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Abstract 

Classical plane solutions based on the elastic-plastic fracture mechanics are applied 

widely in practical engineering. These plane solutions follow the plane stress or plane 

strain assumption. However, in the case of a thin ductile plate with a 

through-thickness crack under tension, plane stress conditions exist at a distance of 

about one half of the plate thickness ahead of the crack front cross the thickness of the 

plate. What is the stress state in the region where both plane strain and plane stress 

conditions cannot be met? In the current paper, a semi-analytical method is presented 

to investigate the problem. Three dimensional Maxwell stress functions, the minimum 

complementary potential energy principle and three dimensional J-integrals are 

employed to obtain solutions for crack front fields in a thin ductile plate. 

Three-dimensional finite element (FE) analyses are carried out to verify the current 

solutions. FE results reveal that the out-of-plane constraint level Tz increases with 

increasing remote loading near the crack front. FE results also show that the in-plane 

stress fields near the crack front can be characterized by the current J-Tz solutions. 

Both FE and theoretical results illustrate that opening stresses
 
decrease gradually to 
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the corresponding plane stress HRR-field solutions with increasing radial distance r 

from the crack front in the mid-plane when remote loading is large enough.    

Key words: Elastic-plastic fracture mechanics; Three-dimensional singularity field; 

Out-of-plane constraint; Three-dimensional FM simulation 

 

1 Introduction 

In the past 50 years, a considerable amount of papers on two-dimensional 

analyses of cracked plate elements have been published (Williams, 1957; Dugdale, 

1960; Irwin, 1961; Burdekin and Stone, 1966; Rice and Rosengren, 1968; Hutchinson, 

1968; Rice,1968; Ritchie, et al., 1973; Shih, 1981; Rice, 1988; Betegon and 

Hancock,1991; O'Dowd and Shih, 1992, Hutchinson and Suo, 1992, Xia et al., 1993; 

Hill et al., 1996; Conner et al., 2003; Marsavina and Sadowski, 2007; Zhou and Wei, 

2014, 2015; Ambati et al., 2015). Compared with corresponding three-dimensional 

analyses, two-dimensional analyses can be applied much more easily in practical 

problems. However, some theoretical analyses and experimental examples (Pook, 

2013; He et al., 2016; Yi and Wang, 2018) have shown that the effect of 

three-dimensional constraint cannot be disregarded. Three-dimensional fracture 

analyses are without doubt needed for further comprehension of fracture behavior of 

plate elements. 

In the 1970s, some attempts were made to solve three-dimensional elastic 

fracture problems. Hartranft and Sih (1970) and Sih (1971) presented an analytical 

approach to investigate the distribution of stress intensity factor along the front of a 
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crack in a thin elastic plate under uniaxial tension. Benthem (1977) presented an 

analysis solution for the singularity at the vertex of a quarter-infinite crack in an 

elastic half-space. Benthem’s solutions showed that the vertex singularity depends on 

Poisson’s ratios and is weaker than the square root singularity. Bazant and Estenssoro 

(1979) presented numerical results for the three-dimensional singular stress fields near 

the terminal point of an inclined crack front edge at the surface of an elastic body. 

These numerical results confirmed that vertex singularities exist and are weaker than 

the square root singularity. Yang and Freud (1985) studied the state of stress in a thin 

elastic plate which contains a through-thickness crack and derived a crack tip 

boundary layer solution for mode I loading. The solution showed there is a finite 

lateral contraction at the crack tip and the out-of-plane displacement on the free 

surface merges smoothly with the corresponding plane stress solution at distances 

from the tip of one-half to three-fourths of the plate thickness. Nakamura and Parks 

(1988) investigated the three-dimensional stress fields near the front of a crack in a 

thin elastic plate under tension using finite element methods. Numerical results 

presented by these authors verified Benthem’s solutions for vertex singularities and 

revealed that stress intensity factors decrease sharply in the region near the free 

surface. The phenomena was explained later by Leung and Su (1996). Kwon and Sun 

(2000) presented a K-V model that the crack-front stress fields near the free surface of 

a cracked elastic plate under tension can be expressed as the superposition of K-field 

solutions and vertex-singularity-field solutions. In the new century, three-dimensional 

elastic crack problems were instigated further by many researchers. Kotousov (2004, 
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2007, 2010)  presented a series of solutions for elastic plates of arbitrary thickness 

with a crack or a notch under tension or shear loading using the distributed dislocation 

technique. In the case of tension, the author concluded that the magnitude of stress 

intensity factor increases with increasing ratio of crack size to plate thickness. In the 

case of shear, the author revealed the plate thickness has a minor influence on the 

value of stress intensity factor but the intensity of the coupled KO–mode (out-of-plane 

mode ) increases with an increase of the plate thickness. Considering a crack in a plate 

made of a cubic single crystal under in-plane loading, Chaudhuri (2010) investigated 

the effect of crystal structure on the deviation of crack. The author believed that crack 

deviation will not appear if the single crystals under tension have a rock salt structure, 

however if the single crystals under tension have a bcc structure, crack deflection 

always happens. Nagai et al. (2012) presented a numerical method called M1-integral 

method to evaluate the stress intensity factors along the front of an interface crack 

between dissimilar anisotropic materials subjected to thermal and mechanical stresses. 

Branco et al. (2012) investigated effects of geometrical parameters and material 

properties on the out-of-plane constraint level for three cracked geometries under two 

loading patterns. These authors revealed that the out-of-plane constraint level 

decreases slightly in an interior region, declines quickly in a near surface region and 

drops abruptly in a surface region when approaching the free surface. Similar results 

also can be found in Fig. 5 in the current paper. Kotousov et al. (2013) investigated 

coupled fracture modes in an elastic plate containing a through-thickness crack under 

shear or anti-plane loading using three-dimensional finite element methods. These 
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authors believed that shear or anti-plane loading can induce an anti-plane or shear 

singular stress fields near the crack front and the intensity of the coupled mode is 

affected strongly by the thickness of plate. Goes et al. (2014) examined 3D effects on 

the stress and strain fields near the tips of a notch and a long/short crack using finite 

element methods. They revealed that for a long crack, the three-dimensional zone 

ahead of the crack tip is up to 0.4 times the plate thickness, while for a short crack, the 

three-dimensional zone is up to 10 times the crack length. He et al. (2016) gave a brief 

review of recent studies on three-dimensional brittle fracture, especially the studies of 

coupled fracture modes and vertex singularities. Soliman et al. (2018) presented a new 

analytical generalization of J and G-theta integrals for planar cracks in a 

three-dimensional medium. 

Three-dimensional analyses of ductile fracture are more complicated than the 

corresponding elastic analyses. Closed-form analytical solutions for three-dimensional 

ductile fracture are still not available. Nakamura and Parks (1990) investigated the 

stress fields near the front of a through-thickness crack in a thin ductile plate 

employing ABAQUS software. These authors argued that the loss of HRR-dominance 

at higher load occurs when the finite deformation region outgrows the plane strain 

region. Guo (1993) presented a structure of stress fields near the front of a crack in a 

ductile material under tension and introduced Tz as a parameter to characterize the 

out-of-plane constraint effect. Faleskog (1995) investigated the effect of local 

constraint along crack fronts on cleavage fracture and ductile fracture using numerical 

and experimental methods. The author concluded that ductile crack growth initiation 

                  



 

 
6 

 

appears to be insensitive to the local constraint, but cleavage crack growth initiation is 

sensitive to the constraint. Yuan and Brocks (1998) investigated the effects of 

in-plane and out-of-plane constraints on the stress fields near the front of a crack in a 

ductile plate using a modified boundary layer model. Their numerical results showed 

that the local hydrostatic stress ahead of the crack front is a linear function of Q 

stresses. Kim et al. (2001) performed three dimensional modified boundary layer 

analyses to study crack-front constraints for a thin ductile plate. These authors argued 

that in-plane stress fields can be characterized by a J-A2 three-term solution under 

small yielding conditions. Roychowdhury and Dodds (2004) investigated the effect of 

in-plane constraint (T-stress) on three-dimensional fatigue crack closure in the 

small-scale yielding regime using finite element methods. These authors believed that 

both negative and positive T-stresses reduce the variation of local opening load levels 

along the front of a crack in a ductile plate. Carlyle and Dodds (2007) studied 

three-dimensional effects on the fatigue crack closure in a cracked plate under 

fully-reversed loading using finite element methods. These authors revealed that the 

magnitude of Kop /Kmax along the crack front remains unchanged when Kmax /σ0B
0.5

  

is a fixed value. Here, B is the plate thickness, σ0 is the material yield stress, Kop is the 

crack opening load and Kmax is the peak load. Alizadeh et al. (2007) made a 

comparison of two and three-dimensional analyses of fatigue crack closure. These 

authors revealed that the finite element plane stress and strip yield results agree with 

the three-dimensional finite element crack opening results for the surface, for all 

thicknesses. Wang (2009) performed three-dimensional finite element analyses to 
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examine elastic–plastic crack front fields in a plate with a semi-elliptical surface crack 

under remote uniaxial and biaxial tension loading. The author concluded that the J–Q 

characterization provides good estimate of the constraint loss for crack front stress 

fields. Camas et al. (2010) performed numerical study on the thickness transition in 

bi-dimensional specimen cracks. These authors revealed that the evolution of the 

plastic zone size at the crack plane along the thickness is strongly dependent of the 

specimen thickness. Sobotka and Dodds (2011) performed finite element analyses to 

investigate key features of the elastic–plastic fields near the front of a steadily 

advancing crack in a thin plate under small-scale yielding conditions. Their numerical 

results revealed three-dimensional effects extend to a distance of about 1.5–2.5 times 

the plate thickness ahead of the advancing crack front on the mid-plane. Considering 

single-edge cracked specimens subjected to general loading, Wang et al. (2014) 

investigated the effects of the size of these specimens and crack-front constraints on 

crack front stress fields using finite element methods. Shlyannikov et al. (2014) 

investigated fracture toughness and in-plane and out-of-plane constraint effects using 

experimental and numerical methods for high-strength carbon steel 34XH3MA. These 

authors believed that elastic–plastic stress intensity factors can be used to characterize 

the material fracture resistance properties. Nikishkov and Matvienko (2016) 

investigated the effects of plate thickness and strain hardening exponents on the 

constraint parameter A for edge cracked ductile plates under tension using finite 

element methods. These authors concluded the minimum value of A appears on the 

specimen mid-plane and the value of A considerably increases when approaching the 
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specimen free surface. Recently, Hou (2018) presented a three-dimensional 

re-meshing technique and investigated the crack closure phenomenon in cracked 

ductile plates with various thicknesses. The author revealed that the surface effects on 

crack opening behavior reach a depth that is about 1.34 times the plastic zone size 

measured by Irwin’s approach.   

There are many numerical analyses of three-dimensional ductile fracture in the 

papers mentioned above. However, there are a very limited number of analytical 

solutions available for three-dimensional ductile fracture because of the mathematical 

complexities encountering in solving this kind of 3D problems. In the current paper, a 

semi-analytical method is presented to obtain solutions for crack front fields in a thin 

ductile plate under tension. 

2 Basic equations  

Stress components related to three-dimensional Maxwell functions ( i , i = 1, 2, 3) 

in a rectilinear coordinate system (shown in Fig.1) may be expressed as 

2 22 2 2 2

3 32 1 1 2

2 2 2 2 2 2

2 2 2

3 2 1

, , = ,

= , , .
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xy xz yz

z y z x y x
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     
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
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(1) 

The stress components in a cylindrical coordinate system (shown in Fig.1) may be 

expressed as 
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Here,   =





 and  

'
=

r




. 

It can be proved that Eq. (2) meets equilibrium conditions in a cylindrical coordinate 

system, which can be written as  
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                                    (3)  

 

Disregarding elastic deformations, the stress-strain relation of hardening 

materials may be written as  

1

1

0

3

2

n

ij e ijn
s

E
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


 .                                                 (4) 

Here,  

1

3
ij ij kk ijs     ,                                                    (5) 
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2 3
,

2
e ij ijs s                                                          (6) 

0  represents the yielding stress, E is Young’s modulus, α is a material constant and 

n represents the strain hardening coefficient. 

3. Semi-analytical solutions for crack-front fields  

3.1 Expressions of stress and strain components  

Consider a thin plate containing a through-thickness crack under remote tension, 

as shown in Fig. 1. The stress functions are attempted in the form  
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                                       (7) 

Here, K  is the plastic stress intensity function, s is the exponent related to plastic 

singularities,  is the function related to angular distributions of stress. 

Substituting Eq. (7) into Eq. (2) and disregarding the terms containing 
sr  and 

1sr 
,  

one may obtain stress components, written as  
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Here, zT  is the out-of-plane constraint level and may be defined by   

.z
z
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                                                        
(9)     

Substituting Eq. (8) into Eq. (4), the strain components near the crack front may be 
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written as 
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(12) 

3.2 Solution for s and the relationship between J-integral and K in three-dimensional 

fracture 

A J-integral in three-dimensional fracture (Kishimoto and Sakata, 1980; Shih et 
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al., 1986; Chiarelli and Frediani, 1993; Rigby and Aliabadi, 1998; Eriksson, 2000; 

Omer and Yosibash, 2005) may be written as  

     

 
 

 

 

1

2 2

, 1

,

, 2

, 0

, , , , , .

ij j i x

iz i x

ij j i x

A

J Wdy n u ds r

u
Wdy n u ds dA i x y z j x y

z



 

 


 

  


    





          (13) 

Here,  J 
 

represents the J-integral at a given point   along the crack front 

as shown in Fig. 2. W  is the strain energy density, 
ij and iu  are stress and 

displacement components separately. Both path 1  and path 2   lie in the plane 

perpendicular to the crack front, and 
jn  are the components of a unit vector outward 

normal to the integral paths and normal to the crack front. 
2

A
 represents the region 

bounded by 2 . 

The strain energy density W near the crack front may be expressed as  

 
  2 11 1

1 10 0
0 0

.
1

ij e s nn n n

ij ij e e en n

n n
W d d K r

E E n

  
    

 

  

 
  

              (14) 

Near the crack front, one finds (Hutchinson, 1968) 

         

          
    

' '

,

2 11

1

0

sin sin
cos cos

sin

2 1 cos ,

, , , , .

ij j i x r r r r r

s nn

r r r rn

r r r

n u u u u u u u
r r

K r u u u u
E

n s u u

i x y z j x y

   

  

 

 
    


  



  

 



   
          

   

   

   

 

                                                                 

(15) 

Here, ru , u ,  ru  and  u can be found in appendix A. 

The J-integral in three-dimensional fracture may be written as  
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        

   

           

2 1 11

, 1

0

1

, 0 ,

, cos
1

sin cos 2 1 .

s nn

ij j i x n

n

z e

r r r r r r r

J z Wdy n u ds K r I r
E

n
I T n

n

u u u u s n u u d







    






 

      

  







   


 



       



  

                                                                 (16) 

The value of the J-integral should not be zero or infinity when r tends to zero. Hence, 

one may have 

  1

1

0

,

2 1
.

1

n

n
J z K I

E

n
s

n










 


 

 
                                                (17) 

3.2 Solutions for   

Based on the principle of minimum complementary potential energy and using 

variational methods, one may obtain the equation with the strain components near the 

crack front should meet, expressed as  

 
 

         
'' ' ' '' '1

0
r r

r r z z z zr T r
r r r


 

 
     



 


    
                

              (18) 

Specially, for plane stress ( zT =0) and plane strain ( z = 0), only the terms in the first 

bracket appear. The derivation of Eq. (18) is shown in appendix B. 

Substituting the strain components (Eq. (10)) into Eq. (18), one may obtain  

         
'' ' '

1 1 1 1 1 1 0n n n n n n

e e e e e eA B C D E F                .           (19)  

Here, 
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 

 

 

'' ' '' '

'' ' '' '

2 3 2 3

'

2

' ' ' '
''' '' ''' ''

2 2

'' '

2 2 1 + ,

2 2
+ 2 1 + ,

6 ,

4 2 6 2 3
4 3 + 2 1 2 3 + ,

4 2

z z

z z

z z

A r T T r
r r

B T T
r r r r r r

C
r r

D r T T r
r r r r r r

E
r

 
   

     

 

     
   

 

 
      

 

 
      

 

 
  

 

 
         

 

   

  

'' '

2 3 3 2 3

'' '' ' '
'''' '''

2 2 3 3

4 6
+ 4 1 + ,

2 2 4
2 1 1 +2 + + + .

z z

z z

T T
r r r r r r

F T T r
r r r r r r

    

     
 















 

     
  

 
      
  

 (20)
 

Here, only terms containing 
 2 1s n

r
 

 are kept. Further, substituting Eq. (11) and 

Eq.(12) into Eq. (19) and only keeping the terms containing 
 2 1s n

r
 

, one may obtain 

the resulting equation, expressed as 

        

 
    

          

2
*

2 2

2

2

2

1 1 1
1 3

4 2

1
+ 2 1 +

2

2 1 2 1 1 + 2 1 + .

e e

e

e

e

B n n
H

n
C s n E

A s n s n D s n F

  






 
    

 


 

       


           (21) 

Here, H , A , B , C , D , E , F ,  2

e and  
*

2

e  can be found in appendix A. 

When zT  is given, Eq. (21) may be solved using a fourth-order Runge-Kutta 

method. Following Hutchison's paper (Hutchinson, 1968), the values of 
0




and 

=0
  can be determined when stress-free boundary conditions and an additional 

condition implying  max =1e  are met at the same time. The stress-free boundary 

conditions require 

    0       .                                                (22) 

The imposed symmetry(        
0 0 0 0

0r r z    
   

   
    ) requires 
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   0 0 0   .                                                 (23) 

4. Three dimensional finite element analyses 

 

To verify the analytical results, finite element analyses are carried out. A 

cylinder containing a crack front is considered, see Fig. 3(a). The typical boundary 

layer analysis model has been applied to investigate crack-front stress fields by many 

researchers (Nakamura and Parks, 1988, 1990; Yuan and Brocks, 1998; Kim et al., 

2001; Roychowdhury and Dodds, 2004; Sobotka and Dodds, 2011; Kotousov, 2013). 

The stress state on the outer circular boundary can be described by the classical 

William’s solution. The radius of the cylinder a should be large enough so that the 

maximum crack front plastic zone is within a linear-elastic (plane-stress) region and 

has negligible interaction with the outer boundary. The radius a also should be much 

larger than the plate thickness so that the three-dimensional constraint vanishes at the 

outer boundary. Nakamura and Parks (1990) and Roychowdhury and Dodds (2004) 

suggested the radius may be taken as 100 times the plate thickness. Yuan and 

Brocks(1998) and Kim et al. (2001) suggested that the radius is 10 times the plate 

thickness. In the current paper, the radius a is taken as 50 times the plate thickness, 

i.e., a=100h. Only a quarter of the cylinder is modeled considering the symmetry 

condition and the mesh is constructed with 8-node brick elements, as shown in Fig. 

3(b). In the plane perpendicular to the crack front, the element size in the radial 

direction increases progressively with increasing radial distance r from the crack front 

and the minimum radial size is 
410 h

 at the crack front. There are 36 elements 

which distribute uniformly in the circumferential direction. The same planar mesh is 
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repeated along the z-axis from the mid-plane (z=0) to the free surface (z=h). The 

element density increases gradually when approaching the free surface (the ratio is 

1.25) considering high stress gradients. There are 25 layers through the half thickness 

of the plate and the minimum element thickness is 
310 h

 at the free surface, as 

shown in Fig3(b). The mesh density becomes higher when approaching the crack 

front. There are 78,300 elements in the region r<h and there are 91,800 elements in 

the region r<10h. The entire mesh consists of 100,800 elements. 

Boundary conditions for the current problem may be expressed as 

0 0, 00, 0,

3
5cos cos ,

2 24 2

3
sin sin .

2 24 2

z z y y x

r r a

r r a

u u

K

a

K

a



 




 



  










 

 

   
  

 
   

  

                                  (24) 

Here, K a    and 100a h .  

In the current FE analyses, Poisson's ratio v=0.3, the yield stain 0 0.002  , α is taken 

as 1 and the strain hardening coefficients are taken as 3,10 and 13. Here, we use 

virtual materials. One also may consider real materials. For example, one may 

suppose that E =500GPa and yield stress σ0 = 0.002E =1000MPa. 

Undoubtedly, the requirement of the radius a limits the application of the finite 

element model in some practical plates. The current finite element model cannot be 

applied in following geometric plate dimensions, i.e.,  

1. relative short ligaments, e.g., (W-a)/2h< 0.5, 

2. small height to length ratios (L/W ) of the plate, 
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3. short cracks, e.g., a/h<1. 

 

5 Results and discussion  

The variation of  J z
 

normalized by J 
 along the crack front at various 

loading levels is plotted in Fig. 4. The figure shows that the value of /J J 

 

decreases slowly in the region 0≤ z/h≤ 0.95, then drops rapidly when approaching the 

free surface ( 0.95≤ z/h≤ 1). The figure also demonstrates that the value of
 

/J J 
 

increases with increasing loading on the mid-plane.  

The variation of 
zT  near the crack front in the thickness direction at various 

loading levels is shown in Fig. 5. One may observe the value of 
zT  increases with 

increasing loading at all depths. The figure also illustrates the value of 
zT  decreases 

slowly with increasing z/h first and then abruptly drops when approaching the free 

surface at all loading levels. The free-surface dominated region are discussed by some 

researchers (Nakamura and Parks, 1990; Kotousov, 2010; Camas et al., 2011; Branco 

et al., 2012). Branco et al. (2012) suggested that the free-surface dominated region 

may be determined by the criterion that the slope of Tz is larger than 10 in the region 

(shown in Fig. 6(a)). Based on the criterion, the variation of the thickness of 

free-surface dominated region normalized by the half thickness (marked t/h) in the 

radial direction are plotted in Fig. 6(b). Detailed investigations on the stress fields in 

the free-surface dominated region for a cracked ductile plate are beyond the scope of 

the current paper due to complexities of the problem.     

The variation of 
zT  in the radial direction on the mid-plane is plotted in Fig. 7. 
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One may find that Tz  tends to zero when log10 (r/h) increases to 0 at all loading levels. 

This implies the three-dimensional constraint vanishes at a radial distance of about 

one half of the plate thickness from the crack front on the mid-plane. Fig. 7 also 

shows the value of 
zT  tends to 0.5 when r tends to zero. This indicates plane strain 

conditions may be met approximately at the crack front. Fig. 7 shows that there is a 

line called elastic line where all curves of 
zT terminate when the plastic zone sizes 

are less than the half-thickness of the plate.  

The θ-variation of in-plane stresses normalized by the yield stress near the crack 

front on the mid-plane and the plane close to the free surface are plotted in Fig. 8 and 

Fig. 9. These figures show the current analytical results are in agreement with the 

corresponding FE results. These results verify that the in-plane stresses near the crack 

front can be characterized by current J-Tz solutions. 

Comparisons between HRR-field, FE and analytical results are plotted in Fig. 10. 

The figure illustrates that the FE results of 0/  and 0/r 
 

near the crack front 

are larger than the corresponding plane stress HRR-field results but less than the 

corresponding plane strain HRR-field results. The analytical results are in better 

agreement with FE results than the corresponding HRR-field results.   

The radial variation of normalized opening stress 0/   ahead of the crack 

front on the mid-plane at various loading levels is shown in Fig. 11. One may find the 

normalized opening stresses tend to the corresponding plane strain HRR-field 

solutions when approaching the crack front. One also finds the normalized opening 

stresses decrease with increasing log10(r/h). The analytical results of 0/   are in 
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good agreement with the corresponding FE results in the plastic zone at various 

loading levels, as shown in Fig.11(a), (b), (c) and (d). Both Figs.11(a) and (b) suggest 

that 0/  will not tend to the corresponding plane stress solutions in the case of  

small scale yielding, as already pointed out by other authors. However if the loading 

is large enough so that the plastic zone size ahead of the crack front on the mid-plane 

is larger than one half thickness of the plate, one may observe the value of 0/ 

decreases gradually from the corresponding plane strain HRR-field solutions to the 

corresponding plane stress HRR-field solutions with increasing log10(r/h), as 

illustrated in Figs. 11(c) and (d).   

The results of J, Tz and opening stresses are compared with those given by 

Nakamura and Parks (1990) and the agreement of these numerical and theoretical 

results is good, as shown in Fig. 4(b), Fig. 7(b) and Fig. 11(d). The comparison shows 

the current numerical and theoretical results are valid.         

The values of I for various 
zT

 
and n are shown in Table. 1. When 

zT  is taken 

as 0 or 0.5, the values of I are equal to the corresponding plane stress or strain 

solutions given by Hutchinson
 
(1968). The value of I increases deceasing hardening 

coefficient n. 

The current semi-analytical approach cannot applied to analyze Mode II and III 

fracture. Other stress functions, for example, three-dimensional Morera stress 

functions may be attempted to obtain elastic or plastic solutions for three-dimensional 

Mode II and III fracture. The work on three-dimensional Mode II and III fracture 

needs hard theoretical derivations, careful numerical or experimental studies to 
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confirm or correct the analytical solutions. So, the investigation of Mode II and III 

fracture does not be carried out in the current paper and may appear in the later work.  

      

6 Summary and conclusions
 

In the current paper, a semi-analytical method is presented to investigate 

three-dimensional ductile fracture in a thin hardening plate containing a through- 

crack under tension. Three-dimensional Maxwell stress functions, the minimum 

complementary potential energy principle as well as three-dimensional J-integrals are 

used to obtain solutions for the crack front fields. The effect of out-of-plane constraint 

on the in-plane stress fields near the crack front is examined. Three-dimensional finite 

element analyses are carried out to validate the current analytical results. This work 

supports the following conclusions. 

1. The in-plane stress fields near the crack front can be characterized by the current 

J-Tz solutions. 

2. The value of normalized J-integral /J J 

 
decreases slowly with increasing 

normalized depth z/h first and then drops rapidly when approaching the free surface. 

The value /J J 
 depends on the applied loading and increases with increasing 

loading on the mid-plane. 

3. The value of out-of-plane constraint level 
zT  decreases slowly with increasing 

normalized depth z/h first and then drops quickly to zero when approaching the free 

surface. The value of 
zT  increases with increasing loading at all depths.  

4. The value of 
zT

 
tends to 0.5 when approaching the crack front so plane strain 
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conditions can be met at the crack front except at the corn point. The 

three-dimensional constraint vanishes at a radial distance of about one half of the 

plate thickness from the crack front on the mid-plane.  

5. Comparison with HRR-field solutions shows that the FE results of 0/  and 

0/r  near the crack front are larger than the corresponding plane stress HRR-field 

results but less than the corresponding plane strain HRR-field results when 0<Tz <0.5. 

6. The value of opening stress tends to the corresponding plane strain HRR-field 

solutions when approaching the crack front on the mid-plane. If the loading is large 

enough, one may observe that the normalized opening stress
 
decreases gradually from 

the corresponding plane strain HRR-field solutions to the corresponding plane stress 

HRR-field solutions with increasing radial distance r from the crack front.  

7. The value of I increases deceasing hardening coefficient n. 
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Figure Captions  

Fig. 1 A thin plate containing a through-thickness crack subjected to remote uniform 

tensile loading  
.  

Fig. 2 J-integral in three-dimensional fracture. 

Fig. 3 (a) Schematic of a thin plate subjected to remote loading and a boundary of a 

region assumed to be dominated by a plane stress K-field, (b) finite element mesh of 

the quarter-model. Here, 100 .a h  

Fig. 4 Variation of /J J 

 along the crack front at various loading levels; (a) for n=3, 

(b) for n=10, (c) for n=13. 

Fig. 5 Variation of out-of-plane constraint 
zT  in the thickness direction at various 

loading levels; (a) for n=3, (b) for n=10, (c) for n=13. 

Fig. 6 Variation of thickness of the free-surface dominated region normalized by half 

thickness of the plate (marked t/h) in the radial direction (a) the free-surface 

dominated region, (b) variation of thickness of the free-surface dominated region in 

the radial direction. 

Fig. 7 Variation of out-of-plane constraint 
zT in the radial direction on the mid-plane 
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at various loading levels; (a) for n=3, (b) for n=10, (c) for n=13. 

Fig. 8 θ-variation of in-plane stresses near the crack front normalized by the yielding 

stress on the mid-plane at various loading levels; ( (a) for 
0 0/ 3.14J h  

 
and n=3, 

(b) for 
0 0/ 0.2J h  

 
and n=10, (c) for 

0 0/ 0.084J h    and n=13, (d) for

 

0 0/ 1.93J h    and n=13.
 

Fig. 9 θ-variation of in-plane stresses near the crack front normalized by yielding 

stress on the plane close to the free surface at various loading levels; (a) for
 

0 0/ 0.084J h    and n=13, (b) for
 0 0/ 0.249J h    and n=13.

 

Fig. 10 Comparison of HRR-field, FEM and current analytical results near the crack 

front; (a) for 0/   on the mid-plane, (b) for
 0/r   on the mid-plane, (c) for 

0/   on the plane close to the free surface, (d) for
 0/r   on the plane close to 

the free surface. 

Fig. 11 Variation of opening stress in the radial direction normalized by yielding stress  

on the mid-plane at various loading levels; (a) for
 0 0/ 0.248J h    and n=13, (b) 

for 
0 0/ 1.93J h   and n=13, (c) for 

0 0/ 10.2J h    and n=13. (d) for 

0 0/ 10J h    and n=10. 
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Fig. 2  
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Fig. 3  
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Fig. 5 
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Fig. 6 
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Fig. 8  
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Fig. 9 
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Fig. 10  
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Table Caption 

Table 1 Values of I with various 
zT  and n   

zT

  

I 

n

 

 

0 

 

0.05 

 

0.1 

 

0.15 

 

0.2 

 

0.25 

 

0.3 

 

0.35 

 

0.4 

 

0.45 

 

0.5 

3 3.86 4.14 4.46 4.80 5.12 5.38 5.46 5.39 5.36 5.43 5.51 

10 2.95 3.26 3.59 4.05 4.57 4.87 4.17 4.18 4.28 4.43 4.52 

13 2.87 3.14 3.51 3.96 4.40 4.70 4.00 4.01 4.14 4.29 4.40 

 

Appendix A Expressions for ru , u ,  ru ,  u , H , A , B , C , D , E , F , 

 2

e and  
*

2

e  

Using the strain-displacement relation and the method of partial integration, the radial 

displacement ru  may be expressed by 

 

  
  

      
  

2 2 1

1 1

0 0

'2 1 2 1

1

0

2 2 2 1

2 2 1

s n s nn n

r r r rn n

s n s nn n

r r

n

u dr K r dr K d r
E E n s

K r r K dr

E n s

 
  

 

  



  

 

   



  
 




 

  



   

(A.1)

 

When r tends to zero, one may have 

   
 

   

        
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'2 1 2 2 10
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2 1 +
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2 1 +
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n n

r r

r K dr r K

K r s n K r r K

r K

s n K r K

 

  



 

   

    


 

 
 



           (A.2) 

So, Eq. (A.1) may be re-written as  
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 

  
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 ru ,  u and u may be expressed as  
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(A.4)
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and 
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(A.8) 

                                                                 

Appendix B The derivation for Eq. (18)  

Based on the principle of minimum complementary potential energy, one may have 

  =0x x y y z z xy xy xz xz yz yz

V

dxdydz                 .          (B.1) 

Substituting Eq. (1) into Eq. (B.1), we have 

2 22 2 2 2

3 32 1 1 2

2 2 2 2 2 2x y z

V
z y z x y x

    
     
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          
         


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2 2 2
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                             (B.2)  

According to derivation rules, one may have 
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(B.3)                                            

Substituting Eq. (B.3) into Eq. (B.2), Eq. (B.3) may be re-written as 
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                                                                (B.4) 

Further, Eq. (B.4) may be re-written as 
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                                                                 (B.5) 

Noting compatibility equations, the last integral in Eq. (B.5) should be zero. 

Furthermore, noting 1 2 3zT    , the last integral in Eq. (B.5) can be re-written as 
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When r tends to zero, Eq.(B.6) may be re-written as 
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(B.7) 

3  is arbitrary, one has 
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Eq. (B.8) may be re-written as in a cylindrical coordinate system 
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