �U I 

s equal to the released elastic strain energy | �U E |. Consequently,

U T = �U I + �U E = 0, i.e., the external work remains unchanged.

nd the fracture occurs instantaneously as soon as the normalized

verall strain reaches 1.0. For �> �cr , as illustrated in Fig. 5 (c), the

ncrement of interface dissipation energy �U I exceeds the released

lastic strain energy | �U E |. Consequently, �U T = �U I + �U E > 0,

.e., the overall strain increases continuously to make the cohesive

lements fracture and no snap-back behavior occurs. 

The snap-back instability always causes convergence prob-

ems in implicit finite element simulations using Newton–Raphson

ethod, since no solutions will be found with continuously in-

reasing overall strain. From Eq. (25) , with the increase of frac-

ure toughness �n , stiffness k n and Young’s modulus E m 

, or the

ecrease of strength σ 0 
n and length L , the value of �/ �cr in-

reases, i.e., the snap-back behaviors are less likely to happen. It

hould be noted that when stiffness k n tends to infinity (or thick-

ess t 0 = E m 

/ k n tends to zero), there is an upper bound of �/ �cr :

 E m 

�n / [ (σ 0 
n ) 

2 L ] . In the case of the upper bound less than 1, con-

ergence problems due to the snap-back instability are inevitable

hatever the value of stiffness k n is. In order to overcome possible

onvergence problems, a lot of strategies have been proposed, in-

luding arc-length algorithm ( Riks, 1979 ) to follow the snap-back

ranch, and viscous regularization ( Chaboche et al., 2001; Gao and

ower, 2004; Hamitouche et al., 2008 ) to consume excessive elastic

train energy by introducing viscosity. 

. Bi-material systems with cohesive elements at interface 

.1. Thickness-dependent failure characteristics 

Cohesive elements can also be used to model the interface layer

f bi-material systems, for example, the thin adhesive layer of ad-

esive joints. For the equivalence of cohesive elements and an un-

amaged adhesive layer ( Távara et al., 2011 ), selection criterion of

tiffness like Eq. (14) is applicable. In this case, E m 

and νm 

denote

he Young’s modulus and Poisson’s ratio of the adhesive, respec-

ively, and t 0 is the adhesive thickness. Considering that the adhe-

ive layer confined between two stiff adherends cannot expand or

ontract freely in the lateral direction ( Sarrado et al., 2016; Távara

t al., 2011 ), the selection criterion of stiffness can be modified

urther. However, if we do not focus on what the interface layer

s specifically, the selection criterion of stiffness of finite-thickness

ohesive elements is not needed, and zero-thickness cohesive el-

ments are sufficient to characterize the interface of bi-material

ystems. In this case, the stress-displacement relationship indepen-

ent of the thickness of cohesive elements, rather than the stress-

train relationship, is used to describe the overall mechanical re-

ponses. 

By analyzing the overall mechanical responses of bi-material

ystems with cohesive elements at interface, a thickness-

ependent failure characteristic, similar to that revealed by

ou et al. (2018) in atomistic simulations, will be revealed com-

ined with a theoretic explanation. Fig. 6 shows zero-thickness

ohesive elements are inserted at interface of the cylindrical bi-

aterial system composed of two kinds of materials. The moduli

nd thicknesses of these materials are denoted by E i ( i = 1, 2) and

 ( i = 1, 2), respectively. The Poisson’s ratios are assumed to be
i 
ero, and thus the following results are independent of the diame-

er d . 

When the system is in uniaxial tension, the overall elongation

f the system, i.e., the horizontal loading displacement of the right

oundary ū , can be divided into three parts: elongation of cohesive

lements and those of the surrounding materials, and thus it can

e expressed by 

¯
 = 

σxx 

E 1 
h 1 + 

σxx 

E 2 
h 2 + δn (26) 

Substituting Eq. (1) in Eq. (26) and considering σ xx = σ n , the
verall stress-displacement relationship can be obtained: 

σxx 

σ 0 
n 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�′ 
1+�′ 

ū 

δ0 
n 

, 
ū 

δ0 
n 

< 

1 + �′ 
�′ 

�′ �cr 

�cr − �′ 
ū 

δ0 
n 

− (1 + �cr )�′ 
�cr − �′ , 

min 

{
1 + �′ 

�′ , 
1 + �cr 

�cr 

}
≤ ū 

δ0 
n 

< max 

{
1 + �′ 

�′ , 
1 + �cr 

�cr 

}
0 , 

ū 

δ0 
n 

≥ 1 + �cr 

�cr 

(27) 

here �′ and �cr are two dimensionless quantities defined by 

′ = 

E 1 E 2 
k n ( E 1 h 2 + E 2 h 1 ) 

, �cr = 

δ0 
n 

δf 
n − δ0 

n 

(28) 

Taking Eq. (1) into Eq. (27) to eliminate σ xx , the relationship

etween interface separation and the overall displacement can be

btained: 

δn 

δ0 
n 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

�′ 
1 + �′ 

ū 

δ0 
n 

, 
ū 

δ0 
n 

< 

1 + �′ 
�′ 

1 + �cr 

�cr − �′ −
�′ 

�cr − �′ 
ū 

δ0 
n 

, 

min 

{
1 + �′ 

�′ , 
1 + �cr 

�cr 

}
≤ ū 

δ0 
n 

< max 

{
1 + �′ 

�′ , 
1 + �cr 

�cr 

}
ū 

δ0 
n 

, 
ū 

δ0 
n 

≥ 1 + �cr 

�cr 

(29) 

Similar discussions like snap-back instability can be performed.

e only consider the stable case here, i.e., �′ ≥ �cr . In the soft-

ning stage of the overall stress-displacement relationship, which

orresponds to the softening stage of cohesive elements, the de-

reasing rate of stress and the increasing rate of separation can be

btained respectively from Eqs. (27) and (29) : 
 

 

 

 

 

∣∣∣∣d σxx 

d ̄u 

∣∣∣∣ = 

k n �cr 

1 − �cr / �′ 
d δn 

d ̄u 

= 

1 

1 − �cr / �′ 

1 + �′ 
�′ ≤ ū 

δ0 
n 

≤ 1 + �cr 

�cr 
(�′ ≥ �cr ) (30) 
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Fig. 7. (a) The overall stress–displacement relationship, and (b) the interface separation-overall displacement relationship of the coating/substrate systems with different 

coating thicknesses. The solid lines are theoretical results based on Eqs. (27) and (29) respectively in (a) and (b) and the symbols are simulation results based on FEM. 
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With the increase of h 1 and h 2 , �
′ decreases monotonously from

Eq. (28) . The decreasing rate of stress and the increasing rate of

separation thus increase based on Eq. (30) . When �′ decreases to

�cr , the increasing rate of separation is infinity and the failure is

completely catastrophic. Thus, for larger bi-material systems, the

fracture is faster and the failure tends to be more catastrophic, i.e.,

closer to completely catastrophic failure. 

Replacing σ xx ( εxx ) and � with σxx ( ̄u ) and �′ respectively in

Eqs. (22) and (23) , all kinds of energies for bi-material systems

with cohesive elements can be obtained. Energy analysis can also

be used to explain the influences of thickness, which will be

shown in the following simulations based on FEM. 

4.2. Numerical verification 

In this section, we take the ceramic coating/superalloy substrate

system with cohesive elements as an example to investigate the in-

fluences of the coating thickness by means of FEM. The simulation

results will be compared with theoretical predictions. 

The ceramic coating is considered as linear elastic material with

Young’s modulus of E c = 18 GPa ( Rabiei and Evans, 20 0 0 ). The coat-

ing thickness h c varies from 0.1 mm to 0.5 mm. The superalloy sub-

strate is assumed as linear elastic for simplicity and its modulus is

E s = 200 GPa ( Zhu et al., 2015a ), and its thickness is h s = 1.2 mm to

compared with experiments ( Liang et al., 2013 ). A layer of zero-

thickness cohesive elements is inserted into the interface between

the substrate and the coating. The parameters of the cohesive ele-

ments are k n = 3.78 × 10 5 MPa/mm, σ 0 
n = 28 MPa and �0 

n = 15 . 1 J / m 

2 

( Liang et al., 2013 ). From Eq. (28) , when h c = 0.5 mm, �′ takes the

minimum value, �′ 
min = 0.078 > �cr = 0.074 with δ0 

n = 0 . 07 μm

and δf 
n = 1 . 1 μm ( Liang et al., 2013 ), which indicates that no snap-

back instability occurs here. 

Fig. 7 (a) shows the relation curves between stress and the load-

ing displacement. It can be found that the simulation results based

on FEM match well with theoretical predictions based on Eq. (27) .

With the increase of coating thickness, the stress drops faster af-

ter it reaches its maximum value. Correspondingly, as illustrated in

Fig. 7 (b), the interface separation increases faster from the critical

displacement δ0 
n to the fracture displacement δ f 

n . Thus, as the coat-

ing thickness increases, the fracture tends to be more catastrophic.

We can find explanations from energy analysis as well. The ex-

ternal work U T , the interface dissipation energy consumed by co-

hesive elements U I , and the elastic strain energy stored in the coat-

ing and the substrate U E with the loading displacement are shown

in Fig. 8 . Similar to Eq. (24) , �U T > 0, �U I > 0 and �U E < 0 de-

note the change of external work energy, interface dissipation en-
rgy, and elastic strain energy in the softening stage of cohesive

lements, respectively. Noting that �U I = �U T −�U E according to

nergy conservation, it can be seen that the sum of the increased

xternal work and released elastic strain energy is consumed by

nterface dissipation. As shown in Fig. 8 , with the increase of coat-

ng thickness from 0.1( Fig. 8 (a)), 0.3 ( Fig. 8 (b)) to 0.5 mm ( Fig. 8 (c)),

U I is fixed, but the released elastic strain energy | �U E | increases.

hus, less external work �U T , i.e., less increase of loading displace-

ent ū , is needed to make the system fracture, which can be seen

rom �ū 1 > �ū 2 > �ū 3 in Fig. 8 . Consequently, with the increase

f coating thickness, the elastic strain energy releases more rapidly

nd the fracture of cohesive elements is more abruptly, i.e., the

ailure tends to be more catastrophic. These results are similar to

he phenomena revealed by atomistic simulations of Ag/MgO inter-

ace tension ( You et al., 2018 ), although the length scale considered

ere is much larger. 

. Failure of ceramic coating/substrate systems with cohesive 

lements in coating and interface 

In the previous sections, the overall responses of single-material

edia and bi-material systems with cohesive elements in uniaxial

ension are investigated respectively. In this section, more complex

ystems, i.e., the ceramic coating/substrate systems under three-

oint bending are considered. Cohesive elements are simultane-

usly inserted into the coating and the interface, and then the fail-

re behaviors involved with coating cracking and interface delam-

nation are simulated by means of FEM. 

.1. Finite element model with cohesive elements 

Ceramic coating/substrate systems are assumed to be under

he plane strain condition and the two dimensional finite element

nalysis was carried out using the commercial software ABAQUS.

s illustrated in Fig. 9 , only the left half is considered due to the

ymmetry of the model. The frictionless indenter and supports

ith radii of R 1 = 0.9 mm are considered as rigid bodies. Verti-

al loading displacement w is applied on the indenter while the

upports remain fixed. The span length and the total length of

he system are L = 16 mm and L T = 20 mm, respectively. The model

ncludes two layers: substrate with thickness of h s = 1.2 mm and

eramic coating with thickness of h c . Subscripts s and c repre-

ent substrate and coating, respectively. The dimensionless coating

hickness h c / h s varies from 0.1 to 0.4 to investigate its influence. 

Ceramic coating is considered as linear elastic material with

oung’s modulus of E c = 18 GPa and Poisson’s ratio of νc = 0.2

 Rabiei and Evans, 20 0 0 ). Superalloy substrate is assumed to be
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Fig. 8. The external work U T , the interface dissipation energy U I , and the elastic strain energy U E versus the loading displacement for coating/substrate systems with different 

coating thicknesses: (a) h c = 0.1 mm; (b) h c = 0.3 mm; (c) h c = 0.5 mm. The solid lines are theory results and the symbols are simulation results based on FEM. 

Fig. 9. Finite element model of a ceramic system under three-point bending loading, with a layer of cohesive elements in the interface of coating/substrate and multi-layer 

cohesive elements in the coating of thickness h c / h s = 0.1. Refined mesh near the interface is presented. 
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c  
lastic-plastic material with Young’s modulus of E s = 200 GPa and

oisson’s ratio of νs = 0.3 ( Zhu et al., 2015a ), and its constitutive

elation is given by 

 = 

{
σ/ E s , σ ≤ σY 

( σY / E s ) (σ / σY ) 
1 /n 

, σ > σY 

(31) 
here ε is strain, σ is stress, σ Y = 800 MPa is the yield stress and

 = 0.1 is the power hardening exponent. 

To model coating cracking and interface delamination, trans-

erse and interface cohesive elements are inserted into coating and

nterface at the same time as shown in Fig. 9 . From now on, we

se the superscripts (T) and (I) to refer to transverse and interface

ohesive elements, respectively. The thickness of transverse cohe-
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sive elements t (T) 
0 

is related to their stiffness k (T) 
i 

(i = n , t ) accord-

ing to the selection criterion proposed in Section 3.1 . The number

of columns of transverse cohesive elements is 2 N + 1 = 201, which

is determined until the crack distribution tends to be stable with

increasing the value of N . The thickness of interfacial cohesive ele-

ments t (I) 
0 

is equal to that of transverse cohesive elements t (T) 
0 

for

convenience. And the interfacial strength in the purple region are

set large enough to suppress delamination near the supports. The

quadratic nominal stress criterion and the power law criterion for

mixed-mode I and II loading are adopted here. 

For simplicity, values of strength and fracture toughness of co-

hesive elements in normal and tangential directions are assumed

to be the same ( Li et al., 2014; Zhu et al., 2014 ), i.e., σ 0(T) 
n = σ 0(T) 

t ,

�(T) 
n = �(T) 

t , σ 0(I) 
n = σ 0(I) 

t and �(I) 
n = �(I) 

t . And the relation of inter-

facial stiffness k (I) 
n = k (I) 

t is assumed as well. For given geometry

and material parameters except coating thickness and parameters

of cohesive elements, dimensionless analysis indicates that the di-

mensionless transverse crack length l (T) (or interface crack length

with superscript (I)) can be expressed as 

l (T) 

h s 
= f 

(
w 

h s 
, 

h c 

h s 
, 

k (T) 
n h s 

σY 

, 
σ 0(T) 

n 

σY 

, 
�(T) 

n 

σY h s 
, 

k (I) 
n h s 

σY 

, 
σ 0(I) 

n 

σY 

, 
�(I) 

n 

σY h s 

)
(32)

As mentioned, dimensionless coating thickness h c / h s varies

from 0.1 to 0.4. The thickness of transverse cohesive elements

is selected as t (T) 
0 

/ h s = 1 × 10 −4 , which indicates a small volume

change noting that (2 N + 1) t (T) 
0 

/L = 0 . 15% . Invoking the selection

criterion of Eq. (15) , stiffness of transverse cohesive elements is se-

lected as follows: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

k (T) 
n h s 

σY 

= 

E c / σY 

(1 − νc 
2 ) t (T) 

0 
/ h s 

= 2 . 34 × 10 

5 

k (T) 
t h s 

σY 

= 

1 − νc 

2 

k (T) 
n h s 

σY 

= 9 . 38 × 10 

4 

(33)

Thus, we can ensure that the introduction of transverse cohe-

sive elements does not affect the elastic constants of the ceramic

coating. As for interfacial cohesive elements, large values of stiff-

ness are selected, i.e., k (I) 
n h s / σY = 1 × 10 4 . 

To check the effect of cohesive parameters, dimension-

less strength and fracture toughness of transverse and in-

terfacial cohesive elements can be selected in the following

range: σ 0(T) 
n /σY = 0 . 03 ∼ 0 . 16 , �(T) 

n / (σY h s ) = (1 . 0 ∼ 5 . 1) × 10 −5 ,

σ 0(I) 
n /σY = 0 . 01 ∼ 0 . 10 , and �(I) 

n / (σY h s ) = (1 ∼ 16) × 10 −5 consid-

ering σ Y = 800 MPa and h s = 1.2 mm. The strength and fracture

toughness of cohesive elements are consistent with previous

reports in literatures. The tensile strength of ceramic coating

varies from 25 to 125 MPa ( Wan et al., 2013; Zhu et al., 2014 ),

and the fracture toughness of ceramic coating is about 10 ∼49 J/m 

2 

( Rabiei and Evans, 20 0 0 ). The interfacial strength of ceramic coat-

ing/superalloy substrate systems varies from 8 to 80 MPa ( Di Leo

et al., 2014; Zhu et al., 2014 ), and the interfacial fracture toughness

is between 10 and 150 J/m 

2 ( Liang et al., 2013; Zhu et al., 2014 ). 

As discussed in Section 3.2 , convergence problems due to the

snap-back instability are always encountered in finite element sim-

ulations using CZMs. Here, viscous regularization ( Dassault Sys-

tèmes, 2014; Simonovski and Cizelj, 2013 ) is adopted to overcome

convergence problems by adding the viscosity that introduces ar-

tificial energy dissipation. A small value of viscosity parameter

μ= 0.0 0 01 is selected to guarantee the convergence but minimize

its influences on the physical solution, which is similar to the

choices in previous studies ( Li et al., 2014; Zhu et al., 2015b ). 

The four-node plane strain reduced integration elements

(CPE4R) are selected to mesh substrate and coating. The four-node

cohesive elements (COH2D4) are inserted into the coating and the

interface. In the regions near supports, indenter and interface, fi-
ite element mesh is refined. Refined mesh near the interface is

hown in Fig. 9 . 

.2. Thickness-dependent damage and failure 

In order to investigate the influence of coating thickness,

arameters of cohesive elements are selected from the range

iven above and fixed at σ 0(T) 
n / σY = 0 . 05 , �(T) 

n / ( σY h s ) = 2 × 10 −5 ,
0(I) 
n / σY = 0 . 04 , and �(I) 

n / ( σY h s ) = 3 × 10 −5 . 

Considering that the cohesive element size should be small

nough to represent the stress distribution accurately inside the

ohesive zone ( Tomar et al., 2004; Turon et al., 2007 ), a proper

ength of cohesive elements (the thickness of cohesive elements

s fixed at a small value) should be chosen to make the simula-

ion results mesh-independent. Since the sizes of transverse and

nterfacial cohesive elements are very close, only the former l (T) 
CE 

is

onsidered. Taking the system with coating thickness of h c / h s = 0.3

s an example, the mesh sensitivity analysis was carried out by

educing the cohesive element length and refining the mesh in

he vicinity of the support, the indenter as well as the interface.

he simulation results with three different meshes are shown in

ig. 10 . The ratio of cohesive element length to cohesive element

hickness for the coarsest mesh is l (T) 
CE 

/t (T) 
0 

= 83 . The number of co-

esive elements along the coating thickness direction is 36 for the

oarsest mesh ( l (T) 
CE 

/ h c = 0 . 028 ) and this number doubles for the

nest mesh ( l (T) 
CE 

/ h c = 0 . 014 ). According to Fig. 10 , when the ra-

io of cohesive element length to coating thickness decreases from

 

(T) 
CE 

/ h c = 0 . 028 to l (T) 
CE 

/ h c = 0 . 014 (correspondingly, the total num-

er of elements of this model increases from 5.3 × 10 4 to 1.7 × 10 5 ),

he relative change of transverse crack length or interfacial crack

ength for a fixed loading displacement is less than 2%, which in-

icates that the crack evolution tends to be convergent. Thus the

oarsest mesh is acceptable for our simulations, and the corre-

ponding mesh size is what we adopted eventually. 

The fracture maps of systems with different coating thicknesses

re shown in Fig. 11 . As coating thickness increases from (a) to

d), the number of transverse cracks decreases, while the delami-

ation length increases continuously. This is corresponding to the

ransition of dominant failure mode from coating cracking to in-

erface delamination. Fig. 12 shows similar phenomena observed

n our experiments as reported previously ( Li et al., 2014 ), which

alidates simulations results based on FEM. 

Curves of transverse crack length and interfacial crack length as

 function of loading displacement for systems with different coat-

ng thicknesses are shown in Fig. 13 . Each curve can be divided

nto three stages: initiation, multiplication and saturation of cracks.

nterestingly, crack evolution is different for systems with different

oating thicknesses. Fig. 13 (a) and (b) show that the thicker the

oating is, the earlier the transverse crack and the interfacial crack

nitiates. Furthermore, in the initial stage of loading ( w / h s ≤ 0.2),

or systems with thin coatings ( h c / h s = 0.1, 0.2 and 0.3), trans-

erse crack length is larger than interfacial crack length. But for

ystems with thick coating ( h c / h s = 0.4), interfacial crack length is

arger than transverse crack length. Therefore, the dominated fail-

re mode is coating cracking for thin coating systems while it is

nterface delamination for thick coating systems. 

The influence of coating thickness on failure behaviors can be

raced back to the stress distribution before crack occurs. From

omposite beam theory and plane strain condition, the bending

tress in the coating on the midspan section is given by 

xx = 

P L 

4 

E c1 (z − z 0 ) 

Ē ̄I 
, − h c ≤ z ≤ 0 (34)

here Ē ̄I = E s1 

∫ −h c 
−( h s + h c ) (z − z 0 ) 

2 
d z + E c1 

∫ 0 
−h c 

(z − z 0 ) 
2 
d z is the

quivalent bending stiffness, z = −( E h s 
2 + E h c 

2 + 2 E h s h c )/
0 s1 c1 s1 
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Fig. 10. The simulation results with three different meshes for the model with coating thickness of h c / h s = 0.3: (a) transverse crack length versus loading displacement, and 

(b) interfacial crack length versus loading displacement. 

Fig. 11. The fracture maps of systems with coating thickness of (a) h c /h s = 0.1, (b) h c /h s = 0.2, (c) h c /h s = 0.3, and (d) h c /h s = 0.4 when the loading displacement is w/h s = 0.8. 
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2( E s1 h s + E c1 h c )] denotes the location of neutral plane, E c1 = E c /

1 −νc 
2 ), and E s1 = E s /(1 −νs 

2 ). Interfacial normal stress σ zz is

lways zero, while interfacial shear stress is given by 

zx = 

P 

4 

E s1 ( h s 
2 + 2 h s h c + 2 h s z 0 ) 

Ē ̄I 
(35) 

The bending stress in the coating and interfacial shear stress are

hown in Fig. 14 (a) and (b), respectively. It can be seen that the-

retical results based on Eqs. (34) and (35) and simulation results

ased on FEM match well. For a given coating thickness, the bend-

ng stress varies linearly along the thickness direction and reaches

 maximum at the coating surface ( z = 0), as shown in Fig. 14 (a).

he thicker the coating is, the larger the tensile stress at the coat-

ng surface is, which explains the earlier initiation of transverse

racks for thick coating systems. While the interfacial shear stress
s almost a constant along the interface, as shown in Fig. 14 (b),

xcept the simulated results at the left end and at the midspan

 x = 0). Some minute oscillations of interfacial shear stress due to

he intersection of transverse and interfacial cohesive elements can

e neglected. By a comparison of interface shear stresses at vari-

us coating thicknesses, it can be found that the interfacial shear

tress increases with increasing coating thickness, and the increas-

ng interfacial shear stress with coating thickness leads to the tran-

ition of dominant failure mode from coating cracking to interface

elamination. The simulation results also show enhanced midspan

nd end effects with increasing coating thickness. 

According to a power-law damage and catastrophic failure

odel ( Hao et al., 2013; Liang et al., 2016 ), the damage, defined

y crack length, can be characterized from the damage initiation
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Fig. 12. The fracture maps of systems with coating thickness of (a) h c = 100 μm and (b) h c = 500 μm observed in the experiments, the experimental detail can be referred 

to the previous work ( Li et al., 2014 ). 

Fig. 13. Crack evolution of systems with different coating thicknesses: (a) transverse crack length versus loading displacement, and (b) interfacial crack length versus loading 

displacement. The rectangle frames denote the catastrophic failure points. 

Fig. 14. Stress distribution of systems with different coating thicknesses when loading displacement is w/h s = 0.035: (a) bending stress in the coating along the thickness 

direction on the midspan section with coating surface at z = 0; (b) interfacial shear stress along the interface. The solid lines are simulation results based on FEM and the 

dashed lines are theoretical results based on Eqs. (34) and (35) , respectively. 
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point to the failure point. Details of the model are introduced in

Appendix B . For coating/substrate systems here, the damage initi-

ation point is the moment when the first crack initiates. And the

failure point marked by a rectangle frame in Fig. 13 is the mo-

ment at which the increasing rate of crack length reaches its maxi-

mum, which corresponds to that multiple transverse cracks emerge

for thin coating systems as discussed in experimental observation

( Liang et al., 2016 ). At the time near the failure point, the plas-

tic deformation of the substrate is small, which implies the energy
issipation due to plastic deformation can be ignored. Only in this

ase, the failure of the system will show a brittle characteristic. 

According the power-law model expressed by Eq. (B.2) , the

amage variable D as a function of the controlling variable λ obeys

he power-law relation with the exponent of 0.5. For systems with

hin coatings ( h c / h s = 0.1, 0.2 and 0.3), the damage variable is de-

ned by normalized transverse crack length: D = l (T) /l (T) 
f 

, where

ubscript f denotes the failure point. While for system with thick

oating ( h c / h s = 0.4), the damage variable is defined by normalized
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Fig. 15. Damage evolution of systems with different coating thicknesses: (a) the damage variable D versus the controlling variable λ, the symbols are the simulation results 

and the lines are results from Eq. (B.2) , and (b) the damage rate R versus the controlling variable λ based on Eq. (B.3) with a coefficient C referring to the simulation results. 

Fig. 16. Influences of parameters of transverse cohesive elements on transverse crack length as a function of loading displacement for systems with coating thickness of 

h c /h s = 0.1: (a) influence of coating strength for fixed �(T) 
n / ( σY h s ) = 2 × 10 −5 , σ 0(I) 

n / σY = 0 . 04 , and �(I) 
n / ( σY h s ) = 3 × 10 −5 ; (b) influence of coating fracture toughness for fixed 

σ 0(T) 
n / σY = 0 . 05 , σ 0(I) 

n / σY = 0 . 04 , and �(I) 
n / ( σY h s ) = 3 × 10 −5 . 

Fig. 17. Influences of parameters of interfacial cohesive elements on interfacial crack length as a function of loading displacement for systems with coating thickness of 

h c /h s = 0.4: (a) influence of interfacial strength for fixed σ 0(T) 
n / σY = 0 . 05 , �(T) 

n / ( σY h s ) = 2 × 10 −5 , and �(I) 
n / ( σY h s ) = 3 × 10 −5 ; (b) influence of interfacial fracture toughness 

for fixed σ 0(T) 
n / σY = 0 . 05 , �(T) 

n / ( σY h s ) = 2 × 10 −5 , and σ 0(I) 
n / σY = 0 . 04 . 
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nterfacial crack length: D = l (I) /l (I) 
f 

. The controlling variable is de-

ned by the normalized loading displacement: λ= w / w f . 

For systems with different coating thicknesses, curves of dam-

ge evolution based on the power-law model are shown in

ig. 15 (a). It can be seen that the symbols from the simulations

re roughly in agreement with the curves predicted by the dam-

ge model. From Fig. 15 (b), the damage rate R of the system with
hick coating ( h c / h s = 0.4) is larger than that of systems with thin

oatings ( h c / h s = 0.1, 0.2 and 0.3). Thus, the damage of thick coat-

ng systems with dominated failure mode of interface delamination

s faster than that of thin coating systems with dominated fail-

re mode of coating cracking, agreeing with experimental results

 Liang et al., 2016 ). 



208 H. Long, L. Liang and Y. Wei / International Journal of Solids and Structures 163 (2019) 194–210 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

l  

d  

s  

t  

o  

a  

v

A

 

F  

1  

P  

(

A

m

 

ν  

o  

o  

e  

o  

l  

i  

e  

�

ν

 

 

b

 

T  

a

ε  

ν  

 

b  

t  

m

K  

w  

a  

t  

c

 

(  

s  

(  

o  
Since the failure of thin coating systems is dominated by coat-

ing cracking, the influences of parameters of transverse cohe-

sive elements on transverse crack length are investigated for sys-

tems with a thin coating of h c /h s = 0.1, as illustrated in Fig. 16 .

When coating strength increases from 0.03 to 0.05, as illustrated in

Fig. 16 (a), the transverse crack length increases, which is associated

with the decrease of fracture displacement δf(T) 
n = 2�(T) 

n /σ 0(T) 
n . But

the transverse crack length decreases when the coating strength

increases from 0.05 to 0.10. This is related to the increase of

the critical displacement δ0(T) 
n = σ 0(T) 

n /k (T) 
n . Therefore, with the in-

crease of coating strength, the transverse crack length increases

at first and then decreases. From Fig. 16 (b), with the increase of

coating fracture toughness, the transverse crack length decreases

monotonously, and the displacement corresponding to initial crack-

ing increases. 

In contrast, the influences of parameters of interfacial cohesive

elements on interface crack length are investigated for systems

with a thick coating of h c /h s = 0.4, as shown in Fig. 17 . Similarly,

there exists a critical strength that changes the effect of interface

strength on the crack evolution, while the effect of interface tough-

ness is monotonous. The interfacial crack length increases when

interfacial strength increases from 0.01 to 0.04, and then decreases

as interfacial strength increases from 0.04 to 0.10, as Fig. 17 (a) in-

dicates. These are associated with the competition between the

decrease of fracture displacement and the increase of critical dis-

placement of the interface cohesive element. Fig. 17 (b) illustrates

that with increasing interfacial fracture toughness, the interfacial

crack length decreases and cracking becomes difficult. 

6. Conclusions 

In this paper, the overall mechanical responses of single-

material media and bi-material systems with cohesive elements

are investigated by developing a series model theoretically and

combining with the properties equivalence of the structure with

cohesive zones. As cohesive elements are inserted into more com-

plex systems, for instance, ceramic coating/substrate systems under

three-point bending, the thickness-dependent damage and failure

behaviors are characterized effectively by developing a FEM model.

When cohesive elements are inserted into single-material me-

dia, the equivalent elastic constants should be equal to those of the

single-material media correspondingly before the softening stage

of cohesive elements. Based on that, a selection criterion of stiff-

ness of finite-thickness cohesive elements is proposed. Consid-

ering the whole process including the softening stage of cohe-

sive elements, we obtain the overall stress-strain relationship and

separation-strain relationship, both of which are just the functions

of three dimensionless parameters: �, �cr and σ 0 
n / E m 

. In the soft-

ening stage of cohesive elements, if the released elastic strain en-

ergy exceeds the increase of interface dissipation energy, the snap-

back instability can be observed. Conversely, no snap-back behav-

ior occurs and the system is stable. 

When cohesive elements are inserted to interface of bi-material

systems, considering the whole loading process, the overall me-

chanical responses including the stress-displacement relation-

ship and separation-displacement relationship are obtained. The

thickness-dependent failure characteristic on the macro scale is re-

vealed both by theory and finite element simulations: with the in-

crease of thickness of bi-material systems, the failure tends to be

more catastrophic. This is associated with the increase of stored

elastic strain energy as well as the releasing rate of elastic strain

energy. And the failure characteristic is in accordance with molec-

ular simulation results on the micro scale in previous literature. 

For more complex systems like ceramic coating/substrate sys-

tems, cohesive elements are inserted into the coating and the in-

terface simultaneously. The simulation results show the transition
f dominated failure mode from coating cracking to interface de-

amination with the increase of coating thickness, which is vali-

ated by corresponding experiments. Damage evolution is further

tudied based on the power-law model, and the results show that

he transition of dominated failure mode leads to faster damage

f thick coating systems. Finally, the effects of interface toughness

nd strength of cohesive elements on failure of systems are re-

ealed. 
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ppendix A. The equivalence of Poisson’s ratio and bulk 

odulus 

Although the Poisson’s ratio of cohesive elements denoted by

CE does not appear in bilinear traction-separation law, we can

btain its value from the analysis of deformation characteristics

f cohesive elements. Actually, the lateral shrinkage of cohesive

lements always follows that of the matrix material passively. In

ther words, the existence of cohesive elements does not affect the

ateral shrinkage of the matrix material. Therefore, when the RVE

s in uniaxial tension, the values of lateral shrinkage of cohesive

lements, matrix material and the RVE are always the same, i.e.,

H CE = �H m 

= �H . Considering E m 

= k n t 0 , we have 

CE = − ( ε yy ) CE 

( ε xx ) CE 

= − �H CE /H 

σxx / ( k n t 0 ) 
= −�H m 

/H 

σxx / E m 

= − ( ε yy ) m 

( ε xx ) m 

= νm 

(A.1)

Therefore, the Poisson’s ratio of cohesive elements is proved to

e equal to that of the matrix material. 

Then, the equivalent Poisson’s ratio of the RVE can be obtained.

he normal strain of the RVE in the y direction can be expressed

s 

 yy = 

�H 

H 

= 

�H m 

H 

= 

−νm 

( ε xx ) m 

H 

H 

= −νm 

σxx 

E m 

= −νeq 
σxx 

E eq 
(A.2)

Consequently, we have 

eq = νm 

E eq 

E m 

= νm 

1 + t 0 /L 

1 + E m 

/ ( k n L ) 
(A.3)

It can be seen that E eq = E m 

leads to νeq = νm 

. 

On the other hand, the condition of νeq = νm 

can be replaced

y K eq = K m 

, where K eq is the equivalent bulk modulus and K m 

is

he bulk modulus of matrix material. From the definition of bulk

odulus, K m 

is given by 

 m 

= 

( σ0 ) m 

θm 

= 

E m 

3(1 − 2 νm 

) 
(A.4)

here ( σ 0 ) m 

= σ ii /3 and θm 

= �V m 

/ V m 

= ( εii ) m 

are the mean stress

nd volumetric strain of the matrix material. V m 

is the volume of

he matrix. The repeated indices i imply the Einstein summation

onvention and i ranges over x, y, z. 

The non-zero strain components of the matrix material are

 ε xx ) m 

= σ xx / E m 

and ( ε yy ) m 

= ( ε zz ) m 

= −νm 

σ xx / E m 

. The non-zero

train components of cohesive elements are ( εxx ) CE = σ xx /( k n t 0 ) and

 ε yy ) CE = ( ε zz ) CE = −νCE σ xx /( k n t 0 ). It follows that the volume change

f matrix material and cohesive elements, i.e., �V m 

and �V , can
CE 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100002367
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e expressed by 
 

 

 

 

 

�V m 

= ( ε ii ) m 

V m 

= 

1 − 2 νm 

E m 

σxx � (LBH) 

�V CE = ( ε ii ) CE V CE = 

1 − 2 νCE 

k n t 0 
σxx � ( t 0 BH) 

(A.5) 

Then, the volumetric strain of the RVE is 

θ = 

�V 

V 

= 

�V m 

+ �V CE 

(L + t 0 ) BH 

= 

(
1 − 2 νm 

E m 

L 

L + t 0 
+ 

1 − 2 νCE 

k n t 0 

t 0 
L + t 0 

)
xx = 

σ0 

K eq 
(A.6) 

Noting that the mean stress is σ 0 = σ ii /3 = σ xx /3, the equivalent

ulk modulus is given by 

1 

K eq 
= 

3(1 − 2 νm 

) 

E m 

L 

L + t 0 
+ 

3(1 − 2 νCE ) 

k n t 0 

t 0 
L + t 0 

(A.7) 

Substitution of Eqs. (8) and ( A.3 ) in Eq. (A.7) yields 

1 

K eq 
= 

1 

K m 

+ 

6( νm 

− νCE ) 

E m 

t 0 
L + t 0 

(A.8) 

It can be seen that K eq = K m 

requires νCE = νm 

or t 0 = 0. Since

CE = νm 

has been proved before, the equality of K eq = K m 

is guar-

nteed whether t 0 is zero or not. 

ppendix B. The power-law damage and catastrophic failure 

odel 

A brief introduction of the power-law damage and catastrophic

ailure model ( Hao et al., 2013; Liang et al., 2016 ) is given as fol-

ows. 

The damage variable of the system is defined by normal-

zed transverse crack length: D = l (T) /l (T) 
f 

(or normalized interfa-

ial crack length: D = l (I) /l (I) 
f 

). The initial damage variable and the

omplete damage variable are D 0 = l (T) 
0 

/l (T) 
f 

(or D 0 = l (I) 
0 

/l (I) 
f 

) and

 f = 1, respectively. Subscripts 0 and f imply the damage initiation

nd complete failure, respectively. A controlling variable is defined

y the normalized loading displacement: λ= w / w f . Similarly, the

nitial controlling variable and the complete controlling variable

re given by λ0 = w 0 / w f and λf = 1, respectively. If the controlling

ariable is continuous and derivative for damage variable, it can be

xpressed as the Taylor expansion of the damage variable at the

ailure point: 

= λf + 

d λ

d D 

| D f (D − D f ) + 

1 

2 

d 

2 λ

d D 

2 
| D f (D − D f ) 

2 + o[ (D − D f ) 
2 ] (B.1)

When it is close to the catastrophic failure point, the increasing

ate of damage tends to infinity, i.e., lim 

λ→ λf 

d D/ d λ = + ∞ . Substitut-

ng this relation into Eq. (B.1) and ignoring the terms that higher

han the second-order, D can be expressed as ( Liang et al., 2016 ):

 = 1 − C (1 − λ) 0 . 5 (B.2) 

here C is the damage coefficient. Considering when λ= λ0 ,

 = D 0 , we can get the damage coefficient C = (1 − D 0 ) / 
√ 

1 − λ0 .

rom Eq. (B.2), we can know that the damage variable D with the

ontrolling variable λ obeys the power-law relation with the expo-

ent of 0.5. 

The damage rate is given by ( Liang et al., 2016 ) 

 = 

d D 

d λ
= 

C 

2 

(1 − λ) −0 . 5 (B.3) 

It can be seen that the damage rate increases rapidly and has

he singularity of order 0.5 near the catastrophic failure point. And

he larger the damage rate or damage coefficient is, the faster the

ystem damages. 
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