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a b s t r a c t

First principlesebased modeling on phonon dynamics and transport using density functional theory and
the Boltzmann transport equation has proven powerful in predicting thermal conductivity of crystalline
materials, but it remains unfeasible for modeling complex crystals and disordered solids due to the
prohibitive computational cost to capture the disordered structure, especially when the quasiparticle
‘phonon’ model breaks down. Recently, machine learning regression algorithms show great promises for
building high-accuracy potential fields for atomistic modeling with length scales and timescales far
beyond those achievable by first principles calculations. In this work, using both crystalline and amor-
phous silicon as examples, we develop machine learningebased potential fields for predicting thermal
conductivity. The machine learningebased interatomic potential is derived from density functional
theory calculations by stochastically sampling the potential energy surface in the configurational space.
The thermal conductivities of both amorphous and crystalline silicon are then calculated using equi-
librium molecular dynamics, which agree well with experimental measurements. This work documents
the procedure for training the machine learningebased potentials for modeling thermal conductivity and
demonstrates that machine learningebased potential can be a promising tool for modeling thermal
conductivity of both crystalline and amorphous materials with strong disorder.

© 2019 Elsevier Ltd. All rights reserved.
In the past decade, first principlesebased calculations have
become a powerful tool for predicting thermal conductivity of a
wide range of bulk [1e6] and low-dimensional crystals [7e18].
Despite the successful application in modeling the phonon prop-
erties and thermal conductivity of simple crystals, first principles
calculation for complex crystals and disordered materials remains
challenging because the computational cost increases dramatically
with the lowering of crystalline symmetry and the increasing size
of unit cells [19,20]. It also becomes questionable to apply the
quasiparticle ‘phonon’ picture assumed by the Boltzmann transport
theory to complex crystals and disordered materials because a
considerable amount of vibrational modes in these low-symmetry
systems becomes diffusive or localized [21,22]. For modeling
disordered systems, molecular dynamics (MD) simulations become
a great choice because MD can easily incorporate detailed atomic
ng).
structures including defects and local strains. However, MD has
limited fidelity and accuracy owing to the lack of accurate inter-
atomic potentials. Improving the accuracy of empirical interatomic
potential is difficult because the ab initio potential energy surface
(PES) can hardly be fitted by simple functional forms that are
artificially assigned based on the preknowledge of the interatomic
bonding [19,20,23,24]. Using "rigid" or "definite" functional forms
also severely limits the transferability among different atomic
structures and material phases because it usually requires refor-
mulating the fitting functionals.

Recently, machine learning potential (MLP) is emerging as a
promising tool for bridging the gap between the first principles
calculations and MD simulations for modeling thermal transport.
Because MLP does not artificially assign functional forms, it does
not suffer from the limited accuracy as empirical potential does
while intrinsically incorporating anharmonic effects [25]. In the
past five years, MLP has been successfully developed and used to
model the structural, thermodynamic, and mechanical properties
of some simple crystals such as Si, Ge, and GaN [26e28] and

mailto:ronggui.yang@colorado.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtphys.2019.100140&domain=pdf
www.sciencedirect.com/science/journal/25425293
https://www.journals.elsevier.com/materials-today-physics
https://www.journals.elsevier.com/materials-today-physics
https://doi.org/10.1016/j.mtphys.2019.100140
https://doi.org/10.1016/j.mtphys.2019.100140


X. Qian et al. / Materials Today Physics 10 (2019) 1001402
amorphous materials [29,30]. However, implementation of MLP for
studying thermal transport has been rare and limited to simple
crystals with relatively weak disorder such as vacancies and alloys
[31,32]. In this work, we develop MLP for modeling thermal con-
ductivity of both crystalline and amorphous materials, using silicon
as an example. Although there exist quite a few methods of con-
structing MLP such as artificial neural network [26], supporting
vector regression [33], and spectral neighbor analysis potential
(SNAP), [34], the Gaussian approximation potential (GAP) [27,35] is
chosen in this work because its accuracy of predicting interatomic
forces is one of the highest among other MLP methods [36].
Furthermore, training of GAP models based on Gaussian process
regression [37] only involves linear algebra without non-linear
optimizations.

First, we briefly describe here the training of the GAPmodels for
crystalline silicon (c-Si) and amorphous silicon (a-Si). To construct
the training database, we use a stochastic method to generate
random uncorrelated snapshots to sample the ab initio PES. After
GAPmodels are developed, thermal conductivity of both c-Si and a-
Si is calculated using equilibrium molecular dynamics (EMD) sim-
ulations. Fig. 1a shows the training strategy for building the GAP
model for c-Si. Since our goal is to model thermal conductivity, the
GAP model is required to fit and interpolate the PES around the
equilibrium configuration accessible by thermal vibrations.
Compared with ab initiomolecular dynamics (AIMD) that sample a
trajectory in the configurational space, a more efficientmethod is to
stochastically generate uncorrelated snapshots with random dis-
placements [38]:

ui ¼
X
s
eis

�
Ais

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnz1

p
sinð2pz2Þ (1)

where ui is the displacement of the atom i from the equilibrium
position, eis and hAisi are the eigenvector and average amplitude of
the atom i participating in the vibration of the normal mode s, and
Fig. 1. (a) Training strategy for c-Si: lattice dynamics are performed by the finite displaceme
with random displacements. DFT calculations are performed to obtain energies and forces c
database to obtain the GAP model for c-Si. (b) Training strategy for a-Si. In the first iteration o
empirical SW potential. DFT calculations are performed to obtain energies and forces corr
database to the first generation of GAP. A new set of eigenvectors are derived from the GAP
repeated until the energy change is less than 2 � 10�3 eV/atom. DFT, density functional th
z1 and z2 are two random numbers uniformly distributed in the
interval of (0,1). The amplitude hAisðTÞi of the normal mode s can be
written as follows [38]:
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where mi is the mass of the atom i and ns is the Bose-Einstein

distribution ns ¼
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at temperature T and fre-

quency us.
Clearly, generating displacement snapshots using Eqs. (1) and

(2) requires the knowledge of force constants to obtain both
normal mode frequency us and eigenvectors eis. For c-Si, us and
hAisi can be easily obtained from harmonic lattice dynamics cal-
culations. Phonopy [39] package is used to generate supercells of c-
Si containing 5 � 5 � 5 primitive cells with finite displacements;
then, density functional theory (DFT) calculations are performed to
obtain the interatomic forces using the projected augmented wave
method implemented in the VASP package [40,41]. Exchange-
correlation energy is treated with the Perdew-Burke-Ernzerhof
(PBE) functionals [42], and the plane-wave cutoff energy is set to
350 eV, 40% higher than the maximum plane-wave energy rec-
ommended by the pseudopotential for Si [43,44]. After the vibra-
tional frequencies and eigenvectors are obtained by solving the
dynamic equation, the displacement amplitudes are calculated at
300 K and 600 K, with 100 snapshots at each temperature. In total,
50000 local chemical environments (i.e., each atom with its
neighbors in each snapshot) are sampled in the database. Self-
consistent field (SCF) calculations are then performed using the
VASP package for each snapshot to obtain the energies and forces,
which are then used as target observables to be fitted in the training
data set. We note that thermal expansion is not included in this
work because silicon has negligible thermal expansion below 600 K
nt method using DFT to obtain eigenvectors, which is then used to generate snapshots
orresponding to these snapshots. The energies and forces are then used as the training
f training, eigenvectors necessary to generate random snapshots are obtained from the
esponding to these snapshots. The energies and forces are then used as the training
model, which are used to train the next generation of the GAP model. Such a process is
eory; GAP, Gaussian approximation potential; SW, Stillinger-Weber.
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[45]. For strongly anharmonic materials, one could easily perform
lattice dynamics with increased lattice constant to generate a new
set of snapshots into the database [38] or directly perform AIMD
simulations to construct the database [25]. In the training process,
the energies and forces are expressed as a linear combination of a
set of kernel functions specified in the smooth over atomic posi-
tions (SOAP) descriptor [46], and the associated linear coefficients
are obtained through the sparsified Gaussian process regression
formalism [47], the regression details of which can be found in the
study by Szlachta et al [48]. Hyperparameters used for training are
listed in Table 1, while the meaning of each parameter can be found
in our previous work [25] and references [29,31]. Increasing the
cutoff radius of neighboring atoms rcut has negligible improvement
on accuracy of phonon dispersion once it is beyond the second
nearest neighbor (4.5 Å), which is also observed in fitting ab initio
PES of silicon using either empirical functionals [49] or machine
learning methods [28].

However, constructing the training database for a-Si is not as
simple. First, it is non-trivial to obtain a relaxed amorphous
network with atoms in equilibrium positions from DFT. Because a
reasonable initial structure is important for the convergence of
energy and forces when relaxing the atomic structures using DFT
calculations, the classical MD simulation was performed first using
Stillinger-Weber (SW) potential [50] to generate the initial struc-
ture of a-Si using a melt-quench method [30]. A c-Si simulation cell
containing 216 atoms (3 � 3 � 3 conventional cells) is first ther-
malized to 3000 K for 500 ps using the Nose-Hoover reservoir (NPT
ensemble) for the melting process. The temperature of the Nose-
Hoover reservoir is then decreased to 1 K with a rate of 10 K/ps and
is kept at the final temperature to quench the system for another 2
ns. The final structure obtained from classical MD is then used as an
initial guess for the a-Si network for performing geometry relaxa-
tion in DFTcalculations. Although larger a-Si simulation cells can be
obtained using this melt-quench method, the number of atoms is
limited to 64 e 216 atoms accessible by DFT calculations owing to
the computational cost [51]. The simulation cell obtained using SW
potential is then relaxed using the conjugated gradient algorithm
implemented in the VASP package [41], until the atomic forces
becomes weaker than 10�6 eV/Å. The other challenge is the high
computational cost to perform first principles lattice dynamics on
an amorphous network containing hundreds of atoms. To mitigate
this challenge, we use the training strategy for a-Si, as shown in
Fig. 1b. Instead of generating random snapshots directly from DFT
calculations, a set of trial eigenvectors is derived using the empir-
ical SW potential. Because the optimized structure obtained from
DFT calculations is not the same as the equilibrium structure ob-
tained with the SW potential, there are soft vibrational modes with
imaginary frequencies when performing lattice dynamics using SW
potential. These soft modes are excluded when using Eq. (1) to sum
the displacement over all modes for the first generation of random
snapshots. After obtaining the trial snapshots, SCF calculations of
the energy and forces were performed for each snapshot. The ob-
tained forces and energies of the snapshots are recorded in the
Table 1
Hyperparameters for GAP with SOAP kernels.

rcut 4.5 Å
d 0.5 Å
sv for energy 0.0001 eV/atom;
sv for forces 0.001 eV/Å
sw 1.0 eV
sa 0.5 Å
z 4
nmax 12
lmax 12

GAP, Gaussian approximation potential.
database for training the first generation of the GAP model. Note
that the first generation of the generated random displacements
does not correspond to the equilibrium population of the phonon
modes. To minimize the possible error induced by the unphysical
displacements, we adopted an iterative training process similar to
the method used by Shulumba et al. [38] for developing the tem-
perature-dependent effective potential method. The first genera-
tion of the GAP model is used to perform lattice dynamics again to
generate a new set of snapshots for training the next generation of
the GAPmodel. This process is repeated until the change of the total
energy is less than 2 � 10�3 eV/atom and the soft modes disappear
to ensure that the trained structure is dynamically stable using the
GAP model. In this work, 50 snapshots are generated for training
each generation of the GAP model, and convergence of atomic
energy is achieved in the third iteration of training. The computa-
tional cost for training the potential itself is less, and one can
perform the training within several processor hours (CPU hours)
without any parallelization of the code. The major computational
cost of generating GAPmodels instead comes from constructing the
database. In this work, constructing the database of a-Si only in-
volves 150 snapshots, which is comparable with the computational
cost of computing force constants of simple crystals using the
displacement method [38].

After the GAP models are trained, it is necessary to evaluate not
only the accuracy of GAP models for reproducing the ab initio en-
ergies and forces in the training database but also the accuracy in
predicting energies and forces for snapshots that are not in the
training database. The root-mean-square error (RMSE) of the en-
ergies and forces of GAP models are calculated by comparing with
the data in the training databases. As shown in Fig. 2a and b, the
RMSE of GAP reproducing the energy and interatomic forces in c-Si
is 0.00057 eV/atom and 0.0215 eV/Å, respectively. Compared with
the RSME of interatomic forces (0.29 eV/Å) using empirical SW
potential, the RMSE of forces using the GAP model is one order of
magnitude lower. As clearly shown in Fig. 2b, the SWpotential has a
steeper correlation to DFT forces than GAP models, which means
that SW systematically overestimated the interatomic forces.
Compared with our previous work using AIMD simulations for
sampling the PES for crystalline Zr [25], a similar level of regression
accuracy is achieved while the required number of snapshots is one
order of magnitude lower. AIMD snapshots sample a trajectory on
the ab initio PES, which are intercorrelated. The stochastically
generated snapshots are independent of each other, which results
in a more effective sampling in the configurational space. To eval-
uate the accuracy in predicting forces of snapshots outside the
training database, another set of snapshots was generated as the
testing data set, and the corresponding forces and energies are
calculated, as shown in Fig. 2a and b. The RMSE of energy and
interatomic forces evaluated based on the testing data set is
0.00058 eV/atom and 0.0217 eV/Å, respectively, which is very close
to the accuracy evaluated based on the training data set. To evaluate
the accuracy of harmonic force constants, we calculated dispersion
along high-symmetry paths and phonon frequencies at symmetry-
irreducible points in the first Brillouin zone. The harmonic force
constants of GAP models are calculated using the finite displace-
ment method [52], where symmetry-irreducible displacements of
0.03 Å are imposed, and the corresponding interatomic forces here
are calculated using the trained GAP model. As shown in Fig. 2c,
phonon dispersion for c-Si using GAP is in excellent agreement
with DFT calculation based on the PBE functional. In Fig. 2d, the
phonon frequencies of symmetry-irreducible q-points are also
calculated and compared using a q-mesh of 13 � 13 � 13. The
maximum deviation of phonon frequencies by GAP is 0.28 THz
compared with that obtained by PBE, indicating the GAP model
accurately reproduces harmonic force constants. To evaluate how



Fig. 2. Comparisons of (a) energy and (b) forces computed from DFT and GAP, (c) phonon dispersion along high-symmetry paths, and (d) phonon frequencies at irreducible q-points
in the first Brillouin zone of c-Si. (e) Trajectory of energy by AIMD and MD using GAP with the same initial velocity distribution. A simulation cell of 5 � 5 � 5 primitive cells is used
to perform AIMD and MD simulation. GAP, Gaussian approximation potential; SW, Stillinger-Weber; PBE, Perdew-Burke-Ernzerhof; AIMD, ab initio molecular dynamics; MD,
molecular dynamics; DFT, density functional theory.
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the uncertainty for predicting energy accumulates over time, we
performed both MD simulation with GAP and AIMD simulation
using the same initial velocity distribution under microcanonical
(NVE) ensemble, and the trajectory of potential energy fluctuation
is recorded over time, as shown in Fig. 2e. In the first 250 fs, the
energy fluctuation curve of MD using GAP follows closely with
AIMD simulation. The two trajectories deviate significantly after
250 fs owing to the accumulation of errors in predicting energy and
forces. Although any small amount of error in predicting forces and
energy would eventually lead to such deviation of the trajectories
owing to the chaotic nature of a many-body system [53], evaluating
the maximum time before the energy fluctuation curve of MLP
bifurcates from the trajectory of AIMD still serves as a validation of
the fitting accuracy of MLP.

Fig. 3a and b show regression accuracy and prediction accuracy
of energy and forces of a-Si. In the training database, the RMSE for
reproducing energy and forces (0.034 eV/atom and 0.34 eV/Å,
respectively) is one order of magnitude higher that the c-Si owing
to the much more complicated atomic structure and local atomic
environments [29]. The accuracy in predicting energy and forces
becomes lower when using the training data set. The RMSE of en-
ergy and forces is 0.066 eV/atom and 0.54 eV/Å, respectively,
evaluated using the testing database. Similar to the case of c-Si, the
accuracy of calculating interatomic forces using GAP models still
outperforms the empirical SW potential by an order of magnitude,
whose RMSE for the forces is as high as 1.5 eV/Å, similar to the case
in c-Si. To further assess whether GAP could accurately capture the
structural features of a-Si network, the radial distribution function
(RDF) gðrÞ of the equilibrium a-Si structures obtained from GAP and
PBE is calculated and compared, as shown in Fig. 3c. It is observed
that GAP can reasonably reproduce the RDF compared with PBE
functionals, while SW potential falsely predicts a peak of RDF near
3 Å.

After the training process, GAP models are developed to predict
interatomic forces needed for thermal conductivity calculations.
EMD is performed to obtain thermal conductivity using the
LAMMPS package [54]. First, the isothermal-isobaric ensemble
(NPT) is used to thermalize the simulation cells for 400 ps with a
time step of 0.5 fs for both c-Si and a-Si. The simulations are then
switched to the microcanonical (NVE) ensemble for thermal con-
ductivity calculation. In GAP models, heat flux J is expressed as
follows:

J ¼ 1
V

X
i

ðEivi � Si $ viÞ (3)

where V is the volume of the simulation cell, Ei and vi are the en-
ergy and velocity of the atom i, and the atomic virial stress tensor Si
is written as the outer product of relative position rj � ri and local

potential derivative with respect to the neighboring atom vEi
vrj:

Si ¼
X
j

	
rj � ri



5
vEi
vrj

(4)

Thermal conductivity is then calculated using the Green-Kubo
formula:

k¼ V
3kBT2

ð
〈J ð0Þ $J ðtÞ〉dt (5)



Fig. 3. (a) Energy and (b) forces computed from DFT using PBE functional and GAP for a-Si. (c) Radial distribution function of the equilibrium of the a-Si structure predicted by DFT
using PBE functional, GAP, and the empirical SW potential. DFT, density functional theory; SW, Stillinger-Weber; PBE, Perdew-Burke-Ernzerhof; GAP, Gaussian approximation
potential.
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To perform the Green-Kubo integration, heat autocorrelation
function 〈J ð0Þ $J ðtÞ〉 is sampled every 5 fs and integrated up to 200
ps for c-Si and 40 ps for a-Si until the thermal conductivity values
stopped increasing with the increase of the correlation time, as
shown in Fig. 4a and b. To suppress the uncertainty, ten individual
simulations with different initial velocity distributions are
Fig. 4. (aeb) Thermal conductivity of (a) c-Si and (b) a-Si as a function of correlation time ca
among 10 independent simulations with different initial velocity distributions. (c) Therm
compared with experiments by Glassbrenner and Slack [64], EMD simulation using SW poten
(d) Thermal conductivity of amorphous silicon calculated by EMD with the GAP model dev
Isaeva et al. [62], and Lv and Henry [63] and experimental measurements by Zink et al. [57],
this figure legend, the reader is referred to the Web version of this article.) GAP, Gaussian a
PBE, Perdew-Burke-Ernzerhof; GKMA, Green-Kubo model analysis; BTE, Boltzmann transpo
performed to average the heat autocorrelation function. At room
temperature, the thermal conductivity values of c-Si and a-Si are
found to be 121 W/mK and 1.4 W/mK, respectively. In Fig. 4c, the
thermal conductivity of c-Si obtained from EMD is compared with
the values calculated by iteratively solving the Boltzmann transport
equation (BTE), using the harmonic and third-order force constants
lculated using the Green-Kubo method. The shaded area shows the standard deviation
al conductivity of crystalline silicon derived from the GAP model by EMD and BTE,
tial by Volz and Chen [56], and BTE simulation using SW potential by Babaei et al. [32].
eloped in this work, compared with the EMD results by Larkin and McGaughey [61],
Regner et al. [58], and Cahill et al. [59]. (For interpretation of the references to colour in
pproximation potential; EMD, equilibrium molecular dynamics; SW, Stillinger-Weber;
rt equation.
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obtained from PBE functionals (145 W/mK) and the trained GAP
model (137 W/mK). Third-order anharmonic force constants of
both the GAP model and PBE are calculated using the finite
displacement method [52], using a supercell of 5 � 5 � 5 primitive
cells and a cutoff to the fourth nearest neighbor. The ShengBTE
package [43] is used to iteratively solve the BTE with a 13� 13 � 13
q-mesh to sample the reciprocal q space. The slightly lower thermal
conductivity obtained by solving BTE from GAP could be attributed
to the error in predicting the interatomic forces. Evenwith the same
GAP model, the thermal conductivity predicted by EMD simulation
is 12% lower than that by solving BTE. At a high temperature of
500 K, the difference between thermal conductivity predicted by
EMD (61W/mK) and BTE (77W/mK) increased to ~20%. There could
be two reasons leading to the lower thermal conductivity from
EMD simulations: (1) the classical statistics in MD could lead to
overestimated scattering rates [55] and (2) MD simulations with
GAP naturally include higher order anharmonicities, whereas the
BTE approach truncates the anharmonic force constants to the third
order. One possible reason that GAP overestimates anharmonicity
could be the built-in variance nature of Gaussian process regres-
sion. It is known that the variance of predicting forces and energies
increases as the input configuration moves close to the boundary of
the sampled region, and the accuracy would decrease dramatically
if one tires to extrapolate the PES to the unsampled region. In this
work, the PES is sampled with an amplitude of thermal vibrations
up to 600 K. At higher temperatures close to 600 K, the trained GAP
wouldmore frequently interpolate the PES in the regionwith larger
variances in forces and energies, which could lead to overestimated
anharmonicity. Such underestimated thermal conductivity by EMD
using machine learningebased interatomic potential is also
observed in transition metal dichalcogenide alloys [31]. Compared
with the empirical SW potential [56], the GAP model still shows
much higher accuracy in predicting thermal conductivity of c-Si.
Fig. 4d shows thermal conductivity of a-Si obtained from EMD
using the GAP for a-Si. The predicted thermal conductivity is
~1.4 W/mK at room temperature, within the range of measurement
values of a-Si (1e2 W/mK) [57e59]. Considering the fact that
experimentally prepared a-Si usually contains different concen-
trations of hydrogen which reduces phonon localization and leads
to higher thermal conductivity [60], the thermal conductivity ob-
tained in this work could serve as an estimation for non-
hydrogenated a-Si. On the other hand, the GAP model predicts a
lower thermal conductivity for a-Si than that using the empirical
potentials [61e63], probably due to the fact that the empirical
potentials predict higher bonding stiffness than DFT calculation
using PBE functionals, consistent with the trend we observed in c-
Si.

Finally, we briefly compare the computational cost of AIMD and
MD using GAP. For a simulation cell containing 250 atoms, each
ionic step in AIMD takes 110 s of CPU time, using 48 processors with
the Brillouin zone sampled at the Gamma point. MD simulations
using GAP models, trained in this work, take around 0.1 s per time
stepwith the same number of atoms and processors, which is about
three orders of magnitude faster than AIMD. However, MD calcu-
lations using GAP is much slower than that using the empirical
potential with simple functionals such as SW potential, which takes
only 0.3 ms per time step under the same condition. Therefore, it
still remains challenging to implement MLP to model thermal
conductivity of materials with multiple elements because the
computational cost would further increase with the increasing
number of elements [35].

In summary, we have developed GAP models with regression
accuracy of 0.02 eV/Å and 0.3 eV/Å for interatomic forces in crys-
talline and a-Si, respectively, showing one-order-of-magnitude
improvement in both energy and forces compared with the
empirical SW potential. Thermal conductivity of c-Si and a-Si at
room temperature is calculated to be 121 W/mK and 1.4 W/mK,
respectively, using EMD, agreeing reasonably well with experi-
ments and first principles calculations. This work shows that GAP
can be a promising tool for modeling thermal conductivity of both
crystalline and amorphous materials with strong disorder.
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