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Abstract
First this paper analyzes the reason for the accuracy losing of the third-order weighted
essentially non-oscillatory (WENO) scheme. It is shown that one reason is that the local
smoothness indicators of the third-order WENO scheme cannot correctly treat the smooth
three-point stencil containing a non-nodal critical point, here, ‘non-nodal’ means the critical
point is not a grid point. And then a discontinuity-detecting method for a four-point stencil is
proposed and applied to develop the high order accurate hybrid-WENOscheme by combining
the third-order WENO scheme and a third-order upstream scheme. This four-point stencil is
actually the stencil used for constructing the third-orderWENOscheme (positive and negative
numerical fluxes), hence the resulting hybrid-WENO scheme proposed by this paper does not
introduce new grid point. Numerical examples show that the detecting method and the hybrid
scheme are robust for problems with shocks, and the hybrid scheme obtains real third-order
convergence rate for smooth solutions containing critical points.
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1 Introduction

The weighted essentially non-oscillatory (WENO) scheme is first proposed by Liu et al. [1].
Its basic idea is to use a weighted convex combination of fluxes on all candidate sub-stencils
instead of the one on the smoothest sub-stencil in ENO scheme [2]. By assigning adaptive
weights to each sub-stencil, the WENO scheme can achieve high order accuracy in smooth
regions while keeping the essentially non-oscillatory property near discontinuities. Jiang and
Shu [3] introduced a general method for calculating smoothness indicators of stencils. Then,
Balsara and Shu [4] extended the WENO schemes up to 11th order accuracy. Gerolymos et
al. [5] further developed very-high-order WENO schemes. The fifth-order WENO scheme
is the most widely studied and used in a number of references. Compared with higher order
WENO schemes, the third-order one has several advantages [6]. For example, it is more
robust for shock problems, it uses fewer grid points and hence it reduces the difficulty of
boundary treatment and also it provides a suitable compromise of the computation cost and
the accuracy in some applications. However, the numerical results show that the third-order
WENO schemes always fail to obtain expected order near critical points. How to develop a
real third-order accurate and low dissipative WENO scheme has attracted much attention.

Yamaleev and Carpenter [7] proposed the third-order energy stable WENO (ESWENO)
scheme by combing the standard WENO scheme and an additional non-linear artificial dis-
sipation term. Although the ESWENO scheme can achieve the optimal convergence order
for a smooth solution, the two parameters, ε and δ, designed for its weight function and the
artificial dissipation term, are both dependent on the grid spacing (or the total number of grid
cells), and ε is also determined by the initial solution. Later, Wu and Zhao [8] developed a
less dissipative WENO-Z-type (WENO-N3) scheme by constructing a higher-order global
smoothness indicator (GSI). Since the WENO-N3 scheme cannot obtain the optimal conver-
gence order around critical points, Wu et al. [9] suggested using a power function of the GSI
[8] as a newGSI to construct a newWENO-Z-type scheme (WENO-NP3) to avoid the loss of
accuracy. Similar techniques are applied by Gande et al. [10] (WENO-NF3) and Xu and Wu
[11] (WENO-NN3) to further improve the WENO-NP3 scheme. However, the modification
of the GSI (i.e., WENO-NP3 and WENO-NF3) or local smoothness indicators (LSIs) (i.e.,
WENO-NN3) by using a power function destroys the requirement that the GSI and the LSIs
should have the same dimension. Recently, Xu and Wu [12] modified the GSI of Wu et al.
[8] and added a new term, which is similar to the one derived for a fifth-order WENO-Z
scheme by Acker et al. [13], to increase the weight of less-smooth stencil and decrease the
numerical dissipation of the third-order WENO-Z scheme. Although a parameter related to
the grid spacing is also introduced in the added term, their scheme can not even reach second
order convergence in L∞ norm.

Different from those works in [7–12], which focus on designing a higher-order GSI, Liu
et al. [6] proposed a novel way to calculate the two local smoothness indicators(LSIs). As
shown in [6], in monotonic smooth regions, the two LSIs are the same, thus the calculated
weights are equal to the optimal ones, which means the resulting WENO (WENO-MN3)
scheme recovers to the third-order upstream scheme. However, in non-monotonic smooth
regions, i.e, around critical points, the two LSIs [6] have the similar behavior as that of
the ones of the WENO-JS scheme, and hence the accuracy of the WENO-MN3 scheme is
decreased.

In this paper, we firstly analyze the reason for decreasing accuracy of the third-order
WENO schemes and it is shown that one reason is that the LSIs of the third-order WENO
scheme cannot correctly distinguish the smooth three-point stencil containing a non-nodal
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critical point (i.e., the critical point is not a grid point) from discontinuous stencil. Then
a discontinuity-detecting method for a four-point stencil is proposed and used to develop
a third order accurate hybrid scheme of the third-order WENO scheme combining with a
third-order upstream scheme.

This paper is arranged in the following way: in Sect. 2, the WENO-JS and WENO-MN3
schemes are briefly introduced, and the reason for decreasing accuracy of the third-order
WENO schemes was analyzed. In Sect. 3, a discontinuity-detecting method for a four-point
stencil is designed and applied to construct the third-order hybrid scheme. Section 4 gives
numerical experiments. Section 5 is the conclusion remarks.

2 Third-OrderWENO Schemes

In this section, we briefly introduce theWENO schemes by using the one-dimensional scalar
conservation law equation [3],

∂u

∂t
+ ∂ f

∂x
= 0, (1)

where u(x, t) is a conserved quantity, f (u(x, t)) describes its flux, and x and t denote space
and time, respectively. By defining the points xi = iΔx , (i = 0, . . . , N ), where Δx is the
uniform grid spacing, the Eq. (1) can be approximated by a conservative finite difference
formula,

dui
dt

= − f̂i+1/2 − f̂i−1/2

Δx
, (2)

where f̂i±1/2 is the numerical flux. Generally, the flux can be split into positive part and
negative part,

f̂i+1/2 = f̂ +
i+1/2 + f̂ −

i+1/2. (3)

Here, only the positive part f̂ +
i+1/2 is described, and the superscript “+” is dropped for

simplicity. The negative part f̂ −
i+1/2 is symmetric with respect to xi+1/2 and will not be

shown.

2.1 TheWENO-JS andWENO-MN3 Schemes

The flux f̂i+1/2 of a third-order WENO scheme can be written as

f̂i+1/2 = ω0q0 + ω1q1, (4)

where, qk is the second-order flux on the sub-stencil Sk = (i − 1+ k, i + k) and is given by
⎧
⎪⎨

⎪⎩

q0 = −1

2
fi−1 + 3

2
fi ,

q1 = 1

2
fi + 1

2
fi+1,

(5)

the weight ωk is constructed as

ωk = αk

α0 + α1
, αk = ck

(I Sk + ε)2
, (6)

where c0 = 1/3 and c1 = 2/3 are called the ideal weights. ε = 10−40 is a small parameter
introduced to avoid the denominator becoming zero.
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I Sk in Eq. (6) is called as the local smoothness indicator that measures the smoothness of
numerical solution on the sub-stencil Sk . In [1,3], I Sk is calculated as

{
I S0 = ( fi − fi−1)

2,

I S1 = ( fi+1 − fi )2.
(7)

In smooth regions, the Taylor series expansions of Eq. (7) at xi give

⎧
⎪⎪⎨

⎪⎪⎩

I S0 =
(

f ′
i Δx − 1

2
f ′′
i Δx2 + O(Δx3)

)2

,

I S1 =
(

f ′
i Δx + 1

2
f ′′
i Δx2 + O(Δx3)

)2

.

(8)

Hence, Eq. (8) can be written as

I Sk = A(1 + O(Δx)), (9)

where A is independent of k. Substituting Eq. (9) into Eq. (6), there is

ωk = ck + O(Δx). (10)

However, numerical experiments [6–8] showed that the WENO scheme (denoted by
WENO-JS) with the weight function (Eq. 6) and indicators (Eq. 7) is too dissipative and
can not even reach second order (the order of L∞ error) convergence.

In order to reduce the numerical dissipation of the third-order WENO-JS scheme, Liu et
al. [6] proposed the following new indicators,

{
I SN0 = 1

4 (| fi+1 − fi−1| − |4 fi − 3 fi−1 − fi+1|)2 ,

I SN1 = 1
4 (| fi+1 − fi−1| − |3 fi+1 + fi−1 − 4 fi |)2 .

(11)

In smooth regions, the Taylor series expansions of Eq. (11) give
{
I SN0 = (| f ′

i Δx + O(Δx3)| − | f ′
i−1Δx + O(Δx3)|)2 ,

I SN1 = (| f ′
i Δx + O(Δx3)| − | f ′

i+1Δx + O(Δx3)|)2 .
(12)

Theoretically (Δx → 0), for a monotonic function, f ′
i−1, f ′

i and f ′
i+1 have the same sign,

hence, we can remove the absolute value bars in Eq. (11) and obtain

I SN0 = I SN1 = ( fi+1 − 2 fi + fi−1)
2. (13)

Substituting Eq. (13) into the weight function Eq. (6) gives

ω0 = c0, ω1 = c1, (14)

which means, in monotonic smooth regions, the weights are exactly equal to the optimal
weights, i.e., the fully third-order upstream scheme is recovered. Due to this, the scheme is
called WENO-MN3 [6].

For a discontinuous three-point stencil (xi−1, xi , xi+1), supposing S0 = (xi−1, xi ) is the
discontinuous sub-stencil, and S1 = (xi , xi+1) is the smooth one. Let

{
β0 = fi − fi−1,

β1 = fi+1 − fi .
(15)
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Since |β0| is much larger than |β1|, i.e., |β0| � |β1|, the new indicators can be approximated
by {

I SN0 = 1
4 (|β0 + β1| − |3β0 − β1|)2 = (β0 + β1)

2 = O(β2
0 )

I SN1 = 1
4 (|β0 + β1| − |3β1 − β0|)2 = (2β1)

2 = O(β2
1 )

(16)

This shows that the new indicators (Eq. 11) approximate to the ones of Jiang and Shu’s (Eq.
7). Hence, the ENO property can be maintained for problems with discontinuities. Please
find more details in [6].

Although the WENO-MN3 scheme has less numerical dissipation than the WENO-JS
scheme, the improvement of accuracy in L∞ norm of a smooth solution with critical points
is still not remarkable [3].

2.2 Analysis of the Accuracy of Third-OrderWENO Schemes Around Critical Point

In order to analyze the accuracy of a third-order WENO scheme around a critical point, by
applying the Taylor expansion of f at xc = xi + δΔx (−1 ≤ δ ≤ 1), we have

⎧
⎪⎨

⎪⎩

fi−1 = fxc − (1 + δ) f ′
xcΔx + 1

2 (1 + δ)2 f ′′
xcΔx2 + O(Δx3)

fi = fxc − δ f ′
xcΔx + 1

2 δ
2 f ′′

xcΔx2 + O(Δx3)

fi+1 = fxc + (1 − δ) f ′
xcΔx + 1

2 (1 − δ)2 f ′′
xcΔx2 + O(Δx3)

(17)

It is easy to find that
{
I S0 = (

f ′
xcΔx + 1

2 (−1 − 2δ) f ′′
xcΔx2 + O(Δx3)

)2

I S1 = (
f ′
xcΔx + 1

2 (1 − 2δ) f ′′
xcΔx2 + O(Δx3)

)2 (18)

So, for a smooth solution with f ′
xc = 0, if and only if the coefficients of f ′′

xcΔx2 in I S0 and
I S1 satisfy

| − 1 − 2δ| = |1 − 2δ|, (19)

the weights ωk calculated by Eq. (6) can meet the relationship (Eq. 10). By solving Eq. (19),
we can get δ = 0, which means the critical point xc is exactly the grid point xi . That is, if
there exists a critical point xc on the stencil (xi−1, xi , xi+1), the necessary condition for a
third-order WENO scheme possibly getting higher order than the original ENO scheme is
that the grid point xi is the critical point. It should be pointed out, the necessary condition
also means that, for the case of δ = ±1, i.e., the critical point xc is xi±1, the third-order
WENO scheme can not improve the order yet.

Specially, if δ equals to 1/2, we have
⎧
⎨

⎩

I S0 =
(
f ′′
i+1/2Δx2 + O(Δx3)

)2 = O(Δx4),

I S1 = O(Δx6).
(20)

I S1 is an infinitesimal with two order higher than I S0, hence, this kind of three-points stencil
S3 = (xi−1, xi , xi+1) may be quite possibly treated as a discontinuous stencil, and only
first-order accuracy can be obtained.

According to the Taylor expansions in Sect. 2.1, theoretically, Eqs. (9) and (10) are always
kept, even if xi is a critical point. Hence, by using themapping function introduced byHenrick
et al. [14],

gk(ωk) = ωk(ck + c2k − 3ckωk + ω2
k )

c2k + ωk(1 − 2ck)
, (21)
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the mapped weights should be
ωM
k = ck + O(Δx3), (22)

which satisfy the sufficient condition for a third-order convergence of a third-order WENO
scheme [6,7],

ωk = ck + O(Δx2). (23)

That means the mapped third-order WENO (WENO-M) scheme is strictly third-order
accurate. However, the numerical results in [6] and also in this paper showed that the conclu-
sion is not true. From the above analysis, it can be seen that, for the case of f ′

xc = 0 and δ �= 0,
I S0 and I S1 have different coefficients of the term f ′′

xcΔx2, that means the condition Eq. (9)
can not be satisfied, and hence Eq. (10) can not be reached. Suppose xi is a critical point
on four-points stencil (xi−2, xi−1, xi , xi+1), if the third-order WENO-M scheme is applied,
then f̂i+1/2 (the three-points stencil (xi−1, xi , xi+1) is used) is a third-order flux, but f̂i−1/2

(the stencil (xi−2, xi−1, xi ) is used) is not. Therefore, WENO-M can not achieve optimal
third-order accuracy at critical point xi .

Similarly, the indicators of WENO-MN3 (Eq. 11) can be analyzed by applying the fol-
lowing expansions,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I SN0 = 1

4

( ∣
∣
∣
∣2δ f

′′
xcΔx2 −

(
1
3 + δ2

)

f ′′′
xc Δx3 + O(Δx4)

∣
∣
∣
∣

−
∣
∣
∣
∣(2 + 2δ) f ′′

xcΔx2 −
(

1
3 + 2δ + δ2

)

f ′′′
xc Δx3 + O(Δx4)

∣
∣
∣
∣

)2

,

I SN1 = 1

4

( ∣
∣
∣
∣2δ f

′′
xcΔx2 −

(
1
3 + δ2

)

f ′′′
xc Δx3 + O(Δx4)

∣
∣
∣
∣

−
∣
∣
∣
∣(2 − 2δ) f ′′

xcΔx2 +
(

1
3 − 2δ + δ2

)

f ′′′
xc Δx3 + O(Δx4)

∣
∣
∣
∣

)2

.

(24)

We can see that, for cases of δ = 0,−1, 1, I S0 and I S1 have the same coefficients of the
term ( f ′′

xcΔx2)2. Hence, the WENO-MN3 scheme can deal well with those kinds of stencils,
where xi or xi−1 or xi+1 is a critical point.

However, if δ �= 0,−1, 1, i.e., the critical point xc is not a grid point, WENO-MN3 fails
to improve the accuracy order. Specially, if δ = 1/2, there is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I SN0 = 1

4

( ∣
∣
∣ f ′′

i+1/2Δx2 − 28
48 f ′′′

i+1/2Δx3 + O(Δx4)
∣
∣
∣

−
∣
∣
∣3 f ′′

i+1/2Δx2 − 76
48 f ′′′

i+1/2Δx3 + O(Δx4)
∣
∣
∣

)2

= O(Δx4),

I SN1 = 1

4

( ∣
∣
∣ f ′′

i+1/2Δx2 − 28
48 f ′′′

i+1/2Δx3 + O(Δx4)
∣
∣
∣

−
∣
∣
∣ f ′′

i+1/2Δx2 − 20
48 f ′′′

i+1/2Δx3 + O(Δx4)
∣
∣
∣

)2

= O(Δx6).

(25)

In fact, for a series of discrete points of a continuous solution, xi is possibly a maximum
point, but it is not a strict critical point (the first derivative is zero) of the solution. For con-
venience, we call this kind of critical point as non-nodal critical point. The above theoretical
analysis shows that the local smoothness indicators cannot properly treat the smooth three-
point stencil containing a non-nodal critical point is one reason for the accuracy losing of the
third-order WENO scheme.

Here, we use a function u(x) = sin(πx), which has a critical point at x = 0.5, to
illustrate the accuracy losing of third order WENO schemes numerically. Supposing the
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Table 1 Convergence rate of
∂u

∂x
|xi , where, xi = xc = 0.5 (δ = 0), xc is a nodal point

Δx WENO-JS WENO-M WENO-MN3 WENO-NF3 Up3
Error (order) Error (order) Error (order) Error (order) Error (order)

0.1 0.160 (–) 0.151 (–) 7.985E−3 (–) 1.004E−2 (–) 7.985E−3 (–)

0.05 8.054E−2 (0.99) 7.611E−2 (0.98) 1.011E−3 (2.98) 1.319E−3 (2.93) 1.011E−3 (2.98)

0.025 4.034E−2 (1.00) 3.816E−2 (1.00) 1.267E−4 (3.00) 1.670E−4 (2.98) 1.267E−4 (3.00)

0.0125 2.018E−2 (1.00) 1.909E−2 (1.00) 1.585E−5 (3.00) 2.095E−5 (3.00) 1.585E−5 (3.00)

Table 2 Convergence rate of
∂u

∂x
|xi , where, xi = xc − δΔx (δ = 1/2), xc is a non-nodal critical point

Δx WENO-JS WENO-M WENO-MN3 WENO-NF3 Up3
Error (order) Error (order) Error (order) Error (order) Error (order)

0.1 0.241E−1 (–) 0.612E−1 (–) 0.153 (–) 0.153 (–) 0.773E−2 (–)

0.05 0.862E−2 (1.48) 0.269E−1 (1.19) 0.808E−1 (0.92) 0.808E−1 (0.92) 0.100E−2 (2.95)

0.025 0.388E−2 (1.15) 0.130E−1 (1.05) 0.409E−1 (0.98) 0.409E−1 (0.98) 0.126E−3 (2.99)

0.0125 0.189E−2 (1.04) 0.642E−2 (1.01) 0.205E−1 (1.00) 0.205E−1 (1.00) 0.158E−4 (3.00)

stencil S3 = (i −1, i, i +1) containing a critical point (xc = 0.5), without loss of generality,
let xi = xc − δΔx (where δ is a parameter introduced to determine the location between the
grid point xi and the critical point xc, −1 ≤ δ ≤ 1), then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(xi−2) = u(xi − 2Δx)

u(xi−1) = u(xi − Δx)

u(xi ) = u(xi )

u(xi+1) = u(xi + Δx)

(26)

Tables 1, 2 and 3 give the convergence rate of first derivative (∂u/∂x)|x=xi by using different
schemes, where, the error is the absolute value of the difference of the numerical solution and
the exact solution at xi . As we can see, for the case of δ = 0(nodal critical point), WENO-
MN3 get third-order accuracy, while WENO-JS and WENO-M are only first-order. For the
cases with δ = 1/2 and δ = 1/3 (non-nodal critical point), the accuracy of WENO-JS,
WENO-M andWENO-MN3 decreases to first order. These results are in agreement with the
previous theoretical analysis.

The results of WENO-NF3 (see Eq. 44 in Sec. 4.1.1), are also given in Tables 1, 2 and 3.
Numerical results show that, althoughWENO-NF3 can obtain third-order accuracy for cases
of δ = 0 and δ = 1/3, it is incapable for δ = 1/2. In addition, since the power function
of τ (τ 3/2) is used to calculate the weights in WENO-NF3, this scheme may generate other
issues, such as oscillation, non-similarity solutions (see Sects. 4.1.2 and 4.2).

3 The NewMethod

In this section, we introduce a discontinuity-detecting method for a four-point stencil and
apply it to develop the third-order hybrid-WENO scheme.

123



Journal of Scientific Computing

Table 3 Convergence rate of
∂u

∂x
|xi , where, xi = xc − δΔx (δ = 1/3), xc is also a non-nodal critical point

Δx WENO-JS WENO-M WENO-MN3 WENO-NF3 Up3
Error (order) Error (order) Error (order) Error (order) Error (order)

0.1 0.161E−1 (–) 0.429E−1 (–) 0.151 (–) 0.125E−1 (–) 0.784E−2 (–)

0.05 0.573E−2 (1.48) 0.187E−1 (1.20) 0.794E−1 (0.93) 0.192E−2 (2.71) 0.101E−2 (2.96)

0.025 0.258E−2 (1.15) 0.898E−2 (1.06) 0.402E−1 (0.98) 0.253E−3 (2.92) 0.127E−3 (2.99)

0.0125 0.125E−2 (1.04) 0.445E−2 (1.01) 0.202E−1 (1.00) 0.321E−4 (2.98) 0.158E−4 (3.00)

i+1i i+2i-1 i+1/2

Fig. 1 The stencil of a third-order WENO scheme

3.1 A Discontinuity-DetectingMethod for a Four-Point stencil

In Sect. 2, we illustrate theoretically that the third-order WENO scheme can not effectively
distinguish that kind of three-point smooth stencils containing non-nodal critical points from
discontinuous stencils. In order to overcome this shortcoming, it is necessary to develop a
new method. As mentioned in Sect. 2, a complete formula of a WENO scheme contains
positive and negative fluxes, and the two fluxes are symmetric with respect to xi+1/2. For the
third-order WENO scheme, the point i + 2 is used in the negative flux (see Fig. 1). Hence,
we hope adding point i + 2 to the stencil S3 = (i − 1, i, i + 1) to form a four-point stencil
S4 = (i − 1, i, i + 1, i + 2), and use the stencil S4 to help judge whether the stencil S3

contains discontinuity or not.
Firstly, this paper proposes a discontinuity-detecting method for the four-point stencil S4,

i.e., if the condition
θ = |IC1 − IC2| ≥ min(IC1, IC2) (27)

is satisfied, then the stencil S4 = (i − 1, i, i + 1, i + 2) can be regarded as a discontinuous
stencil. Here, IC1 is calculated as

IC1 = ( fi−1 − 2 fi + fi+1)
2, (28)

and it can be regarded as the smoothness indicator for the stencil S3 = (i − 1, i, i + 1).
Following the construction of I SNk in WENO-MN3 [6], IC2 is defined as

IC2 = 1

4
(| fi+2 − fi | − |3 fi+2 + fi − 4 fi+1|)2, (29)
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and can be regarded as the smoothness indicator for the sub-stencil S2 = (i + 1, i + 2).

3.2 The Performance of the Discontinuity-DetectingMethod Eq. (27)

First, supposing the stencil S4 is a smooth stencil, and applying the Taylor expansion of ICk

at xc (xc = xi + δΔx), there are
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

IC1 = ( f ′′
xcΔx2 − δ f ′′′

xc Δx3 + O(Δx4))2

= ( f ′′
xc )

2Δx4 + O(Δx5),

IC2 = (| f ′
xcΔx + (1 − δ) f ′′

xcΔx2 + ( 2
3 − δ + δ2/2

)
f ′′′
xc Δx3 + O(Δx4)|

−| f ′
xcΔx + (2 − δ) f ′′

xcΔx2 +
(
5
3 − 2δ + δ2/2

)
f ′′′
xc Δx3 + O(Δx4)|

)2

= (
f ′′
xcΔx2 + O(Δx3)

)2 = ( f ′′
xc )

2Δx4 + O(Δx5),

(30)

and
θ = |IC1 − IC2| = O(Δx5). (31)

That means, θ is an infinitesimal with one order ofΔx higher than IC1 and IC2. So, if stencil
S4 = (i − 1, i, i + 1, i + 2) is smooth, there is

θ 	 min(IC1, IC2). (32)

It can be seen that, Eqs. (30) and (31) are independent to the first derivative. That means, if
stencil S4 is a smooth stencil (no matter whether it contains non-nodal critical point or not),
(32) is always satisfied.

Conversely, if there is
θ > min(IC1, IC2), (33)

then the stencil S4 can be regarded as a non-smooth stencil (non-strictly, we can call it as a
discontinuous stencil).

For the convenience of the analyses of Eq. (33), let
⎧
⎪⎨

⎪⎩

β0 = ( fi − fi−1),

β1 = ( fi+1 − fi ),

β2 = ( fi+2 − fi+1).

(34)

And then, IC1 and IC2 can be rewritten as
⎧
⎨

⎩

IC1 = (β1 − β0)
2,

IC2 = 1

4
(|β1 + β2| − |3β2 − β1|)2.

(35)

Now, supposing there is a discontinuity contained in stencil S4. Without loss of generality,
assuming the discontinuity is located on sub-stencil S1 = (i, i + 1) (the other cases can be
analyzed similarly), hence, there are

|β1| � |β0| and |β1| � |β2|, (36)

so we can get ⎧
⎨

⎩

IC1 = O(β2
1 ),

IC2 = 1

4
(β1 + β2 − (β1 − 3β2))

2 = O(β2
2 ).

(37)
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Fig. 2 Sketch of smooth stencils with three points

Fig. 3 Sketch of smooth stencils and discontinuous stencils with four points

Hence, there is
θ = |IC1 − IC2| 
 IC1 � IC2. (38)

Above analysis shows that, if there is

θ < min(IC1, IC2), (39)

the S4 stencil should be a smooth stencil.
Now, let’s discuss the smooth or discontinuous properties between the stencils S3 and S4.

(1) Stencil S3 [for example, the cases (a)–(c) in Fig. 2] can be detected as a smooth stencil
by using only the information on S3.
The detecting method for a three-point stencil can be easily established following the
τ5 detecting method for a five-point stencil proposed by Shen and Zha [15], if

τ N
3 = |I SN0 − I SN1 | < min(I SNk ) (40)

is satisfied, then S3 can be treated as a smooth stencil.
(2) If S3 is non-smooth [i.e., Eq. (40) is not satisfied], but S4 is smooth, then S3 can be

treated as a smooth stencil containing a non-nodal critical point [see the three-point
stencil of case (d) in Fig. 2 and the four-point stencil of case (b) in Fig. 3].

(3) The trouble situation is that, if both S3 and S4 are judged as non-smooth stencils, then
how to treat the three-point stencil S3. The trouble is caused by the two cases of (c) and
(e) in Fig. 3. Because the S3 of case (c) is a smooth stencil containing a non-nodal critical
point, but the S3 of case (e) (the blue ’diamond’ indicates the node i − 2) is actually a
non-smooth stencil. Fortunately, the case (e) (in Fig. 2) is always paired with the case
(d) (in Fig. 2), hence, in practical application, if step (2) is met, then the two neighbor
three-point stencils can be simultaneously regarded as two smooth stencils containing
non-nodal critical point; otherwise, i.e., if both S3 and S4 are judged as non-smooth
stencils, then S3 can be treated as a non-smooth stencil.
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3.3 The Hybrid Scheme ofWENO-MN3 and the Third-Order Scheme

Based on the above analyses and conclusions, we can construct a hybrid algorithm on the
three-point stencil S3 = (i − 1, i, i + 1) by combining the WENO-MN3 ( f̂ W ENO−MN3

i+1/2 )

and the third-order upstream ( f̂ Up3
i+1/2) schemes. The algorithm is described as follows,

DO WHILE i ≤ N
IF S3 is smooth (using τ N

3 < min(I SNk ), Eq. (40)) THEN
f̂i+1/2 = f̂ Up3

i+1/2
ELSEIF S4 is smooth (using θ < min(ICk), Eq. (39)) THEN

f̂i+1/2 = f̂ Up3
i+1/2

i = i + 1
f̂i+1/2 = f̂ Up3

i+1/2
ELSE

f̂i+1/2 = f̂ W ENO−MN3
i+1/2

ENDIF
i = i + 1

ENDDO

The hybrid scheme (denoted by HWMN3) can treat the stencils containing a non-nodal
critical point (Fig. 3b, c) as smooth stencils, and it also can distinguish well the stencils
containing a discontinuity (Fig. 3d, e).

In practical applications, we find that, treating the stencil of case (e) (in Fig. 2) as a
discontinuous one, the influence on the accuracy of a numerical solution is not so apparent
for most of the cases. In addition as the analyses shown in Sect. 2, the WENO-MN3 scheme
can recovery to the Up3 scheme in monotonic smooth regions [where, the formula (40) is
satisfied], hence, we also suggest a simplified HWMN3 scheme (denoted by S-HWMN3) as
follows,

DO WHILE i ≤ N
IF S4 is smooth (Eq. (39)) THEN

f̂i+1/2 = f̂ Up3
i+1/2

ELSE
f̂i+1/2 = f̂ W ENO−MN3

i+1/2
ENDIF
i = i + 1

ENDDO

It is easy to find that, the S-HWMN3 scheme is less computational cost than HWMN3, since
the I SNk is calculated only if the stencil S4 is judged as a discontinuous stencil.

4 Numerical Examples

In this section, several linear advection problems, one- (1-D) and two-dimensional (2-D)
Euler problems are calculated to test the performance of the two hybrid schemes. Time
advancement is performed with the third-order TVD Runge–Kutta method [16].
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4.1 Linear Advection Problems

In the following we test the accuracy of different schemes on the linear advection equation,
⎧
⎨

⎩

∂u

∂t
+ ∂u

∂x
= 0, x0 � x � x1,

u(x, t = 0) = u0(x), periodic boundary.
(41)

The exact solution of Eq. (41) is given by

u(x, t) = u0(x − t). (42)

4.1.1 Case 1

u0(x) = sin

(

πx − sin πx

π

)

, −1 ≤ x ≤ 1. (43)

This particular initial condition [14] has two critical points at which f ′ = 0 and f ′′ �= 0.
It is used to test the accuracy of the hybrid scheme. The time step is chosen to be Δt =
8Δx5/3 in order that the error for the overall scheme is a measure of the spatial convergence
only [14]. The errors and the convergence order in L1 and L∞ norm at t = 2 are given in
Tables 4 and 5.

It is noticed that,WENO-NP3 [9],WENO-NF3 [10] andWENO-NN3 [11] have the similar
form as that of WENO-Z-type scheme, i.e., the formula of their un-normalized weights αk

can be expressed as

αk = ck

(

1 + τ p

(I Sk + ε)q

)

, (44)

where, τ = | I S0+I S1
2 − I S3| = γ ( fi−1 + fi+1 − 2 fi )2 (see [6,12] for more information).

The corresponding parameters (i.e., q , p and γ ) for above mentioned schemes are given in
Table 6.

WENO-NP3 and WENO-NF3 behave similarly as WENO-NN3, so their results do not
show here. Apparently, both the HWMN3 and S-HWMN3 schemes recover to the full third
order accuracy, which indicates the discontinuity-detecting method for S4 stencil works well
for smooth solutions. Although WENO-NN3 can obtain third order accuracy in L1 norm,
its L∞ order is only about second order. It should be pointed out that, the accuracy of the
WENO-NP3, WENO-NF3 and WENO-NN3 schemes are affected by the time step, i.e., the
CFL number. To show this, Table 7 gives the results with CFL = 0.45 (which is used in
[10]) and N = 400. It can be seen that, the error of the WENO-NF3 scheme even increases
when a smaller time step is used. This is possible that, with a certain time step, the WENO-
NF3 scheme can avoid or reduce the appearance of this kind of stencils containing non-nodal
critical points.

Although these schemes (such as WENO-NF3) can possibly obtain good results with
certain time steps, the main deficiency of them is that they destroy the requirement that
the global smoothness indicator and the local smoothness indicators [the numerator and
denominator in weighting formula (44)] should have the same dimension, and hence different
solutions would be obtained if different reference values are chosen, even spurious solutions
would be generated. This will be shown in Sects. 4.1.2 and 4.2.
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Table 6 The parameters of the
WENO-NP3, WENO-NF3 and
WENO-NN3 schemes

Scheme γ p q

WENO-NP3 5/6 3/2 1

WENO-NF3 1/6 3/2 1

WENO-NN3 5/6 1 3/4

Table 7 The errors in L∞ norm of WENO-NF3, Up3, HWMN3 and S-HWMN3 with different time steps

Time step WENO-NF3 Up3 HWMN3 S-HWMN3

Δt = 8Δx5/3 1.029E−5 8.263E−6 8.263E−6 8.263E−6

Δt = 0.45Δx 8.584E−6 8.584E−6 8.584E−6 8.584E−6

x
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HWMN3
S-HWMN3

99.99

100

100.01

Fig. 4 Case 2, A = 100, t = 2, N = 200, using the WENO-JS, WENO-MN3, HWMN3 and S-HWMN3
schemes

4.1.2 Case 2

u0(x) =
{
A, if |x | < 0.5,

0, otherwise,
(45)

where, A is a constant number. This case is used to test the shock capturing capability and
to show the importance of keeping the principle of similarity [17] of different schemes. The
numerical solutions at t = 2 with N = 200 and time step Δt = Δx/2 are shown in Figs. 4,
5, 6 and 7. As these figures shown, the results computed by the WENO-JS, WENO-MN3,
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Fig. 5 Case 2, A = 0.01, t = 2, N = 200, using the WENO-JS, WENO-MN3, HWMN3 and S-HWMN3
schemes
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Fig. 6 Case 2, A = 100, t = 2, N = 200, using the WENO-NP3, WENO-NF3 and WENO-NN3 schemes
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Fig. 7 Case 2, A = 0.01, t = 2, N = 200, using the WENO-NP3, WENO-NF3 and WENO-NN3 schemes

HWMN3 and S-HWMN3 schemes with different values of A (i.e., different reference values
are used as the dimensionless parameter) behave similarly, and both the two hybrid schemes
capture the discontinuities quite well.

However, the solutions obtained by the WENO-NP3, WENO-NF3 and WENO-NN3
schemes show different behaviors, for example, the solutions with A = 0.01 (Fig. 7) are
even oscillatory.

4.1.3 Case 3

u0(x) = e−(x−90)2/400
(
cos

(π

8
(x − 90)

)
+ cos

(π

4
(x − 90)

))
, 50 ≤ x ≤ 130. (46)

This case is used to test the performance of different schemes for a smooth solution containing
several critical points [18]. Figures 8 and 9 show the numerical solutions with grid number
N = 200 and time step Δt = Δx/2 at t = 80 and t = 400, respectively. As shown in these
figures, the results of the Up3 and HWMN3 schemes are almost the same. It also can be
seen that, in some regions, the accuracy of the S-HWMN3 scheme is decreased after several
periods, since some three-point stencils [case (c) in Fig. 3] containing non-nodal critical
points are treated as non-smooth stencils.
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Fig. 8 Case 3, t = 80, N = 200, using the Up3,WENO-JS,WENO-MN3, HWMN3 and S-HWMN3 schemes

x

u
(x

)

60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

Exact
Up3
WENO-JS
WENO-MN3
HWMN3
S-HWMN3

Fig. 9 Case 3, t = 400, N = 200, using the Up3, WENO-JS, WENO-MN3, HWMN3 and S-HWMN3
schemes
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Fig. 10 Case 4, t = 2, N = 200, using the WENO-JS, WENO-MN3, HWMN3 and S-HWMN3 schemes

4.1.4 Case 4

u(x, 0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

6
(G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 � x < −0.6,

1, −0.4 � x < −0.2,

1 − |10(x − 0.1)|, 0 � x < 0.2,
1

6
(F(x, α, a − δ) + F(x, α, a + δ) + 4F(x, α, a)), 0.4 � x < 0.6,

0, otherwise,

G(x, β, z) = e−β(x−z)2 , F(x, β, a) =
√
max(1 − α2(x − a)2, 0). (47)

This is a classical testing case, which contains a Gaussian, a triangle, a square-wave and
a semi-ellipse. It is often used to test the dissipation of high-order schemes. The constants
are z = −0.7, δ = 0.005, β = log(2)/(36δ2), a = 0.5 and α = 10. It is solved with
N = 200 and time step Δt = Δx/2. Figures 10 and 11 display the results at t = 2 and
t = 8, respectively. Both the two hybrid schemes can capture discontinuities as well as
WENO-MN3, they have less dissipation than WENO-JS and WENO-MN3, especially for
the Gaussian, triangle and semi-ellipse waves.
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Fig. 11 Case 4, t = 8, N = 200, using the WENO-JS, WENO-MN3, HWMN3 and S-HWMN3 schemes

4.2 One-Dimensional Euler Problems

The governing equations are as follows,

∂U

∂t
+ ∂F

∂x
= 0, (48)

where U = (ρ, ρu, E)T , F(U ) = (
ρu, ρu2 + p, u(E + p)

)T . ρ, u, E, p are the density,
velocity, total energy and pressure, respectively. For ideal gas, E = p/(γ − 1) + ρu2/2.
γ = 1.4 is the ratio of specific heat. Time step is taken as,

Δt = σΔx

maxi (|ui | + ci )
, (49)

where, σ = 0.5 is CFL number, c = √
γ p/ρ is the speed of sound. The Characteristic-wise

Roe-type decomposition method [19] is used for the local characteristic reconstruction. All
the reference solutions are obtained by the WENO-JS scheme with 4000 points.

In order to show the possible drawback of the small parameter ε, which is introduced to
avoid the denominator becoming zero for calculating the weights, taken as a function of the
grid spacing, in this section, we also give the results by using the weighted scheme with,

αk = ck

(

1 + τ

I Sk + Δx2

)

, τ = ( fi−1 + fi+1 − 2 fi )
2 (50)

In corresponding figures, the results are marked as ε = Δx2.
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Fig. 12 Shu–Osher problem, t = 1.8, N = 400, using theWENO-JS,WENO-MN3,HWMN3andS-HWMN3
schemes

4.2.1 Case 5

The first 1-D case is Shu–Osher problem [16], its initial condition is classically given as
follows,

(ρ, u, p) =
{

(3.857143, 2.629369, 31/3), −5 ≤ x < −4,

(1 + 0.2 sin(5x), 0, 1), −4 ≤ x ≤ 5.
(51)

Figure 12 gives the density distribution at t = 1.8 with N = 400. Both the hybrid schemes
show apparent improvement over the others, and the HWMN3 scheme performs better than
the S-HWMN3 scheme in the region with high frequency waves.

In fact, the initial condition Eq. (51) can be regarded as non-dimensional quantities by
using certain reference values,

Lre f = L0, ρre f = ρ0, Uref = U0 (52)

Hence, if the reference values are taken as

Lre f = L0, ρre f = 10ρ0, Uref = 10U0 (53)

then the initial condition becomes as

(ρ, u, p) =
{

(0.3857143, 0.2629369, 31/3000), −5 ≤ x < −4,

(0.1 + 0.02 sin(5x), 0, 1/1000), −4 ≤ x ≤ 5.
(54)

where pre f = ρre f ·U 2
re f , tre f = Lre f /Uref .
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Fig. 13 Shu–Osher problem, using the HWMN3 scheme

The comparisons of densities computed by different schemes with the two initial condi-
tions of Eqs. (51) and (54) are plotted in Figs. 13 and 14. Note that, in order to compare
the results, all the numerical results are multiplied by its corresponding reference values,
for example, the density of Eq. (54) plotted in corresponding figures is ρi = 10 × ρN

i [ρN
i

is the numerical solutions of Eq. (54)], and the computational time is 10 times of that of
Eq. (51). It can be seen that, the HWMN3 scheme can obtain similar results with different
reference values, butWENO-NP3 and the weighted scheme with ε = Δx2 generate different
solutions, although they can obtain good results. WENO-NN3 and WENO-NF3 are similar
as WENO-NP3, thus their results are not shown for brevity.

4.2.2 Case 6

The second 1-D case is Lax problem [20]. Similar as Case 5, we also calculate the solutions
with two kinds of initial conditions nondimensionalized by two sets of reference values,

(ρ, u, p) =
{

(0.445, 0.698, 3.528) −5 ≤ x < 0,

(0.5, 0, 0.571) 0 ≤ x ≤ 5.
(55)

and

(ρ, u, p) =
{

(0.0445, 0.0698, 3.528/1000) −5 ≤ x < 0,

(0.05, 0, 0.571/1000) 0 ≤ x ≤ 5.
(56)

The computational time is t = 1.3 and t = 13 for the initial conditions of Eqs. (55) and (56),
respectively. The grid number is N = 200. The density distribution of Eq. (55) is displayed
in Fig. 15. All schemes can capture shocks well.
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Fig. 14 Shu–Osher problem, using the WENO-NP3 and S-ESWENO schemes
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Fig. 15 Lax problem, t = 1.3, N = 200, using the WENO-JS, WENO-MN3, HWMN3 and S-HWMN3
schemes
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Fig. 16 Lax problem, using the HWMN3 scheme

The comparisons for different initial conditions of Eqs. (55) and (56) are shown in Figs. 16
and 17. Similar as Case 5, WENO-NP3 and the weighted scheme with ε = Δx2 obtain
different results, even both schemes generate oscillations, especially for the case of Eq. (56).

4.2.3 Case 7

The last one is blast waves interaction problem [20], two non-dimensional initial conditions
are

(ρ, u, p) =

⎧
⎪⎨

⎪⎩

(1, 0, 1000) 0 ≤ x < 0.1,

(1, 0, 0.001) 0.1 ≤ x < 0.9,

(1, 0, 100) 0.9 ≤ x ≤ 1.

(57)

and

(ρ, u, p) =

⎧
⎪⎨

⎪⎩

(0.1, 0, 1) 0 ≤ x < 0.1,

(0.1, 0, 10−6) 0.1 ≤ x < 0.9,

(0.1, 0, 0.1) 0.9 ≤ x ≤ 1.

(58)

The computational time is t = 0.038 and t = 0.38 for the initial conditions of Eqs. (57)
and (58), respectively. The grid number is N = 400. The density distribution of Eq. (57) is
displayed in Fig. 18. As we can see, near extrema, both the two hybrid schemes obtain more
accurate solutions than WENO-MN3, and HWMN3 behaves better than S-HWMN3.

The comparisons for different initial conditions (see Figs. 19 and 20) show the similar
conclusion as that in Case 5.
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Fig. 17 Lax problem, using the WENO-NP3 and S-ESWENO schemes

4.3 Two-Dimensional Euler Problems

In this subsection, we further study the shock capturing ability and numerical dissipation of
the hybrid schemes in the 2-D problems. The 2-D Euler equations are solved,

∂U

∂t
+ ∂F

∂x
+ ∂G

∂ y
= 0, (59)

where the conserved variables U and the inviscid flux vectors F and G are

U =

⎡

⎢
⎢
⎣

ρ

ρu
ρv

E

⎤

⎥
⎥
⎦ , F =

⎡

⎢
⎢
⎣

ρu
ρu2 + p

ρuv

Eu + pu

⎤

⎥
⎥
⎦ , G =

⎡

⎢
⎢
⎣

ρv

ρuv

ρv2 + p
Ev + pv

⎤

⎥
⎥
⎦ . (60)

The energy is given by

E = p

γ − 1
+ ρ

2
(u2 + v2). (61)
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Fig. 18 Blast-waves interaction problem, t = 0.038, N = 400, using the WENO-JS, WENO-MN3, HWMN3
and S-HWMN3 schemes

The Roe [21] flux-splitting method is used for the inviscid convective fluxes, and the time
step is taken as follows,

Δt = σ
ΔtxΔty

Δtx + Δty
,

⎧
⎪⎪⎨

⎪⎪⎩

Δtx = Δx

maxi, j
(∣
∣ui, j

∣
∣ + ci, j

) ,

Δty = Δy

maxi, j
(∣
∣vi, j

∣
∣ + ci, j

) ,

(62)

where σ is CFL number, and 0.5 is used for all the tests below.

4.3.1 Case 8

This is a 2-D periodic vortex propagation problem [22,23] used to assess the numerical
dissipation of different schemes. The vortex is described as a perturbation to the velocity
(u, v), temperature (T = p/ρ) and entropy (S = p/ρ) of the mean flow (ρ, u, v, p) =
(1, 1, 1, 1),
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Fig. 19 Blast-waves interaction problem, using the HWMN3 scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û = −εe(1−r2)/2

2π
ȳ,

v̂ = εe(1−r2)/2

2π
x̄,

T̂ = − (γ − 1)ε2e(1−r2)

8γπ2 ,

Ŝ = 0,

(63)

where (x̄, ȳ) = (x − 5, y − 5), r2 = x̄2 + ȳ2, and the vortex strength ε = 0.5. The
computational domain is [0, 10] × [0, 10], and periodic boundary condition is used in
both directions. The results are carried out until t = 200 with a grid of 100 × 100. Figure
21 shows the density contours. Figures 22 and 23 show the density distribution along x-
axis at y = 5, and the evolution of kinetic energy Ek , respectively. Ek is calculated by

Ek = ∑N ,M
i, j=(1,1) ρi, j (u2i, j + v2i, j ), where N and M are the total cells in x and y direction of

the grid, respectively. Figures 21, 22 and 23 show that, the two hybrid schemes can preserve
the shape of vortex as good as the Up3 scheme, they have almost the same dissipation as
Up3.

4.3.2 Case 9

This is a 2-D Riemann problem [24] used to test the shock capturing capability of the hybrid
schemes for calculating shock/shock interaction problems. It is solved on a unit square with
initial condition,
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Fig. 20 Blast-waves interaction problem, using the WENO-NP3 and S-ESWENO schemes

(ρ, u, v, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1.0, −0.75, −0.5, 1.0), 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1,

(2.0, −0.75, 0.5, 1.0), 0 ≤ x < 0.5, 0.5 ≤ y ≤ 1,

(1.0, 0.75, 0.5, 1.0), 0 ≤ x < 0.5, 0 ≤ y < 0.5,

(3.0, 0.75, −0.5, 1.0), 0.5 ≤ x ≤ 1, 0 ≤ y < 0.5.

(64)

The solution at t = 0.23 is solved with a grid of 400×400. The reference is calculated by
WENO-JS with a grid of 800 × 800. Figure 24 shows the density contours of the reference
solution and the results of different schemes. As shown in the figure, since the hybrid schemes
switch to theWENO-MN3 schemeon discontinuous stencils, the hybrid schemes have similar
shock-capturing capability as the WENO-MN3 scheme.

4.3.3 Case 10

The 2-D shock/vortex interaction problemdescribes an interaction between a stationary shock
and a vortex [3]. The computational domain is taken to be [0, 2]× [0, 1]. A stationary Mach
1.1 shock is positioned at x = 0.5 and normal to the x-axis. Its left state is (ρ, u, v, p) =
(1, 1.1

√
γ , 0, 1). A small vortex is superimposed to the flow on the left of the shock and

centered at (xc, yc) = (0.25, 0.5). The vortex is described as a perturbation to the velocity
(u, v), temperature (T = p/ρ) and entropy S = ln(p/ργ ) of the mean flow,
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Fig. 21 Density contours of vortex propagation problem, 30 contours from 0.9941 to 1.0007
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Fig. 22 Density distribution along y = 5
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Fig. 23 Evolution of Ek of vortex propagation problem until t = 200
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Fig. 24 Density contours of Riemann problem, 30 contours from 1.089 to 3.926
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Fig. 25 Pressure contours of shock/vortex interaction problem, computed by theHWMN3 scheme, 20 contours
from 1.005 to 1.297
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Fig. 26 Pressure distributed along y = 0.5 of shock/vortex interaction problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

û = ετea(1−τ 2) sin θ,

v̂ = −ετea(1−τ 2) cos θ,

T̂ = − (γ − 1)ε2e2a(1−τ 2)

4aγ
,

Ŝ = 0,

(65)
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Fig. 27 Velocity v distributed along y = 0.5 of shock/vortex interaction problem

where, τ = r/rc, r = √
(x − xc)2 + (y − yc)2, ε = 0.3, rc = 0.05 and a = 0.204 are the

same as in Refs. [3,25]. The upper and lower boundaries are set to be reflective. The results at
t = 0.6with a grid of 100×50 are solved. Figure 25 shows the pressure contours calculated by
the HWMN3 scheme. Figures 26 and 27 plot the pressure and velocity v distribution along
the center line of y = 0.5, respectively. The result obtained by WENO-JS with a refined
mesh of 2000 × 1000 is given as the reference solution. It can be seen that the pressure
distribution of the WENO-MN3 and the two hybrid schemes is almost the same, but the
velocity distribution around the vortex is improved apparently by the two hybrid schemes.

5 Conclusion Remarks

The analyses in this paper show that, one reason for the accuracy losing of the third-order
WENO schemes is that the local smoothness indicators cannot correctly treat the three-
point stencil containing non-nodal critical point. In order to overcome this shortcoming, a
discontinuity-detecting method for a four-point stencil is proposed and applied to construct
a hybrid scheme (denoted by HWMN3) of the WENO-MN3 scheme combining with a
third-order upstream scheme. As the analyses shown, combining the discontinuity-detecting
methods for the three-point (Eq. 40) and four-point (Eq. 39) stencils, the three-point stencil
containing a non-nodal critical point can be effectively detected, hence it can be correctly
treated in the HWMN3 scheme. The numerical results show that the HWMN3 scheme can
recover to full third-order accuracy for smooth solutions and maintain the ENO property
simultaneously.

123



Journal of Scientific Computing

A simplified hybrid scheme (denoted by S-HWMN3) is also suggested. Although the S-
HWMN3 scheme may lose its accuracy partly, its performances are much better than those
third-order WENO schemes and comparable with the HWMN3 scheme. In addition, the S-
HWMN3 scheme is less computational cost than the HWMN3 scheme, so S-HWMN3 can
also be a good candidate scheme.
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