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ABSTRACT
We refine the derivation of the Boltzmann equation by considering that the molecules passing through the interfaces of a volume element
of physical space and velocity space exhibit different velocity distribution functions and number densities. The resulting equation has a time
parameter close to the relaxation time and degenerates into the conventional Boltzmann equation when this parameter takes a value of zero. By
considering the macroscopic averaging of mass, momentum, and energy, the corresponding continuity, momentum, and energy equations are
obtained. Compared with the extended Navier–Stokes equations, the momentum and energy equations contain additional terms to represent
the external forces.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5139501., s

I. INTRODUCTION

The Navier–Stokes (NS) equations govern macroscopic fluid
flows. An increase in the Knudsen number (the ratio of the mean
free path of the molecule to the characteristic scale) causes the NS
equations to gradually fail. This situation often occurs when con-
sidering rarefied gases and microfluids. Brenner1 suggested that the
definition of convection velocity in the NS equations is not suitable
for such cases and proposed a bi-velocity hydrodynamic model in
which the governing equations account for mass diffusion.2–6 Durst
et al.7 argued that the NS equations are thermodynamically incom-
patible and attempted to derive new governing equations.8,9 Alterna-
tive equations have been formulated to account for the contribution
of mass diffusion ignored by the macroscopic convection velocity of
the NS equations, with the resulting system known as the extended
NS equations.10–12

Many mass diffusion continuum flow models have been inves-
tigated.13–15 These models have different continuity equations,
momentum equations, and energy equations compared with the
NS equations.16–18 However, most equations still use the clas-
sic Newton–Fourier constitutive model. This causes the angular
momentum theorem to fail for the local angular momentum.19

Therefore, alternative momentum transport constitutive models

were developed.20 It is generally believed that, when the fluid den-
sity gradient is large, the contribution of mass diffusion to motion
cannot be ignored. Greenshields and Reese21 obtained better results
by considering this factor when simulating shock waves. In addi-
tion, such equations have been extensively used to investigate micro-
flows, resulting in more desirable results than existing models.22–29

Therefore, for micro-flows, the extended NS equations provide an
improvement over the conventional NS equations.

However, these equations fall short of a physical basis, and phe-
nomenological methods and the concept of the molecular mean free
path are used in the derivation. For the molecular motion of gas,
the Boltzmann equation is a more rigorous theory, and can, there-
fore, help with the accurate derivation of the continuity equation,
momentum equation, and energy equation of the NS equations.
To provide a more rigorous basis for the extended NS equations,
Dadzie et al.30–32 modified the Boltzmann equation by adding a
phenomenological term, whereas Abramov33 revised the interaction
term of the Liouville equation. However, these modifications pro-
duced different results. Overall, a rigorous basis for the extended NS
equations remains an open problem.

This paper describes a refinement of the conventional deriva-
tion of the Boltzmann equation, resulting in a modified Boltzmann
equation. On this basis, the macroscopic mean values of conservative
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quantities during molecular collision, i.e., mass, momentum, and
energy, are studied, and the continuity equation, momentum equa-
tion, and energy equation of the extended NS equations are
obtained.

II. DERIVATION OF THE MODIFIED BOLTZMANN
EQUATION

The velocity distribution function f of a single-component gas
molecule is a function of the spatial position vector r(x, y, z), the
molecular velocity vector ξ(ξx, ξy, ξz), and time t. Let nf (r, ξ, t)drdξ
denote the number of molecules in the velocity element dξ at ξ and
the volume element dr near the point r at time t, and let n be the
molecular number density, that is, the number of molecules per
unit volume near point r at time t. Let mF be the force acting on
each molecule, where m is the mass of the molecule. For simplic-
ity, we assume that F is independent of ξ. After some time inter-
val dt, the number of molecules in the element drdξ increases by
∂(nf )
∂t dtdrdξ for two reasons. The first is the movement of molecules.

The molecular velocity changes the molecule’s position, and the
external force changes the velocity of the molecule. The second rea-
son is that the collision of molecules changes the velocity of the
molecules. The change in the number of molecules due to collisions
is [∂(nf )

∂t ]coll
dtdrdξ.

The element drdξ has six pairs of boundaries (x, x + dx), (y,
y + dy), (z, z + dz), (ξx, ξx + dξx), (ξy, ξy + dξy), and (ξz , ξz +
dξz). By calculating the number of molecules passing through these
six pairs of planes during time interval dt, the change in the num-
ber of molecules in element drdξ during dt because of molecular
motion can be obtained. First, consider the number of molecules
entering element drdξ through the plane dydzdξxdξydξz during time
interval dt (Fig. 1). These molecules must be located in the cylin-
der standing on the base dydzdξxdξydξz with the axis ξ(ξx, ξy, ξz),

which has a slant height of ξxdt. The number of molecules in this
cylinder is (∫

r
r−ξdt nfdx

′
)dydzdξxdξydξz (to distinguish it from dx,

when calculating the number of molecules flowing into the element
volume from the boundary, we use dx′ to represent the differen-
tial along the x-direction; the notations dy′, dz′, dξ′x, dξ′y, and dξ′z
are similarly defined). This is the number of molecules entering ele-
ment drdξ through the x-plane during time interval dt. Notably,
this method differs slightly from conventional derivation methods.
We consider the molecular number density and velocity distribution
f as a function of position. When flowing through dydzdξxdξydξz ,
these molecules may be forced out of (ξ, ξ + dξ) through colli-
sions with other molecules. However, other molecules may be forced
into (ξ, ξ + dξ) through a similar collision process. In addition,
the time interval dt is very short and the gas is rarefied. There-
fore, there is a weak change in the distribution of molecular velocity
following a collision. Similarly, the number of molecules that pass
out of drdξ through the x + dx plane during time interval dt is
(∫

r+exdx
r−ξdt+exdx nfdx

′
)dydzdξxdξydξz , where ex represents the unit vector

in the x direction. The net number of molecules entering element
drdξ through a pair of planes x and x + dx is

(∫

r

r−ξdt
nfdx′)dydzdξxdξydξz − (∫

r+exdx

r−ξdt+exdx
nfdx′)dydzdξxdξydξz

= −
∂

∂x
(∫

r

r−ξdt
nfdx′)dxdydzdξxdξydξz . (1)

According to a similar method, the net number of molecules
entering drdξ through a pair of planes ξx and ξx + dξx in time interval
dt is

−
∂

∂ξx
(∫

ξ

ξ−Fdt
nfdξ′x)dxdydzdξxdξydξz . (2)

Therefore, the net number of molecules entering drdξ through
the six pairs of planes in time interval dt is

FIG. 1. Explanatory figure for the molecular motion into an
element volume of physical space and velocity space (as
six-dimensional space cannot be represented graphically,
the area element dydzdξxdξy dξz is represented by a line
segment).
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−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂

∂x
(∫

r

r−ξdt
nfdx′) +

∂

∂y
(∫

r

r−ξdt
nfdy′) +

∂

∂z
(∫

r

r−ξdt
nfdz′)

+
∂

∂ξx
(∫

ξ

ξ−Fdt
nfdξ′x) +

∂

∂ξy
(∫

ξ

ξ−Fdt
nfdξ′y) +

∂

∂ξz
(∫

ξ

ξ−Fdt
nfdξ′z)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dxdydzdξxdξydξz . (3)

Because the macroscopic quantities are all based on the average
of a volume that is sufficiently large in microscopic terms but suffi-
ciently small in macroscopic terms, it takes time to reach the local
equilibrium. This time is represented by dt in Eq. (3), which should
be close to the relaxation time. Considering that it cannot be equal to
0, dt is replaced by the symbol τ. As there is no chance of confusion,
the differential symbols dx′, dy′, dz′, dξ′x, dξ′y, and dξ′z are replaced by
dx, dy, dz, dξx, dξy, and dξz , respectively, in Eq. (4). Thus, we obtain
the following equation:

∂

∂t
(nf ) +

∂

τ∂x
(∫

r

r−ξτ
nfdx) +

∂

τ∂y
(∫

r

r−ξτ
nfdy) +

∂

τ∂z
(∫

r

r−ξτ
nfdz)

+
∂

τ∂ξx
(∫

ξ

ξ−Fτ
nfdξx) +

∂

τ∂ξy
(∫

ξ

ξ−Fτ
nfdξy)

+
∂

τ∂ξz
(∫

ξ

ξ−Fτ
nfdξz) = [

∂(nf )
∂t
]

coll
. (4)

Equation (4) is the modified Boltzmann equation. The first
term on the left-hand side represents the change in the velocity dis-
tribution function over time, and the other terms on the left-hand
side represent the variation due to molecular motion and external
forces. The change due to molecular collisions is represented on
the right-hand side. The main difference between Eq. (4) and the
conventional Boltzmann equation is that our formulation consid-
ers the variational property of the molecules passing through the
boundaries of the control volume from different positions and times.
There is a time parameter τ in the modified Boltzmann equation.
When this parameter approaches 0, the Boltzmann equation can be
obtained. Although the exact value of this parameter is not known, it
is certainly close to the relaxation time of the local equilibrium. This
time should not be too short; otherwise, the local equilibrium can-
not be reached. It also cannot be too long; otherwise, the properties
of the surrounding molecules will have changed significantly.

The Liouville equation is a dynamic equation for the micro-
scopic motion of molecular groups. When the reduced velocity dis-
tribution function of one particle in a dilute gas is considered, the
Boltzmann equation can be obtained. The Liouville equation has dif-
ferent characteristic scales from the equations proposed here. The
spatial characteristic scale of the Liouville equation is the force range
of the molecular interaction, and the temporal characteristic scale
is the duration of a collision. The spatial characteristic scale of the
modified Boltzmann equation is the mean free path of the molecule.
The element drdξ must contain a sufficient number of molecules
while remaining macroscopically small. The temporal characteris-
tic scale is the relaxation time required to reach the local equilib-
rium. Therefore, the modified Boltzmann formulation is a meso-
scopic scale equation, which is the result of averaging the motion of
molecules governed by the Liouville equation on a mesoscopic scale.

III. EQUATIONS OF CONSERVED QUANTITIES AFTER
COLLISION

Multiplying both sides of Eq. (4) by ϕdξxdξydξz in which ϕ is a
function that is only related to the molecular velocity and is indepen-
dent of the molecular position r and time t, and taking the integral
over dξxdξydξz gives the following equation:

∂

∂t ∫
nϕf dξ − ∫ (∫

ξ

ξ−Fτ
nfdξx

∂ϕ
τ∂ξx

+ ∫
ξ

ξ−Fτ
nfdξy

∂ϕ
τ∂ξy

+ ∫
ξ

ξ−Fτ
nfdξz

∂ϕ
τ∂ξz
)dξ +

∂

∂x ∫
ϕ
τ
(∫

r

r−ξτ
nfdx)dξ

+
∂

∂y ∫
ϕ
τ
(∫

r

r−ξτ
nfdyr)dξ +

∂

∂z ∫
ϕ
τ
(∫

r

r−ξτ
nfdz)dξ

= ∫ ϕ[
∂(nf )
∂t
]

coll
dξ. (5)

In the derivation of this expression, we use the fact that the vari-
able ϕ is independent of position and time and apply integration by
parts. Equation (5) controls the transport of the molecular property
ϕ. When ϕ is conservative during a collision, the right-hand side of
Eq. (5) is 0. Obviously, the mass, momentum, and energy satisfy this
condition. Therefore, when ϕ = m, Eq. (5) can be transformed into

∂ρ
∂t

+
∂

∂x ∫
1
τ
(∫

r

r−ξτ
ρfdx)dξ +

∂

∂y ∫
1
τ
(∫

r

r−ξτ
ρfdy)dξ

+
∂

∂z ∫
1
τ
(∫

r

r−ξτ
ρfdz)dξ = 0, (6)

where ρ = nm is the gas density. Equation (6) is the transport
equation for the gas mass. When φ = mξ, Eq. (5) becomes

∂

∂t
(ρv) − ∫ (∫

ξ

ξ−Fτ
ρfdξx

ex
τ

+ ∫
ξ

ξ−Fτ
ρfdξy

ey
τ

+ ∫
ξ

ξ−Fτ
ρfdξz

ez
τ
)dξ

+
∂

∂x ∫
ξ
τ
(∫

r

r−ξτ
ρfdx)dξ +

∂

∂y ∫
ξ
τ
(∫

r

r−ξτ
ρfdy)dξ

+
∂

∂z ∫
ξ
τ
(∫

r

r−ξτ
ρfdz)dξ = 0, (7)

where v = ∫ ξ f dξ is the average molecular velocity, also called the
convective velocity of the fluid. Equation (7) is the transport equa-
tion of the gas momentum. Substituting ϕ = 1

2mξ ⋅ ξ into Eq. (5), we
obtain
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∂

∂t
(ρu) +

∂

∂t
(

1
2
ρv ⋅ v) − ∫ (

ξx
τ ∫

ξ

ξ−Fτ
ρfdξx +

ξy
τ ∫

ξ

ξ−Fτ
ρfdξy

+
ξz
τ ∫

ξ

ξ−Fτ
ρfdξz)dξ +

∂

∂x ∫
1
2 ξ ⋅ ξ
τ
(∫

r

r−ξτ
ρfdx)dξ

+
∂

∂y ∫
1
2 ξ ⋅ ξ
τ
(∫

r

r−ξτ
ρfdy)dξ +

∂

∂z ∫
1
2 ξ ⋅ ξ
τ
(∫

r

r−ξτ
ρfdz)dξ = 0,

(8)

where c = ξ − v is the molecular thermal velocity and u = ∫ 1
2 c ⋅ cf dξ

is the thermal energy for the unit mass. Notably, the thermal energy
defined here only considers the translational kinetic energy of the
molecular thermal motion. Other molecular energies can easily be
added without affecting the derivation.

IV. DERIVATION OF THE EXTENDED NAVIER–STOKES
EQUATIONS

Taking the Taylor expansion of ρφ at r, and ignoring terms
above the first power, substitution into Eq. (6) gives the following
equation:

∂ρ
∂t

+
∂

∂r
⋅ (ρv) +

∂

∂r
⋅ jD = 0, (9)

where jD = − ∫ [ 1
2∇(ρf ) ⋅ ξτ]ξdξ. Equation (9) is consistent with the

continuity equation of the extended NS equations. In this expres-
sion, jD is caused by the heterogeneous molecular density and veloc-
ity distribution. Although this term includes the effect of the fluid
convection velocity, it is usually very small relative to the molec-
ular thermal velocity. Thus, it is mainly due to the mass diffusion
caused by molecular thermal motion. When the macroscopic con-
trol volume is large, the influence of mass diffusion is small, and the
NS equations are applicable. When the control volume is small, the
influence of the mass diffusion term cannot be ignored.

A similar treatment of ρφ at r and ξ enables us to transform
Eq. (7) into

∂

∂t
(ρv) − ρF +

∂

∂r
⋅ P +

∂

∂r
⋅ (ρvv) + F∫

1
2
∇ξ(ρf ) ⋅ Fτdξ = 0,

(10)

where P = Pc + τT , Pc
= ∫ ρccf dξ, and τT = − ∫ 1

2 ξξ∇(ρf ) ⋅ ξτdξ.∇ξ
represents the gradient with respect to the velocity ξ. Equation (10)
corresponds to the momentum equation of the extended NS equa-
tions. If the velocity distribution function f is an even function of c,
the stress Pc only has components along the three coordinate axes.
The term τT is caused by the heterogeneous molecular density and
velocity distribution, including momentum transport caused by het-
erogeneous convective velocity, commonly known as shear stress,
and mass transport caused by mass diffusion, that is, the additional
momentum transport of the extended NS equations over that of the
conventional NS equations. The conventional method of deriving
the viscosity of fluid is based on the momentum transport caused by
the uneven convection velocity on both sides of the interface. This is
reflected in the definition of τT. The momentum equation obtained
here differs from that of the extended NS equations reported in the
literature in that the last term of Eq. (10) is an additional term for the

external force. This is because the time required to define the aver-
age property of the control volume cannot be zero, and molecules
of different velocities are accelerated to the same velocity interval.
Assuming that Maxwell’s velocity distribution law is approximately
applicable, the last term can be easily calculated as − ρm

2kT F(v ⋅ Fτ),
where k is the Boltzmann constant and T is the temperature in
Kelvin. This term is generally negligible compared with ρF.

Similarly, applying the same method as above for Eq. (8), the
following can be obtained:

∂

∂t
(ρu) +

∂

∂t
(

1
2
ρv ⋅ v) +

∂

∂r
⋅ qc +

∂

∂r
⋅ (ρuv) +

∂

∂r
⋅ (

1
2
ρv ⋅ vv)

+
∂

∂r
⋅ (Pc

⋅ v) − ρF ⋅ v + ∫
1
2
[∇ξ(ρf ) ⋅ Fτ]F ⋅ ξdξ

−
∂

∂r
⋅ ∫

1
4
ξ ⋅ ξ[∇(ρf ) ⋅ ξτ]ξdξ = 0, (11)

where qc = ∫ 1
2ρc ⋅ ccf dξ is the heat flow vector. If the velocity distri-

bution function f is even with respect to c, then qc = 0. Considering
that the macroscopic convection velocity v is much smaller than
its thermal velocity c, τT ≈ − ∫ 1

2 cξ∇(ρf ) ⋅ ξτdξ. The last term of
Eq. (11) can be written as

∫

1
4
ξ ⋅ ξ[∇(ρf ) ⋅ ξτ]ξdξ = ∫

1
4
(c ⋅ c + v ⋅ v)[∇(ρf ) ⋅ ξτ]ξdξ

+∫
1
2
cξ∇(ρf ) ⋅ ξτdξ ⋅ v = −qD − τT , (12)

where qD = − ∫ 1
4(c ⋅ c + v ⋅ v)[∇(ρf ) ⋅ ξτ]ξdξ, qT = qc + qD. Here,

qD includes the transport of kinetic energy from molecular ther-
mal motion and the macroscopic average kinetic energy. The causes
of this transport include the heterogeneous convection velocity and
mass diffusion. By defining the energy density as E = u + 1

2v ⋅ v,
Eq. (11) can be modified to give

∂

∂t
(ρE) +

∂

∂r
⋅ qT +

∂

∂r
⋅ (ρEv) +

∂

∂r
⋅ (P ⋅ v) − ρF ⋅ v

+∫
1
2
[∇ξ(ρf ) ⋅ Fτ]F ⋅ ξdξ = 0. (13)

Equation (13) is the energy transport equation. Ignoring the
extra terms of the external force, i.e., the last term, Eq. (13) is con-
sistent with the extended NS equations. Assuming that Maxwell’s
velocity distribution law is approximately applicable, the last term
can be easily calculated as − ρm

2kT F ⋅ (P
c + ρvv) ⋅ Fτ, which is generally

negligible compared with ρF ⋅ v.
Neglecting the extra terms of the external forces, the momen-

tum and energy equations of the extended NS equations are consis-
tent in form with those of the conventional NS equations. However,
in the extended NS equations, qT and the stress tensor P contain
additional transport components due to mass diffusion. The funda-
mental reason for the difference between them is that the extended
NS equations consider the difference in physical properties caused
by the molecules passing through the control volume interface com-
ing from different positions. On the molecular scale, the fluid is not
continuous, and the macroscopic quantities are defined as the aver-
age values of the molecules in a volume that is macroscopically suf-
ficiently small and microscopically sufficiently large. Thus, it takes
time to reach the local equilibrium. The molecules passing through
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the interface of the control volume during this time interval may
come from a certain distance away and have the physical properties
of the corresponding position. The conventional method of deriving
physical parameters such as viscosity and diffusion coefficients using
the primary theory of molecular motion is also based on such a view-
point. Thus, microscopic discontinuity is the essential reason for the
differences between the extended NS equations and the conventional
form.

V. CONCLUSIONS
We modified the Boltzmann equation by considering the tem-

poral and spatial variation in the velocity distribution function and
number density of molecules entering the volume element of phys-
ical space and velocity space. This equation has a time parame-
ter close to the relaxation time. As this parameter approaches 0,
this equation degenerates into the conventional Boltzmann equa-
tion. Determining the exact value of this parameter requires further
study. Based on the modified Boltzmann equation, the continuity
equation, momentum equation, and energy equation were obtained
by considering the macroscopic mean of mass, momentum, and
energy, respectively. Compared with the extended NS equations,
the momentum equation and the energy equation have additional
items related to the external force. Subsequent studies are required to
determine which equation is more realistic. Future work will attempt
to validate the proposed equations. To form a closed system of equa-
tions, it is necessary to investigate the constitutive relations of mass
diffusion, momentum, and energy transport. The proposed model
could then be used to investigate micro-flows.

ACKNOWLEDGMENTS
The authors acknowledge the National Natural Science Foun-

dation of China-Outstanding Youth Foundation (Grant No.
51522903), the National Natural Science Foundation of China
(Grant Nos. 11602276 and 51479094), and the Key Laboratory for
Mechanics in Fluid Solid Coupling Systems of CAS for their financial
support of this research.

REFERENCES
1H. Brenner, “Kinematics of volume transport,” Physica A 349, 11–59 (2005).
2H. Brenner, “Navier–Stokes revisited,” Physica A 349, 60–132 (2005).
3H. Brenner, “Phoresis in fluids,” Phys. Rev. E 84, 066317 (2011).
4H. Brenner, “Fluid mechanics in fluids at rest,” Phys. Rev. E 86, 016307 (2012).
5H. Brenner, “Beyond Navier–Stokes,” Int. J. Eng. Sci. 54, 67–98 (2012).
6H. Brenner, “Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume
flux,” Physica A 392, 558–566 (2013).
7F. Durst, J. Gomes, and R. Sambasivam, “Thermo-fluid-dynamics: Do we solve
the right kind of equations?,” in 5th Symposium on Turbulence, Heat and Mass
Transfer, Dubrovnik, Croatia, September 25–29, 2006 (Begell House Inc., 2006),
pp. 3–18.
8S. Chakraborty and F. Durst, “Derivations of extended Navier–Stokes equa-
tions from upscaled molecular transport considerations for compressible ideal gas
flows: Towards extended constitutive forms,” Phys. Fluids 19, 088104 (2007).

9R. Sambasivam, “Extended Navier–Stokes equations: Derivations and applica-
tions to fluid flow problems,” Ph.D. thesis, University of Erlangen, Erlangen,
2013.
10A. Jaishankar and G. H. McKinley, “An analytical solution to the extended
Navier–Stokes equations using the Lambert W function,” AIChE J. 60, 1413–1423
(2014).
11R. Sambasivam, S. Chakraborty, and F. Durst, “Numerical predictions of
backward-facing step flows in microchannels using extended Navier–Stokes equa-
tions,” Microfluid. Nanofluid. 16, 757–772 (2014).
12N. Dongari, R. Sambasivam, and F. Durst, “Extended Navier–Stokes equations
and treatments of micro-channel gas flows,” J. Fluid Sci. Technol. 4, 454–467
(2009).
13P. Ván, M. Pavelka, and M. Grmela, “Extra mass flux in fluid mechanics,”
J. Non-Equilib. Thermodyn. 42, 133–152 (2016).
14M. Svärd, “A new Eulerian model for viscous and heat conducting compressible
flows,” Physica A 506, 350–375 (2018).
15R. Abramov and J. Otto, “Nonequilibrium diffusive gas dynamics: Poiseuille
microflow,” Physica D 371, 13–27 (2018).
16H. C. Oettinger, Beyond Equilibrium Thermodynamics (Wiley and Sons, 2005).
17H. Brenner, “Proposal of a critical test of the Navier–Stokes–Fourier paradigm
for compressible fluid continua,” Phys. Rev. E 87, 013014 (2013).
18H. Brenner, “Conduction-only transport phenomena in compressible bivelocity
fluids: Diffuse interfaces and Korteweg stresses,” Phys. Rev. E 89, 043020 (2014).
19S. K. Dadzie and J. M. Reese, “Analysis of the thermomechanical inconsistency
of some extended hydrodynamic models at high Knudsen number,” Phys. Rev. E
85, 041202 (2012).
20M. H. L. Reddy, S. K. Dadzie, R. Ocone, M. K. Borg, and J. M. Reese, “Recasting
Navier–Stokes equations,” J. Phys. Commun. 3, 105009 (2019).
21C. J. Greenshields and J. M. Reese, “The structure of shock waves as a test
of Brenner’s modifications to the Navier–Stokes equations,” J. Fluid Mech. 580,
407–429 (2007).
22N. Dongari and A. Sharma, “Pressure-driven diffusive gas flows in micro-
channels: From the Knudsen to the continuum regimes,” Microfluid. Nanofluid.
6, 679–692 (2009).
23S. K. Dadzie and H. Brenner, “Predicting enhanced mass flow rates in gas
microchannels using nonkinetic models,” Phys. Rev. E 86, 036318 (2012).
24Q. Lv, X. Liu, E. Wang, and S. Wang, “Analytical solution to predicting gaseous
mass flow rates of microchannels in a wide range of Knudsen numbers,” Phys.
Rev. E 88, 013007 (2013).
25Q. Lv, E. Wang, X. Liu, and S. Wang, “Determining the intrinsic permeability
of tight porous media based on bivelocity hydrodynetics,” Microfluid. Nanofluid.
16, 841–848 (2014).
26P. L. L. Walls and B. Abedian, “Bivelocity gas dynamics of micro-channel
Couette flow,” Int. J. Eng. Sci. 79, 21–29 (2014).
27S. K. Dadzie and C. Christou, “Bi-velocity gas dynamics of a micro lid-driven
cavity heat transfer subject to forced convection,” Int. Commun. Heat Mass
Transfer 78, 175–181 (2016).
28L. Geng, G. Li, P. Zitha, S. Tian, M. Sheng, and X. Fan, “A diffusion–viscous
flow model for simulating shale gas transport in nano-pores,” Fuel 181, 887–894
(2016).
29C. Christou and S. K. Dadzie, “On the numerical simulation of rarefied gas flows
in micro-channels,” J. Phys. Commun. 2, 035002 (2018).
30S. K. Dadzie, J. M. Reese, and C. R. McInnes, “A continuum model of gas flows
with localized density variations,” Physica A 387, 6079–6094 (2008).
31S. K. Dadzie and R. M. Jason, “Spatial stochasticity and non-continuum effects
in gas flows,” Phys. Lett. A 376, 967–972 (2012).
32S. K. Dadzie, “Second law of thermodynamics in volume diffusion hydrodynam-
ics in multicomponent gas mixtures,” Phys. Lett. A 376, 3223–3228 (2012).
33R. V. Abramov, “Diffusive Boltzmann equation, its fluid dynamics, Couette flow
and Knudsen layers,” Physica A 484, 532–557 (2017).

Phys. Fluids 32, 022001 (2020); doi: 10.1063/1.5139501 32, 022001-5

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.physa.2004.10.033
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1103/physreve.84.066317
https://doi.org/10.1103/physreve.86.016307
https://doi.org/10.1016/j.ijengsci.2012.01.006
https://doi.org/10.1016/j.physa.2012.09.013
https://doi.org/10.1063/1.2759531
https://doi.org/10.1002/aic.14407
https://doi.org/10.1007/s10404-013-1254-1
https://doi.org/10.1299/jfst.4.454
https://doi.org/10.1515/jnet-2016-0058
https://doi.org/10.1016/j.physa.2018.03.097
https://doi.org/10.1016/j.physd.2018.01.006
https://doi.org/10.1103/physreve.87.013014
https://doi.org/10.1103/physreve.89.043020
https://doi.org/10.1103/physreve.85.041202
https://doi.org/10.1088/2399-6528/ab4b86
https://doi.org/10.1017/s0022112007005575
https://doi.org/10.1007/s10404-008-0344-y
https://doi.org/10.1103/physreve.86.036318
https://doi.org/10.1103/physreve.88.013007
https://doi.org/10.1103/physreve.88.013007
https://doi.org/10.1007/s10404-014-1332-z
https://doi.org/10.1016/j.ijengsci.2014.02.002
https://doi.org/10.1016/j.icheatmasstransfer.2016.09.006
https://doi.org/10.1016/j.icheatmasstransfer.2016.09.006
https://doi.org/10.1016/j.fuel.2016.05.036
https://doi.org/10.1088/2399-6528/aab066
https://doi.org/10.1016/j.physa.2008.07.009
https://doi.org/10.1016/j.physleta.2012.01.004
https://doi.org/10.1016/j.physleta.2012.09.051
https://doi.org/10.1016/j.physa.2017.04.149

